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Abstract

We study a model of opinion formation based on the theory of social impact and the concept
of cellular automata. The case is considered when two strong agents inuence the group: a strong
leader and an external social impact acting uniformly on every individual. There are two basic
stationary states of the system: cluster of the leader’s adherents and uni�cation of opinions. In
the deterministic limit the variation of parameters like the leader’s strength or external impact
can change the size of the cluster or, when they reach some critical values, make the system
jump to another phase. For a certain range of parameters multistability and hysteresis phenomena
are observed. In the presence of noise (social temperature) the rapid changes can be regarded
as the �rst-order phase transitions. When both agents are in a kind of balance, a second-order
transition and critical behaviour can be observed. Another kind of noise-induced transitions are
the inverses (ips) of the uni�ed group opinion due to random ips of the leader’s opinion.
Analytical results obtained within a mean �eld approximation are well reproduced in computer
simulations. c© 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Interdisciplinary research has been drawing much attention in the last decades. Mod-
els and methods developed in theoretical physics proved to be fruitful in studying
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complex systems [1,2], composed of relatively simple mutually interacting elements,
coming from domains as diverge as neural networks [3–5], disease spreading [6,7], pop-
ulation dynamics [8,9], etc. But the range of the investigations goes also beyond the
natural sciences and includes problems from sociology or economy, like e.g. pedestrian
motion and tra�c [10–12], migrations [13–15], �nancial crashes [16,17].

Another important subject of this kind is the process of opinion formation in social
groups or decision making, also at the level of whole countries. One way of its quan-
titative description consists in a macroscopic approach based on the master equation
or the Boltzmann-like equations for global variables [13,14,18–21]. Alternatively, by
making some sociologically motivated assumptions on the mechanisms of interactions
between individuals “microscopic” models are constructed and investigated numerically
and analytically by means of the methods known from statistical physics [22–24]. One
concludes that the variety of the emerging collective phenomena has much in common
with the complex social processes.

One of the examples is the class of models based on the concept of cellular automata
[25,26] and the theory of social impact formulated by Latan�e [27], and conformed
in a number of sociological studies [28–30]. Di�erent variants of the model were
explored numerically [28,31], and many of the observations were than explained in
the framework of a mean �eld approach [32] and recently the Landau theory [33].
An extention of the model introducing the time variance of the social strengths of
individuals according to some learning rule has also been studied [34]. The essential
outcome of both the theory and simulations is the onset of clusters of minority that can
survive within the majority holding the opposite opinion and be persistent throughout
long periods of dynamics. It has been indicated that strong individuals play an important
role in the formation and stability of the clusters. Motivated by this, in [35,36] we
considered a particular case of the model, namely when a strong individual (a leader)
is present in the social group. Multistability and hysteresis phenomena, as well as
di�erent kinds of rapid changes (phase transitions) in the distribution of opinions were
encountered.

In this paper the e�ects of competition between the strong leader and an external
inuence or preference acting homogeneously within the group are studied in terms of
a mean �eld approach. We show that such antagonism can lead not only to sudden
changes of opinion, but also to the critical behaviour. The high “social temperature”
reveals the dominance of the stronger agent. After introducing the model (Section 2)
and recalling some results for the deterministic case (Section 3) we investigate in detail
the noise-induced transitions giving rise to the critical behaviour (Section 4.1). We also
report a new kind of sudden changes in the system due to noise induced ips of the
leader’s opinion (Section 4.2).



K. Kacperski, J.A. Ho lyst / Physica A 269 (1999) 511–526 513

2. Model of a social group

Our system consists of N individuals (members of a social group); we assume that
each of them can share one of two opposite opinions on a certain subject, denoted as
�i = ±1; i = 1; 2; : : : ; N . Individuals can inuence each other, and each of them are
characterised by the parameter si ¿ 0 which describes the strength of his/her inuence.
Every pair of individuals (i; j) is ascribed a distance dij in a social space. The changes
of opinion are determined by the social impact exerted on every individual:

Ii = −si� − �ih−
N∑

j=1; j 6=i

sj�i�j
g(dij)

; (1)

where g(x) is an increasing function of social distance, � is a so-called self-support
parameter reecting the inclination of an individual to maintain his/her current opinion,
and h is an additional (external) inuence which may be regarded as a global preference
towards one of the opinions stimulated by mass–media, government policy, etc.

