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Abstract

A class of models of opinion formation based on the concept of cellular automata and the
theory of social impact is studied, in particular the case when a strong leader and external
impact are present. The rapid changes of the opinion distribution with a continuous change of
a system parameter, which was previously observed for the model with geometric structure,
prove to be present also for much larger class of mutual interaction architectures. We study
random connections with di�erent probability distributions. The theoretical results obtained in
the framework of mean �eld approximation are con�rmed by the numerical simulations of the
model. c© 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Quantitative methods in social science are gaining a growing popularity recently
[1–16]. The developed models not only give a new insight into the complex social
phenomena, but are often interesting examples of systems exhibiting complex
behaviour. The model of opinion formation studied in this paper is based on the socio-
logical theory of social impact introduced by Latan�e [17–19]. It gave rise to a class
of models providing quantitative description of interpersonal in
uences underlying the
process of opinion formation [20]. A few basic concepts constitute the crucial link
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between sociological and physical description. Let us brie
y recall these concepts (see
Ref. [21] for details).

Two-state opinion is assumed, i.e., we restrict to questions on which only two op-
posite answers are possible (yes–no, for–against). The opinion of an individual is
determined by the social impact – a kind of force pushing towards the particular
judgement, and being a sum of in
uences from all other individuals, as well as the
in
uence of mass-media, prejudices, etc. The strength of in
uence of an individual j
on i (the contribution to the impact Ii) is proportional to the social immediacy from i
to j, and the persuasiveness (relevant for convincing others to change their mind) or
supportiveness (ability to support others who share the same opinion) of j. There is, in
general, some randomness in the model accounting for the fact that decision-making or
opinion formation is a very complicated process in
uenced not only by the “external
world” but also personal experience, mental processes, etc., factors that are extremely
di�cult to model in a deterministic way.

In the simulations of social impact models [20] it has been usually assumed that
individuals are placed in a 2D Euclidian space which models the social space, and the
distance between them (inverse of the immediacy) is just the geometrical distance or an
increasing function of it. There was some empirical evidence justifying this assumption,
and we also assumed it in our previous models with strong leader and external �eld
[22–24]. Here we generalise the results obtained there for the particular geometry of
social space. Instead of assuming that the individuals are placed in a geometrical 2D
space we now consider the immediacies to be random numbers with some probability
distribution. Such an approach is more realistic; actually the social distance does not
have to ful�ll the axioms of geometric distance, e.g. the triangle inequality. While an
individual i is close to j and j is close to k, it can happen that i is far from k or
does not know him/her at all so there is no direct exchange of information between
them (think e.g. about the set of your friends). Similarly, mutual symmetry of the
immediacy, especially between individuals of di�erent personal in
uence or position in
hierarchy of the group can be broken.

It turns out that in such a randomly connected model, the main features of the
“geometric” model with a strong leader, namely the rapid changes of majority–minority
proportion with continuous changes of system parameters (“social phase transitions”)
are preserved. They are, to large extent, independent of the particular type of social
connections or the distribution of strength of individuals – the parameters that might
be very di�cult to assess for real social groups.

2. Model

The model system consists of N elements (individuals) described by constant in time
strengths si and the state variables �i = ±1. Every individual j in
uences the opinion
of other individual i with a magnitude proportional to their immediacy mij; it does not
need to be equal to mji. The values of all �i are updated synchronously in discrete
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time steps due to the dynamical rule

�i(t + 1) =




1 with probability
exp(Ii=T )

exp(−Ii=T ) + exp(Ii=T )
;

−1 with probability
exp(−Ii=T )

exp(−Ii=T ) + exp(Ii=T )
;

(1)

where Ii is a social impact experienced by the ith individual and T is the social
temperature – the degree of randomness in decision-making. The impact is de�ned as

Ii =
N∑
j=1

sjmij�j + h ; (2)

where h is an external impact acting uniformly on all individuals (generalisations to
non-uniform external impacts are of course possible) and favouring one of the opinions;
it may describe e.g. the in
uence of mass-media, general prejudices, etc. The quantity
introduced here relates to the one de�ned in Refs. [22–24] via the simple transformation
Ii → −�iIi. Further on we assume the strength parameters si to be random variables
with the mean value �s; one of the individuals, however, has the strength sL much larger
than all the others, sL/si ∀i; we will call this individual the leader. The immediacies
are also assumed to be random variables with the distribution �m(mij) with the mean
value �m. The diagonal terms mii describe the self-supports of individuals, i.e., a kind
of social inertia – inclination to preserve their present opinion.

