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Abstract7

Interbank deposits (loans and credits) are quite common in banking system all over the world.
Such interbank co-operation is pro.table for banks but it can also lead to collective .nancial9
failures. In this paper, we introduce a new model of directed percolation as a simple represen-
tation for contagion process and mass bankruptcies in banking systems. Directed connections11
that are randomly distributed between junctions of bank lattice simulate 1ows of money in our
model. Critical values of a mean density of interbank connections as well as static and dynamic13
scaling laws for the statistics of avalanche bankruptcies are found. Results of computer simula-
tions for the universal pro.le of bankruptcies spreading are in a qualitative agreement with the15
third wave of bank suspensions during The Great Depression in USA. c© 2001 Published by
Elsevier Science B.V.17
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1. Introduction19

Making a short review of latest publications on the percolation phenomenon one
could come to the conclusion that the percolation theory [1,2] is a universal paradigm21
for physics, sociology and economy. In fact, percolating systems composed of large
number of interacting units can be simply adopted for simulations of complex be-23
haviours and environments. A number of such adoptions have been done so far in-
cluding microscopic simulations of the stock market [3–7], social percolation models25
[8,9] and marketing percolation describing di@usion of innovations [10]. Here we pro-
pose a simple model based on the intuitive similarity between percolation and banking27
networks.
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At present, economists agree that the robustness of a country is .nancial system1
is related to the strength of a domestic economy. Bank bankruptcies usually follow
dramatic changes in the banking capital, assets as well as liabilities and can be so-3
cially costly. In general, two factors may cause a bank failure: bad credits and rapid
withdrawing of deposits. Economic researches con.rm that solvent and insolvent banks5
alike can experience withdrawals for reasons unrelated to the bank failure risk in cir-
cumstances of a banking panic [11]. The same investigations emphasize the importance7
of withdrawal rates. In fact, sudden withdrawals can have dramatic e@ects on the bank
stability and may force a bank to bankruptcy in a short time if it does not receive9
assistance from other banks. On the other hand, a bankruptcy of a single bank can
start an avalanche of other bank failures due to the domino e9ect.11

2. The model

In our model, banks are represented by vertices in a lattice, which for simplicity13
has a square or cubic symmetry. Directed connections that are randomly distributed
between banks simulate 1ows of money. Banking capital consists of assets and liabil-15
ities as in reality. Arrows entering into vertices represent liabilities (deposits of other
banks). Branches with opposite direction re1ect assets (investments and given cred-17
its). It follows that an average number of arrows entering into a vertex is equal to
an average number of exiting arrows. We assume that even one withdrawal or bad19
credit can force the bank to bankruptcy and one failing bank can cause bankruptcies
of other banks. Only interbank credit connections are considered, i.e., bank deposits21
and investments are neglected and no insurance system is assumed in our model.

Dynamical rules governing time evolution of the model are as follows. Initially,23
each bank is solvent. The .rst bankrupt is selected at random and we do not specify
the reason for this bankruptcy that can be a bad credit or sudden deposit withdrawal.25
During the next time step, neighbouring banks lose their solvency if they gave a loan
to the bankrupt. This process is repeated until no bank survives that gave a bad inter-27
bank credit. Above mentioned rules become comprehensible after tracing Fig. 1. The
.gure presents a system with N = 25 banks. All possible 1ows of money (connections29
between vertices) are realized in this pattern. Let us choose the seventh vertex as the

Fig. 1. Bankruptcy spreading in banking network based on square lattice.
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.rst bankrupt. According to the rules assumed earlier the collapse of this bank forces1
suspension of two other banks with numbers {2; 6}. During the next step three other
banks are swept {1; 3; 11}. At the end, the avalanche originating from the bank with3
the number 7 includes nine banks {1; 2; 3; 4; 6; 7; 11; 12; 16}.

Despite the seeming similarity of our model to the well known directed percolation5
[1] it is based on a new approach to this phenomenon. In the traditional directed
percolation directions in space are not equal, i.e., the system is anisotropic and one7
direction, which is called the growth direction, is special. In our model, all directions
are equal. There is also another feature distinguishing the presented model from the9
standard percolation. In both cases of the traditional site and bond percolation, each
occupied site=bond belongs to only one cluster. In our model, this condition is not11
valid and the same bank can be included to various avalanches depending on the .rst
bankrupt.13

3. Computer simulations

We investigated statistics of bankrupt avalanches in systems characterized by di@er-15
ent mean concentrations p of existing interbank deposits. It follows that the system
parameter is the same as in the percolation theory. In analogy with the traditional per-17
colation one can expect a critical value pc when an avalanche composed of bankrupts
can spread all over the banking network. This phenomenon is related to the percola-19
tion phase transition. We performed numerical calculations in order to estimate pc and
based on the .nite size scaling law p(L) − pc ∼ L−1=� (where L is the linear size of21
the system) we found that critical values pc in our model are approximately two times
larger than in the usual bond percolation, i.e., p2D

c ≈ 1:00±0:01 and p3D
c ≈ 0:51±0:0223

for the square and the cubic lattice, respectively.
We observed that the distributions of avalanche lengths have the same properties25

as statistics of cluster numbers in the usual percolation system. At the percolation
threshold, the probability that a random bank causes l-avalanche (failures of l other27
banks) ful.lls the power law Pl(pc) ∼ l1−�, where � is the Fisher exponent. In both
two- and three-dimensional systems numerically calculated Fisher exponents are con-29
sistent with their equivalents taken from the literature (Fig. 2). For p near pc and
for l → ∞ we found a good agreement with the scaling law describing avalanche31
distribution Pl(p) = l1−�f[(p−pc)l�], where f is a universal scaling function. Fig. 3
illustrates this law for a square lattice when the scaling exponent �2D = 36

91 has been33
used.