Opinions of individuals change simultaneously (synchronous dynamics) in discrete
time steps according to the rule

�i(t + 1) =




�i(t) with probability
exp(−Ii=T )

exp(−Ii=T ) + exp(Ii=T )

−�i(t) with probability
exp(Ii=T )

exp(−Ii=T ) + exp(Ii=T )

(2)

analogous to the Glauber dynamics with −Ii �i corresponding to the local �eld. The
parameter T may be interpreted as a “social temperature” describing a degree of ran-
domness in the behaviour of individuals, but also their average volatility (cf. [24]).
The impact Ii is a “deterministic” force inclining the individual i to change his/her
opinion when Ii ¿ 0 or to keep it otherwise.

Our model social space is a 2D disc of radius R with the individuals located in
the nodes of quadratic grid; the distance between nearest neighbours equals 1, and
each node is occupied with probability � which may be also regarded as a constant
surface density of individuals. The geometric distance models the social immediacy.
Strength parameters si of the individuals are positive random numbers with probability
distribution q(s) and the mean value �s. In the centre of the disc there is a strong
individual (whom we will call the “leader”); his/her strength sL is much greater than
that of all the others (sL/ si).

3. Deterministic limit

Let us �rst recall the properties of the system without noise, i.e. at T=0 (see [35,36]
for details). The dynamical rule (2) becomes then strictly deterministic: �i(t + 1) =
−sign(Ii�i). Considering the possible stationary states we �nd the trivial uni�cation
(with equal opinion ±1 for each individual) or, due to the symmetry, a circular cluster
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of individuals sharing the opinion of the leader surrounded by a ring of their opponents
(the majority). These states remain stationary also for small self-support parameter �;
for su�ciently large � any con�guration may remain “frozen”.

Using the approximation of continuous distribution of individuals (i.e. replacing the
sum in (1) by an integral) we have calculated the size of the cluster, i.e. its radius a
as a function of the other parameters. In the case of g(r) = r; �= 1 and �s= 1 we got
from the limiting condition for the stationarity I = 0 at the border of the cluster

a ≈ 1
16

[2�R−√
�± � − h±

√
(2�R−√

�± � − h)2 − 32sL] : (3)

This is an approximate solution valid for a.R, but it captures all the qualitative
features of the exact one which can be obtained by solving a transcendent equation.
Here and in the next section we assume that the leader’s opinion �L = +1, but the
analysis is also valid for the opposite case if h→ −h.

The branch with the “−” sign in front of the square root corresponds to the stable
cluster and the one with “+” to the unstable solution separating basins of attraction of
the stable cluster and uni�cation. Owing to the two possible signs at the self-support
parameter � in (3), the stable and unstable solutions are split and form in fact two
bands. The states within the bands are “frozen” due to the self-support which may be
regarded as an analogy of the dry friction in mechanical systems. In this way also the
unstable clusters can be observed at �¿ 0 and appropriately chosen initial conditions.

Eq. (3) has real solutions corresponding to clusters provided

(2�R−√
�± � − h)2 − 32sL¿0 : (4)

Otherwise, the general acceptance of the leader’s opinion (uni�cation) is the only stable
state. When, having a stable cluster, condition (4) is violated by changing a parameter,
e.g. sL or h one can observe a discontinuous phase transition: cluster → uni�cation.

If, on the other hand, the leader is too weak it may be impossible for him not only to
form a cluster but also to maintain his/her own opinion. The limiting condition for the
minimal leader’s strength sLmin to resist against the persuasive impact of the majority
can be calculated from the limiting condition IL = 0 (IL – the impact exerted on the
leader):

sLmin =
1
�

(2�R−√
�− h) : (5)

So far we considered the stability condition at the border of the cluster. However, for
su�ciently large external impact h it may happen that the individuals at the border of
the whole group (at the distance R from the leader) begin to convert their opinions.
Again, from the limiting condition I = 0 we get the critical value of h at which it
happens causing the boundary-induced transition:

|hc| = 4R−√
�+ � ± sL

R
: (6)