3. Stationary states: mean �eld approximation

3.1. Noiseless limit

In the limit T→ 0 we get from (1) a deterministic rule

�i(t + 1) = sign[Ii(t)] : (3)

Typically, starting from a random initial distribution of opinions the system will evolve
to a stationary state which depends of course on the particular realisation of the con-
nections mij, strength parameters sj, and the initial states �i(0). We are interested in
the question: how does the average number pN of the leader’s adherents depend on
the other system parameters?

The only element breaking the symmetry (in the stochastic sense) of the system
is the leader. To make it simpler we shall keep his/her opinion constant, which is
equivalent to putting the self-supportiveness of the leader mLL very large (in�nite).
To be speci�c we take �L = 1, the opposite case is symmetric. One can expect that
the individuals with large immediacy miL to the leader will share his/her opinion while
those who do not feel his/her strong in
uence may hold the opposite opinion. For
the individuals with moderate immediacy to the leader, the in
uences of the leader
and his/her adherents approximately compensate with that of their opponents so that
the impact on them is close to zero. These individuals change their opinions in the
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course of time evolution until Eq. (3) gives no more changes. Following this intuition
we make an approximation assuming that in the stationary state there exists some m
such that

�i = 1 ∀i: miL¿m; and �i = −1 ∀i: miL¡m (4)

and consequently the impact on the individuals is positive and negative respectively,
while the impact on the individuals whose immediacy to the leader equals m is equal
to zero. The average of latter quantity over the quenched disorder (mij and si) and the
possible realisations of �i can be calculated for large N :

I(m) = sLm+

〈∑
i 6=L

sjmij�j

〉
+ h= sLm− (1 − 2p)N �m �s+ h ; (5)

where p is the fraction of individuals sharing the opinion of the leader. It can be, on
the other hand, also expressed as

p= P(mij¿m) =
∫ mmax

m
�m(m′) dm′ : (6)

From the condition I(m) = 0 we get using (5)

p=
1
2
− h

2N �m �s
− sL

2N �m �s
m : (7)

Resolving (6) and (7) one can get the somehow arti�cially introduced parameter m
and the fraction p of leader’s adherents which is actually the interesting quantity. Note
that in the absence of external impact (h = 0) the impact de�ned by (5) is always
positive for p¿ 1

2 , so the condition I(m) = 0 cannot be ful�lled. It means that the
approximation does not capture the trivial uni�cation state p = 1. Similarly, the case
p= 0 is not obtained as a solution of (6) and (7).

The RHS of Eq. (6) is a continuous (but not necessary di�erentiable) function of
m decreasing from 1 at m = mmin to 0 at m = mmax. If the immediacy distribution
�m is continuous and di�erentiable the number of possible solutions depends on its
monotonicity. If �m is monotonous, at most two solutions are possible. If it has one
maximum or minimum there may be three solutions. In general, the maximal number
of solutions equals 2+k where k is the total number of maxima and minima of the �m.

3.2. Noisy dynamics

Eq. (1) de�nes a discrete Markov process �(t). Instead of deriving its probability
distribution we are again interested in the question how, starting from some initial
distribution of opinions, the number of individuals pN sharing the opinion of the
leader will evolve. As in the noiseless case, we shall assume mLL very large (in�nite)
in order to keep the opinion of the leader constant, speci�cally we take �L = 1. The
only element breaking the symmetry of the system is the leader. One may, therefore,
order the individuals according to their immediacy to the leader miL and express the
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fraction of the leader’s adherents as

p=
∫ mmax

mmin

P(�i = �L|miL = m′)�m(m′) dm′ : (8)

Having the opinion of the leader �xed, the conditional probability under the integral is
given directly by the dynamical rule (1) with the impact (2) depending on the current
state of the system. In order to proceed we make a mean �eld approximation and
replace the actual impact from all individuals except the leader by its mean value over
the quenched disorder (mij and si) and the actual state �i. The impact on an individual
i whose immediacy to the leader is miL = m is then given by (5). In the stationary
state, i.e., when p remains constant we obtain from (8), (1) and (5) an equation for
this equilibrium value:

p=
∫ mmax

mmin

exp[(sLm′ − (1 − 2p)N �m �s+ h)=T ]
2 cosh[(sLm′ − (1 − 2p)N �m �s+ h)=T ]

�m(m′) dm′ ≡ f(p) : (9)

Given a speci�c immediacy distribution �m the solutions can be found at least numer-
ically. The RHS of (9), f(p), is a positive and increasing function of p; f(0)¿0
and for p→1 it tends to a value smaller than 1 so Eq. (9) has at least one solution.
At some parameter values f(p) may be tangent to the diagonal at some p∗; then a
pair of solutions appears or disappears according to the direction of parameter changes.
These points correspond to phase transitions – rapid changes of the number of leader’s
adherents. The conditions for the occurrence of such points are

p∗ = f(p∗);
d

dp
f(p)|p=p∗ = 1 : (10)

In the following we shall analyse a few particular examples of immediacy distributions.