Dynamical properties of our model are described by the number of banks n(l; t)35
swept during the bankruptcy avalanche up to the moment t, where l is the total
avalanche length (limt→∞ n(l; t) = l). A typical plot of n(l; t) (Fig. 4) has two regions37
separated by a crossover time tx [12]. Initially, when t� tx the number of bankruptcies
increases as n(l; t) ∼ t�l�. In the dynamic scaling theory of surface growth, the anal-39
ogous exponent � is called the growth exponent. Fortunately, for bank shareholders,
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Fig. 2. Avalanche length distribution at pc in square lattice (solid squares) and cubic lattice (open squares).

Fig. 3. Scaling behaviour for the renormalized avalanche statistics described by f(z) =Pl(p)=Pl(pc).

the power law increase is followed by the saturation regime for t� tx. The satura-1
tion time tx depends on the avalanche length as tx ∼ lz. By analogy to the standard
terminology [12], we call z as the dynamic exponent. We found that the avalanche3
growth in our model ful.lls the Family–Vicsek scaling relation n(l; t) ∼ lg(t=lz), where
g is a universal scaling function (Fig. 4). The scaling exponents �; �; z are connected5
by the equation � + z�= 1. According to our numerical studies for the square lattice
the exponents account to �= 1:60 ± 0:01; �= 0:08 ± 0:02; z = 0:56 ± 0:01 and do not7
depend on the system parameter p.

Fig. 5 shows time distributions of bankruptcies belonging to avalanches presented9
in Fig. 4, i.e., the curves in Fig. 5 are the .rst derivatives of those in Fig. 4. Ob-
serving the speed of avalanche spreading we .nd a clear maximum which corresponds11
to the highest probability of bankruptcy. Figs. 4 and 5 clearly show that there is a
unique mechanism governing avalanche growth in our model. The mechanism is in-13
dependent of the system parameter as well as the avalanche length. Our preliminary
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Fig. 4. Time evolution of avalanche growth in the square lattice with L= 512 for di@erent avalanche lengths
(l). The number of banks that became bankrupt until the time t is presented at the vertical axis. Both right
and left plots present the same data. Data on the right plot correspond to the data from the left plot rescaled
according to the Family–Vicsek scaling relation.

Fig. 5. Speed of avalanche spreading for the same data as in Fig. 4. The right plot presents rescaled data.

studies on cubic lattices prove that the same mechanism governs the avalanche growth1
in three-dimensional systems.

According to our knowledge, this work is the .rst one connecting problems of bank3
failures with the statistical physics. Although exact data concerning spatial and time
evolution of mass bankruptcies are hard to receive, it is known that such bankruptcies5
were quite frequent in the 19th and 20th centuries [13]. The banking crisis that accom-
panied The Great Depression was probably the most dramatic. Economists distinguish7
three waves of bank failures during this period and the third wave (starting in May
1932) can be seen as qualitatively consistent with our directed percolation model. In9
fact, during the period May–September 1932 distributions of total bank suspensions
in Illinois, the Chicago Federal Reserve District and the USA have shapes (Fig. 6)11
similar to the time pro.le observed in our model (Fig. 5). Contrary to the situation
during the earlier massive bank collapses in USA there was no signi.cant interventions13
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Fig. 6. Total bank suspensions in Illinois, the Chicago Federal Reserve District, and the US, monthly, June
1931–December 1932. After Ref. [5], courtesy of Ch.W. Calomiris and J.R. Mason.

from government institutions in order to stop the contagion of banking system in this1
time [11].

At present, government institutions guard security of banking system, therefore, the3
black scenario known from The Great Depression seems incredible but it can repeat.
It is necessary to emphasize that the proposed model would be more realistic if it5
were widened to the whole .nancial system composed not only of banks but also
other .nancial institutions like trust or pension funds, insurance companies and .rms.7
Although each institution enumerated above possesses a di@erent capital structure, but
all of them su@er from risks related to bad investments=credits and are connected to9
one another.

4. Conclusions11

The model presented here has been thought to re1ect the cooperative behaviour of
banking systems. We have shown that avalanches of bankruptcies can be related to13
clusters in the random directed percolation problem. It follows that a large number
of interbank credits can lead to the percolation phase transition when bankruptcies15
can spread all over the banking network. Static and dynamic properties of this model
are in a good agreement with the percolation theory. As observed in the numerical17
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simulations, the shape of avalanche spreading is in a qualitative agreement with data1
from The Great Depression.
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