The sign “−” before sL applies when the external impact is positive and favours the
leader’s opinion, then the transition cluster → uni�cation occurs. The “+” corresponds
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Fig. 1. sL − h phase diagram. Thick lines limit the areas where di�erent phases are possible: “U+” –
uniform opinion +1, “U−” – uniform opinion −1, “C+” – cluster of +1 adherents, “C−” – cluster of −1
adherents. The lines were obtained from limiting conditions for: (a) – stability at the border of the cluster
Eq. (4), (b) – stability at the border of the group with the external impact favouring the leader Eq. (6),
(c) – stability at the border of the group with the external impact against the leader Eq. (6), (d) – minimal
leader’s strength sLmin to resist against the persuasive impact of the majority Eq. (5). Parameter values:
R= 20; �= 1; �= 1; �s= 1; h= 0. The choice �= �s means that the individual’s own opinion is as important
as that of his/her nearest neighbour.

to the opposite case [i.e. when sign(h) = −sign(�L)]; then we have the transition uni-
�cation → cluster or, when the strength of the leader is below the minimal (5), the
transition uni�cation → uni�cation, i.e. the inversion (ip) of opinions.

Taking into account conditions (4), (5) and(6) one can make a phase diagram h−sL
distinguishing the regions where di�erent states of the system are possible (Fig. 1). It
is apparent that the system shows multistability in certain range of sL and h. It depends
on the history which of the states is realized, so we come to a hysteresis phenomenon
(Fig. 2). Moving in the parameter space sL−h and starting from di�erent con�gurations
one can have many possible scenarios of phase transitions. Let us consider one of them
(Fig. 2), namely when we go along the line sL = 300 in Fig. 1. Assume that we start
with a cluster C+ around the leader of the opinion +1 at h = 0. The increase of the
external impact h causes growth of the cluster up to a point on curve (a+) in Fig. 1
where the transition to uni�cation U+ occurs. Further increase of h will certainly not
cause any more changes, but if its sign is reversed we can reach another critical point
(line (c−) in Fig. 1) at which the transition: uni�cation (U+) → cluster (C+) takes
place. When we now go with h back to zero we come to our original state. But if the
negative impact is increased beyond (d+), the leader alone is not able to sustain the
persuasive impact and we have the transition cluster (C+) → uni�cation (U−).

The approximation of the sum in (1) by an integral remains valid as far as the den-
sity of individuals is big enough regarding the size of the system so that � a2/ 1.
Taking large R and small � we have the individuals randomly distributed in 2D space
instead of somewhat arti�cial square grid geometry. This approximation implies also
a complete rotational symmetry of the system. In the case of a square lattice the
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Fig. 2. Hysteresis in the dynamics of the system. The curves have been obtained from (3) for sL = 300.
Other parameter values as in Fig. 1.

symmetry is reduced to the 4-fold axis, and in e�ect the actually observed clusters are
not exactly circular but rather square (smaller clusters) or octagonal (larger clusters).
We did not observe other polygons but one can anticipate that they can appear for
model parameters allowing still larger clusters.

Qualitatively, similar results were obtained for the mutual interactions of shorter
range, namely when g(r) = rn; n= 2; 3; 4. In this case, however, an individual mostly
“feels” his/her nearest neighbours and their exact position becomes important. For this
reason the results obtained within the approximation do not �t perfectly to those from
computer simulations.

4. Noisy dynamics

In the presence of noise the marginal stability of unstable clusters due to the self-
support is suppressed and they are no longer the stationary states of the system. Bor-
ders of the stable clusters become diluted, i.e. individuals of both opinions appear all
over the group. Considering the dynamics (2) we can conclude that the inuence of
noise on a single individual depends on the ratio Ii=T . Because of the strong inuence
of the leader, the supportive (negative) impact is stronger inside the cluster than out-
side it. Thus, due to noise-induced ips of opinions the adherents of the leader appear
more often outside the cluster (among the majority of opponents) than the opponents
inside it. Moreover, the area outside is much greater than that of the cluster itself, so
we observe the e�ective growth of the minority group. This causes that the supportive
impact outside the cluster becomes still weaker and the majority becomes more sensi-
tive to random changes; it is a kind of positive feedback. At a certain value of tempera-
ture the process becomes avalanche like and the former majority disappears. Thus noise
induces a jump from one attractor (cluster) to another (uni�cation). Such a transition
is possible at every non-zero temperature but its probability remains very small until
the noise level exceeds a certain critical value. Our simulations prove that it is indeed
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a well-de�ned temperature that separates two phases (i.e. two attractors). Similarly, the
transition uni�cation → cluster in the presence of external impact can be induced by
noise.