3.3. Examples – noise-free limit

3.3.1. Uniform immediacy distribution
Consider the uniform distribution of immediacies �m(mij)=1=(2 �m) for mij ∈ [0; 2 �m]

and zero elsewhere. Inserting this into (6) we get

p= 1 − 1
2 �m
m : (11)

The set of Eqs. (11) and (7) can give one solution

pu =
1 − 2s̃L − h̃
2(1 − s̃L) ; (12)

where rescaled variables

s̃L = sL=(N �s); h̃= h=(N �s �m) (13)

have been introduced. Additionally, the conditions pu¿0 and pu¡1 have to be im-
posed leading to a phase diagram (Fig. 1) distinguishing regions in s̃L–h̃ space where
di�erent �nal states are possible.
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Fig. 1. s̃L–h̃ phase diagram for uniform distribution of immediacies within the mean �eld approximation.
The possible phases are indicated in the corresponding parts of the diagram. When crossing the dashed lines
discontinuous phase transitions can occur.

Fig. 2. Unstable (a) and stable (b) solution (12) of mean �eld equations for uniform immediacy distribution.
In (b) the �nal states obtained in computer simulations of the model for N = 200; sL = 240; �m = 0:1 and
averaged over quenched disorder and di�erent initial conditions are displayed as points. In (a) the open
circles indicate the initial states p0 (at h = 0) for which the �nal state was on average 0.5 (cf. Fig. 3(a)),
so they can be considered as the separatrix between the states +1 and 1.

In the upper left triangle we have the solution pu corresponding to the unstable
state (cluster) separating the stable uni�cation states p = 0 and 1, i.e., starting from
an initial state with p0¡pu (p0¿pu), the system, on average, evolves to uni�cation
p = 0 (p = 1) (see Fig. 2(a)). We use here the notion “cluster” for the group of the
adherents of the leader by analogy to the “geometric” model [22–24], although now
they are only relatively close to the leader, but not necessary to one another, since
the social network does not have a geometric structure. The uni�cations themselves
are not captured by Eq. (7) since it assumes balance of impacts (I = 0) which is not
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Fig. 3. Fraction of leader’s adherents p in the �nal stationary state as a function of its initial value
p0 for the uniform immediacy distribution: (a) s̃L = 0:75, h̃ = 0:75, (b) s̃L = 1; h̃ = 1 (critical point),
(c) s̃L = 1:25; h̃ = 1:25. The points have been obtained in simulations for N = 200, �m = 0:1 by averaging
over the quenched disorder and initial conditions. Solid line in (a) shows stable states +1 and 1 separated
by the unstable solution pu = 1=2, in (c) the stable solution pu = 1=2 (cf. Eq. (12)). The dashed line in
(b) corresponds to the typical behaviour at the critical point.

the case when all individuals share the same opinion. If we start from a +1 (−1)
uni�cation state in the upper left triangle in Fig. 1 and move out of it by chang-
ing s̃L or/and h̃ to the −1 (+1) region, we observe a discontinuous phase transition
+1 → −1 (−1 → +1) crossing the border of the triangle. In the lower right wedge so-
lution (12) corresponds to a stable cluster. It converges to 1 (−1) on the borders with
the +1 (−1) regions, respectively. Thus, crossing the wedge, e.g. upward, the state of
the system changes continuously from −1 to +1 via the stable solution (12) (see
Fig. 2(b)). The point (s̃L = 1; h̃ = −1) corresponds to the case when the lines (7)
and (11) coincide, so formally in�nitely many solutions exist. It is a kind of “cold”
double critical point where every state is marginally stable so the evolution of the sys-
tem is hard to predict. Typically, due to non-zero self-support (mii¿0) any initial state
remains stationary. The qualitative change of the stationary state when crossing the
critical point is illustrated in Fig. 3. The predictions of the mean �eld approximation
are in a good agreement with the results of computer simulations. Fig. 2 shows exam-
ples of the pu(sL) and pu(h) curves from the regions of unstable and stable solutions,
respectively.