4.1. Mean �eld approximation. Phase transitions, critical dynamics

We can derive analytically the stationary states of the system an nonzero temperature
using a kind of mean �eld approximation. To do this let us calculate the impact on an
individual at a distance x from the leader, and sharing the opposite opinion:

I(x) =
sL
g(x)

+ � �s
∫
DR
Pr(r)

1
g(|r− x|)d2r

−� �s
∫
DR

(1 − Pr(r))
1

g(|r− x|)d2r− � �s+ h : (7)

The integration is performed over the whole space DR excluding the individual under
consideration. Pr(r) denotes the probability of �nding a leader’s follower at the distance
r from the centre of the group; it is in fact determined by Eq. (2) from which it follows
that it depends on the actual state of the system in the previous time step. We would
like, however, to have a stationary function I(x). This can be achieved relatively easy
if we neglect the self-support term. Let us put �=0 in the subsequent calculations and
discuss the inuence of nonzero self-support later.

Now we make an approximation replacing Pr(r) by its stationary mean value p
over DR and putting it outside the integral. This is equivalent to the simple assumption
that Pr(r) is uniform. We can expect it to be valid for large temperatures when the
dynamics is almost random, or for small leader’s strength sL (because it is in fact the
large value of sL that contributes most to the nonuniformity of Pr(r)). From (7) we
get

I(x) =
sL
g(x)

+ (2p− 1)� �sJD(x) + h; (8)

where JD(x)=
∫
DR

1=g(|r−x|) d2r is a function dependent only on the size of the group
and type of interactions. Note that the impact on an individual sharing the opinion of
the leader would be the same as in (8) but with the opposite sign. Due to this fact we
can easily derive the expression for the stationary probability Pr(r) from the dynamical
rule (2) which gives the transition probabilities. Then from the de�nition of the mean
value p (the mean part of individuals sharing the opinion of the leader) it follows

p=
1

�R2�

∫ R

0
�Pr(r)2�r dr =

1
R2

∫ R

0

exp[I(r; p)=T ]
cosh[I(r; p)=T ]

r dr ≡ f(p); (9)

where I(x; p) is given by (8). This is an integral equation for p. Note that in the
above derivation we set the leader’s opinion �xed, independent of the inuence of the
group and the noise.

In Fig. 3 one can see the graphical solution of the Eq. (9) for certain set of pa-
rameters and g(r) = r. At low temperatures there are three solutions: the smallest one
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Fig. 3. Numerical solution of Eq. (9) for sL = 250 and h= 25 (other parameters as in Fig. 1). f(p) is the
RHS of (9) plotted for di�erent temperatures: solid line - T = 10, dashed - T = 28, dotted–dashed - T = 80,
dotted - T = 300.

Fig. 4. Fraction p of leader’s followers vs. temperature; sL = 400, h = 0. Results of our calculations are
represented by a solid line and those of computer simulations by a dotted line. Other parameter values as
in Fig. 1.

corresponding to the stable cluster around the leader, the second – to the unstable
cluster which, in fact, is not observed, and the biggest – to the uni�cation. The size of
the stable cluster grows with increasing the temperature up to a critical value Ttr when
it coincides with the unstable solution. At this temperature a transition from a stable
cluster to uni�cation occurs (Fig. 4). For T ¿Ttr uni�cation is the only solution, but
it is no longer a perfect uni�cation because due to the noise individuals of the opposite
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opinion appear. When the temperature goes on growing the curve in Fig. 3 becomes
more at and p tends to 1

2 what means that the dynamics is random and both opinions
appear with equal probability.