3.3.2. Exponential immediacy distribution
As the second example we take the exponential distribution of immediacies �m(mij=

m) = (1= �m)exp(−m= �m) for mij¿0. It means that every individual has relatively few
“close friends” with high immediacies and many “acquaintances” who in
uence him/her
only weakly. Similarly as in the previous example we can substitute the distribution
into (6), analyse the solutions of Eqs. (7) and (6) taking into account the uni�cation
states and the condition p ∈ [0; 1], and obtain a s̃L–h̃ phase diagram (Fig. 4).

There are at most two non-trivial solutions corresponding to the stable cluster and
the unstable cluster separating the stable one from the +1 uni�cation (the triangu-
lar region). When the upper curve h̃ = s̃L ln(s̃L=2) + 1 − s̃L (dotted line) is reached
both solutions collide and disappear (saddle-node bifurcation); if the system was in
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Fig. 4. s̃L–h̃ phase diagram for exponential distribution of immediacies within the mean �eld approximation.

Fig. 5. Numerical solution of the mean �eld equations for exponential immediacy distribution for h̃ = 0
(a) and s̃L = 1:2 (b), solid lines – stable clusters, dashed lines – unstable clusters. Points correspond to
simulations as in Fig. 2. Dashed lines indicate the border of basins of attraction of the stable cluster and
+1 uni�cation.

the state of stable cluster a discontinuous phase transition to +1 uni�cation occurs
(cf. Fig. 5(a)).

The line h̃ = −1 for s̃L¡2 indicates the place where the unstable cluster collides
with the +1 uni�cation and thus the stable cluster becomes the only stationary state
for h̃¡ − 1 (see Fig. 5(b)). If the system was in the +1 uni�cation we observe the
phase transition uni�cation → stable cluster. For s̃L¿2 the stable solution p→ 1 as
h̃→ − 1(−) so the transition stable cluster→ uni�cation in this case is smooth (see
Fig. 5(b)). The point (s̃L = 2, h̃ = −1) is again a kind of critical point where the
�rst-order phase transitions become the second order. Now, however, in contrast to
the “double critical point” from the previous example the +1 uni�cation is the only
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Fig. 6. Fraction of leader’s adherents as a function of the leader’s strength for discrete multimodal immediacy
distribution: N = 200; h = 0; m1 = 0:8; m2 = 0:1; a1 = 0:2; a1 = 0:55; solid lines – stable clusters, dashed
lines – unstable clusters (basin boundaries).

marginally stable state while all the others are unstable so the system would evolve
towards p = +1 although the rate of convergence drops to zero as p → +1. As in
the previous case, the analytic results obtained within the mean �eld approximation
are well reproduced in computer simulations. However, for the region in Fig. 5 where
bistability appears, “interference” between the stable states is observed.

3.3.3. Discrete multimodal immediacy distribution
Let us �nally consider a discrete distribution of immediacies assuming that each

individual i has on average a1N “close friends” – whose immediacy to him/her is mij=
m1, and a larger group of a2N “acquaintances” (a2¿a1) with respective immediacy
mij =m2 (m2¡m1) who in
uence him/her relatively weakly. The rest of the (1− a1 −
a2)N individuals in the group do not in
uence i directly at all. The distribution can
be written as �m(mij) = (1 − a1 − a2)�(mij) + a1�(mij − m1) + a2�(mij − m2). It can
be also considered as a limit case of a continuous distribution of immediacies with
two local maxima, or an extremely reduced real situation where we have actually a
set of discrete immediacies rather than a continuous spectrum since the group has a
�nite size. We can follow the same way as previously and obtain a phase diagram,
now however, it would be more complicated since more parameters come into play.
In general, two pairs of stable and unstable solutions are possible, leading to di�erent
transition scenarios as parameters are changed. Let us show just one example (Fig. 6).

In the absence of external impact, starting from p ≈ 0 (leader alone), as the strength
of the leader is increased �rst the group of “close friends” is convinced causing a
discontinuous transition to small cluster. Further the stable cluster solution collides
with an unstable one and disappears in a saddle-node bifurcation, and a transition to
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Fig. 7. Numerical solutions of Eq. (9) for uniform (a), exponential (b), and discrete multimodal (c) im-
mediacy distribution: N = 200; h = 0; �m = 0:1; sL = 40 (a,b); m1 = 0:8; m2 = 0:1; a1 = 0:2; a1 = 0:55;
sL = 35 (c).

large cluster is observed. Since the rest of the group do not feel directly the in
uence
of the strong leader, no more changes appear with the increase of sL at T = 0. For
other values of parameters di�erent transition scenarios are possible.