Fig. 4 shows the function p(T ) compared with the results of computer simulations.
The phase transition mentioned above can be observed. The analytical curve �ts the
results of simulations quite well, particularly at large temperatures for the reasons
mentioned above. Other mean �eld approximations, e.g. the one used by us in [35]
yield better results at low noise levels, speci�cally for the value of the transition
temperature. They consist in taking another function (instead of constant) to replace
Pr(r) in (7) (e.g. a stepwise in [35]). In fact, the de�nition (2) can be used with
I given by (8); this would be a “second-order” extension of our simple approach.
Higher-order approaches can be constructed in a similar way; they would give more
accurate results, however, for the prise of more complex equation (9) for p.

Let us thus remain at the “�rst-order” equation (9). Changing the external impact
and/or the leader’s strength results in a shift of the curves f(p) along the p−axis. If
we apply a large enough external impact against (h¡ 0) the leader the curves f(p) in
Fig. 3 would be shifted to the right so that now, starting from the uniform opinion p=1
and exceeding a critical temperature we observe the transition uni�cation → cluster
which remains the only solution at high noise level.

At a certain value of h= hb ¡ 0 the inuences of the leader and the external impact
are in a way balanced and the curve f(p) becomes roughly symmetric with respect
to the bisector p. Let us set the condition for the balance as f( 1

2 ) = 1
2 . With the use

of Eqs. (9) and (8) it can be written as

1
R2

∫ R

0

exp[( sL
g(x) + hb)=T ]

cosh[( sL
g(x) + hb)=T ]

x dx =
1
2
; (10)

which gives implicitly hb as a function of other parameters.
With the increase of temperature at h=hb (maintained by appropriate changes of sL)

the two stable solutions p1 and p2 (corresponding to cluster and uni�cation, respec-
tively) converge towards p = 1

2 (the third, unstable solution). At some critical noise
level Tc the solutions coincide and we have only p= 1

2 which now becomes stable. The
condition for this critical temperature can be written as df(p)

dp |p=1=2 = 1. Again using
Eqs. (9) and (8) we get an implicit integral equation for Tc:

2
TcR2 � �s

∫ R

0

J (x)
cosh2[( sL

g(x) + hb)=Tc]
x dx = 1 (11)

with hb given by (10).
In the case of g(x) = x we found that the curve f(p) is almost exactly symmetric

with respect to the point f( 1
2 ) and thus p2 ≈ 1−p1. Moreover, the balanced external

impact hb depends only weakly on the noise level, and the critical temperature Tc is
almost independent of the leader’s strength sL.

Fig. 5 shows the temperature of the described above transitions cluster → uni�cation
(for h¿hb) and uni�cation → cluster (for h¡hb) as a function of h. Both curves
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Fig. 5. Transition temperature Ttr vs. external impact h at sL = 250 (other parameter values as in Fig. 1).
Leader’s opinion was �xed (independent of the group). Line corresponds to analytical results (Eq. (9)),
points to the computer simulations of the model.

meet at the critical point h = hb; T = Tc. When moving along both curves towards
the critical point the magnitude of jump in the majority–minority proportion due to
transition decreases and at (hb; Tc) there is no jump at all.

In analogy to physical systems the transitions occurring while crossing the curves
in Fig. 5 from below may be called �rst-order transitions. When the critical point
(hb; Tc), at which the di�erence between two di�erent phases disappear, is crossed
going from the region below the curves a second-order transition occurs. An example
of the dynamics in the neighbourhood of this kind of transition is shown in Fig. 6.
As the solutions p1 and p2 are approaching 1

2 increasing uctuations around them
can be observed (Fig. 6(a)). At T close to Tc, noise-induced random jumps between
p1 and p2 are possible (Fig. 6(b)). With T → Tc the average frequency of jumps
increases (Fig. 6(c)), and at T = Tc we observe the dynamics with p = 1

2 and large
uctuations (Fig. 6(d)). When the temperature is further increased the amplitude of
uctuations decreases (Fig. 6(e)). Large uctuations in the vicinity of the critical point
are a general characteristic feature of critical phenomena in physical systems.