3.4. Examples – noisy dynamics

Inserting the appropriate immediacy distributions into (9) we get the equation for
the fraction p of the leader’s adherents in stationary states in the presence of noise;
it can be solved numerically. Now, the uni�cation states are also included since no
assumption on impact balance has been used in the derivation of Eq. (9). Fig. 7 shows
some examples of the numerical solutions for the distributions de�ned above.

One can see that the sigmoidal shape of the function f(p) in (9) for T¿0 is similar
for all the cases. An increase of the parameters sL and h essentially shifts the curves
to the right, a decrease – to the left. An increase of temperature makes them more

at. These changes may lead to disappearance of pairs of stable and unstable solutions
and to discontinuous phase transitions. One example is shown in Fig. 8. Eq. (9) gives
us the dependence p(T ) as well as the transition temperature using conditions (10).
Both quantities are in a good agreement with respective averaged values obtained in
computer simulations (see Figs. 8 and 9).

Note moreover, that for all the examples shown in Fig. 7 the transition temperatures
calculated for quite di�erent immediacy distributions, but with (nearly) the same mean
value �m and number of individuals N are quite similar (Ttr ≈ 20), which indicates
that the actual distribution �m(m) in (9) does not in
uence much the properties of the
function f(p). One can conclude that in the presence of noise, at least in appropri-
ately high temperatures, the average behaviour of the system is universal, only weakly
dependent on a particular distribution of connections in the social network.

Finally, let us point out that, similarly as in the “geometric” case [24] in high
temperature the phase favoured by the stronger agent, the leader or external im-
pact, is realized. For each sL one can �nd a “balanced” value of external impact
hb for which the curve f(p) becomes (almost) symmetric with respect to the diagonal
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Fig. 8. Average fraction of leader’s adherents vs. the noise level for uniform distribution, N = 300;
sL = 40; h = 0. Solid line is the numerical solution of Eq. (9), points – results of computer simulations.
Rapid transition: stable cluster → (nearly) uniformity can be seen at T = 20.

Fig. 9. Transition temperature vs. the leader’s strength obtained from (9) for uniform distribution: N=
300; h = 0 (solid line). The dotted line shows the results of related computer simulations. Starting from
a cluster state the temperature was increased quasistatically by 0.2, Ttr was de�ned as the temperature at
which the transition occurred within less than 200 time steps. The value was averaged over 100 runs with
di�erent realisations of si , mij , and initial conditions �i(0).

(cf. Fig. 7) when the stable solutions converge symmetrically to the unstable one
p = 1=2 as the temperature grows, and collide at a critical temperature Tc. Then the
�rst-order (discontinuous) phase transitions become second order and typical critical
behaviour is observed.
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4. Conclusions

We have studied a class of models of opinion formation with random mutual connec-
tions (immediacies), which seems to be a realistic assumption from the point of view
of real social systems. Despite qualitatively di�erent phase diagrams in the noise-free
limit, the models exhibit discontinuous phase transitions – rapid jumps in the majority–
minority proportion for a large class of immediacy distributions. The behaviour becomes
still more universal in the presence of noise. The phase transitions are a characteristic
and persistent feature of systems with strong individuals – leaders and/or external im-
pact, they may be considered as an extreme case of a “staircase dynamics” [21] caused
by the quenched disorder. We have been studying the stationary states of the system
for some parameter values changed “by hand”. In real systems such changes may occur
naturally due to di�erent socio-historical processes and lead to rapid (revolutionary)
changes of attitudes.

The models capture just one aspect of the process of opinion formation, namely the
cooperative phenomenon due to instantaneous mutual in
uence of individuals. There
are of course a number of other factors that play a role in the process like the historical
experience and memory, in
uence of particular events, etc. They might be, to some
extent, modelled through the appropriately time-dependent external impact, but many
of such factors seem to be very di�cult to quantify. In many systems these factors
can be in fact crucial and completely conceal the mechanism treated by the model, so
the model alone is not relevant for such situation. The process of opinion formation is
a complicated one and the theory of social impact describes only one of its aspects.
Models of social impact correspond to an imaginary situation when only the impact
with some degree of noise determines the opinion and no other factors are involved.
Nevertheless, the models supply a tool for description of an important mechanism
inducing changes of attitudes – a cooperative phenomenon, which could be di�cult to
explain in the traditional descriptive sociological language.
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