The above described second-order transition through critical point can also be ob-
served in the absence of a leader and the external impact, i.e. when sL ≈ �s and
h = 0. Then the two phases corresponding to uni�cations U+ and U− which are
stable in low temperatures merge giving rise to the high-temperature phase – at av-
erage equal numbers of individuals sharing both opinions. In this case the model re-
duces to the Ising model with long-range interactions if we additionally put si = �s for
every i.

It should also be mentioned that the uctuations in the vicinity of the critical point
are relatively slow, e.g. in our simulations signi�cant changes of p happen during
a few tens of time steps. This phenomenon known as the critical slowing down is
caused by local correlations of opinions. In the temperatures saliently greater than Tc
the correlations disappear and we observe fast random uctuations around p= 1

2 .
The second-order transition occurs also in the opposite direction, i.e. when the tem-

perature is decreased starting from the p= 1
2 phase at T ¿Tc. At the critical point there
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Fig. 6. Time evolution of the number of leader’s followers in the vicinity of the critical point, h=24:65 ≈ hb,
temperatures: (a) T = 94, (b) T = 97, (c) T = 99, (d) T = 102 ≈ Tc, (e) T = 120; other parameter values
as in Fig. 1. The opinion of the leader has been �xed. Fig. (a) shows the results of two runs starting from
initial conditions p(0)¿ 0:5 (upper curve) and p(0)¡ 0:5 (lower curve).

is a symmetry breaking; the choice between two symmetric phases depends sensitively
on tiny deviations from the balanced external impact hb and random uctuations.

One could also describe the global dynamics of the system introducing an e�ective
potential. At low temperatures it would have two minima corresponding to the stable
solutions of Eq. (9) separated by a maximum corresponding to the unstable solution.
For h = hb both minima would be approximately equal, but otherwise the one cor-
responding to the dominance of the stronger agent would be global while the other
the local one with the corresponding state being metastable. However, as we have
already mentioned, the probability of escape from the metastable state is very small
for T ¡Ttr .

In the analytical calculations of this section we neglected the self-supportiveness of
individuals putting � = 0. Let us now briey discuss the e�ect of a nonzero �. As it
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Fig. 7. Time evolution of the number of individuals holding “+1” opinion for h=0 and T =150¿Ttr ; other
parameter values as in Fig. 1. Jumps due to the noise-induced ips of the leader’s opinion can be seen.

was already mentioned, the self-support may be regarded as an analogy of dry friction
in mechanical systems. It strives to maintain the current state of individuals. Writing
formula (8) for the impact we assumed a stationary state and did not regard how it
was achieved. We could do it, as well as to use the formula for the probability in (9)
which is independent of the current state only in the case of � = 0. Due to nonzero
self-support the mean (stationary) value of the proportion p of the leader’s adherents
depends on the initial state. One can regard that the curve in Fig. 3 splits into a band
and so do the appropriate solutions of the Eq. (9). It depends on the starting point on
which side of the band the system settles. However, at high-temperatures noise-induced
random walk within the band will �nally make the system forget its initial conditions
and the mean value for � = 0 will be observed. Accordingly, the �rst-order transition
occurs when the band looses tangency to the bisector and thus the temperature of
transition will be higher than for �= 0. We can also expect that the critical behaviour
will be observed in a broader range of temperatures. Nevertheless, for small � (like
e.g. � = 1 in our simulations) the inuence of the self-support is negligible and the
results of our mean �eld theory remain valid.

4.2. Flips of leader’s opinion

So far throughout this section we have kept the opinion of the leader �xed, indepen-
dent of the impact and noise. But if we let it evolve according to (2), as for any other
individual, another kind of rapid changes of opinion distribution are possible due to
the fact that in the presence of noise there is a �nite probability that the leader would
inverse his/her opinion. It is more signi�cant for large temperatures, so let us consider
the situation above Ttr . When the leader changes his/her opinion, the whole majority
group follows the change and we observe random global ips of opinion. Fig. 7 shows
an example of such dynamics in the case when there is no external impact (h= 0) and
both phases “+1” and “−1” are symmetric. In this case the average residence times in
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each of them are equal. When external impact is present it favours one of the phases
and we have two di�erent average residence times �+ and �−. These averages are
determined by the inverse of the probability Pr(�L → −�L) that the leader’s opinion
ips,

��=
1

Pr(�L → −�L) : (12)

The probability is given by the general dynamical rule (2) applied for the leader. The
impact on the leader can be calculated as [cf. Eq. (7)]

IL = −� �s
∫
DR
Pr(r)

1
g(r)

� d2r+ � �s
∫
DR

(1 − Pr(r))
1
g(r)

d2r− �sL ± h : (13)

The signs “+” and “−” before h appear when the leader shares the opinion deterred or
supported by the external impact, respectively. We apply again the simple mean �eld
approximation replacing Pr(r) by its mean value p which is the appropriate solution
of the nonlinear equation (9) and we get

IL = � �sJ (0)(1 − 2p) − �sL ± h ; (14)

and the average residence times

�∓ =
2cosh(IL(T )=T )
exp(IL(T )=T )

: (15)

The impact IL acting on the leader depends on temperature through p. However, in
the case of long-range interactions g(x) = x one can see from Fig. 4 that for T & Ttr
the dependence is weak so one can neglect it putting IL(T ) ≈ IL(Ttr) in (15) which is
approximately IL(p = 1), provided we are not close to the critical point. Finally, we
get

�∓ ≈ exp
(−2� �sJ (0) + �sL ± h)

T

)
: (16)

The plot of (15) in appropriately chosen coordinates (Fig. 8) proves that the approx-
imation (16) remains valid in quite large range of temperatures. Results of analytical
calculations in the framework of the mean �eld approximation are in good coincidence
with the average times between ips measured in computer simulations. Notwithstand-
ing, for smaller temperatures we observe that the residence times actually measured in
the simulation are slightly larger than those predicted by (15). One may expect that the
divergence would grow for still lower temperatures because the probability distribution
of opinions becomes more nonuniform, in contrast to our approximation Pr(r) = p
in (13). Another words, the cluster around the leader becomes tighter and shields the
inuence of noise.

Assuming the probabilities of the leader’s opinion ips in consecutive time steps
to be independent we �nd that the residence times have the geometrical probability
distribution

Pr(�± = k) =
1
�±

(
1 − 1

�±

)k−1

: (17)
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Fig. 8. The average time between ips as a function of the inverse temperature for h = 0(T−1
tr ≈ 0:039)

calculated from (15) (solid line); other parameter values as in Fig. 1. Points indicate the appropriate values
measured in computer simulations.

Fig. 9. The histogram of times between ips for T = 180 and h = 0 (dotted line) measured in a 105 time
steps long computer simulation. Other parameter values as in Fig. 1. The mean value �� = 26:3. The dotted
line shows the geometrical distribution (17) for this value.

Its plot is shown in Fig. 9 compared with the results of computer simulation of the
model.

5. Summary

Let us summarize the outcomes of our analysis. The inuence of two agents on
the group: the strong leader and an external impact gives rise to multistability in
certain ranges of parameters, hysteresis and discontinuous changes in the distribution
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of opinions in the deterministic case. The situation looks similar in the presence of noise
which models the complexity and indeterminism of the process of opinion formation
at the level of a particular individual. The noise level (“social temperature”) is an
additional transition inducing parameter. We have shown that the noise favours the
stronger agent; With growing temperature it needs smaller prevalence to convert the
majority to its opinion. In the case of a balance (symmetry) between the two agents the
appropriate phase transition becomes continuous and we observe characteristic critical
behaviour (large uctuations, critical slowing down).

The described phenomena can be understood and described quantitatively in terms
of a mean �eld approach. In general, a hierarchy of approximations can be constructed,
but our calculations and computer simulations of the model show that already in the
�rst order we get quite good quantitative results.

The model presented here, though presumably not directly applicable to the descrip-
tion of a real social group, may still be useful in explaining the mechanisms underlying
often very complicated social processes. Being aware of their complexity we are cir-
cumspectful in drawing far reaching sociological conclusions from our results. Let us
point out just one general outcome which seems reasonable: the rapid changes of opin-
ions under the inuence of strong leaders and some general preferences or prejudices
are more probable during the times of big social transformations or turbulence, when
people are much confused in their views (high social temperature). Then the opinion
supported by the stronger agent prevails and may remain dominant later on in a more
quiet period, even after the inuence of the agent decreases or even ceases to exist.
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