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Abstract

We study phase transitions in models of opinion formation which are based on the social
impact theory. Two di�erent models are discussed: (i) a cellular-automata-based model of a
�nite group with a strong leader where persons can change their opinions but not their spatial
positions, and (ii) a model with persons treated as active Brownian particles interacting via a
communication �eld. In the �rst model, two stable phases are possible: a cluster around the
leader, and a state of social uni�cation. The transition into the second state occurs for a large
leader strength and=or for a high level of social noise. In the second model, we �nd three stable
phases, which correspond either to a “paramagnetic” phase (for high noise and strong di�usion),
a “ferromagnetic” phase (for small nose and weak di�usion), or a phase with spatially separated
“domains” (for intermediate conditions). c© 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

During the last years there has been a great interest in applications of statistical
physics in social science [1–3]. Usually, economical models are studied using the
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techniques of stochastic dynamics [4], percolation theory [5] or the chaos paradigm
[6]. Another important subject of this kind is the process of opinion formation treated
as a collective phenomenon. On the “macroscopic” level, it can be described using the
master equation or Boltzmann-like equations for global variables [7–12], but micro-
scopic models are constructed and investigated as well [13–15] using standard meth-
ods of statistical physics. A quantitative approach to the dynamics of opinion formation
is related to the concept of social impact [16–22], which enables to apply the methods
similar to the cellular automata approach [14,23].

The aim of this work is to study various kinds of phase transitions in two models
based on the social impact theory. In Section 2 we consider phase transitions in a social
impact model that can occur in a �nite group in the presence of a strong individual
(a leader) [24–26]. As two special cases, we discuss a purely deterministic limit and a
noisy model. Section 3 is devoted to an extension of social impact models to include
phenomena of migration, memory e�ects and a �nite velocity of information exchange.
Here the concepts of active Brownian particles [27–29] and the communication �eld
[30] will be applied.

2. Phase transitions in the presence of a strong leader

2.1. The model

Our system consists of N individuals (members of a social group); we assume that
each of them can share one of two opposite opinions on a certain subject, denoted
as �i = ±1; i = 1; 2; : : : ; N . Individuals can inuence each other, and each of them is
characterized by the parameter si ¿ 0 which describes the strength of his=her inuence.
Every pair of individuals (i; j) is ascribed a distance dij in a social space. The changes
of opinion are determined by the social impact exerted on every individual

Ii = −si� − �ih−
N∑

j=1; j 6=i

sj�i�j
g(dij)

; (1)

where g(x) is an increasing function of social distance. � is a so-called self-support
parameter reecting the inclination of an individual to maintain his=her current opinion.
h is an additional (external) inuence which may be regarded as a global preference
towards one of the opinions stimulated by mass-media, government policy, etc.

Opinions of individuals may change simultaneously (synchronous dynamics) in dis-
crete time steps according to the rule

�i(t + 1) =



�i(t) with probability

exp(−Ii=T )
exp(−Ii=T ) + exp(Ii=T )

−�i(t) with probability
exp(Ii=T )

exp(−Ii=T ) + exp(Ii=T )

: (2)
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Eq. (2) is analogous to the Glauber dynamics with −Ii�i corresponding to the local
�eld. The parameter T may be interpreted as a “social temperature” describing a degree
of randomness in the behaviour of individuals, but also their average volatility (cf.
[14,15]). The impact Ii is a “deterministic” force inclining the individual i to change
his=her opinion if Ii ¿ 0, or to keep it otherwise. The model is a particular case of the
system considered in Ref. [19].

We assume that our social space is a 2D disc of radius R/1, with the individu-
als located on the nodes of a quadratic grid. The distance between nearest neighbours
equals 1, while the geometric distance models the social immediacy. The strength pa-
rameters si of the individuals are positive random numbers with probability distribution
q(s) and the mean value �s. In the centre of the disc there is a strong individual (who
we will call the “leader”); his=her strength sL is much larger than that of all the others
(sL/si).

2.2. Deterministic limit

Let us �rst recall the properties of the system without noise, i.e., at T = 0 [24,25].
Then, the dynamical rule (2) becomes strictly deterministic:

�i(t + 1) = −sign(Ii�i) : (3)

Considering the possible stationary states we �nd either the trivial uni�cation (with
equal opinion ±1 for each individual) or, due to the symmetry, a circular cluster
of individuals who share the opinion of the leader. This cluster is surrounded by a
ring of their opponents (the majority). These states remain stationary also for a small
self-support parameter �; for su�ciently large � any con�guration may remain “frozen”.

Using the approximation of continuous distribution of individuals (i.e., replacing the
sum in (1) by an integral), one can calculate the size of the cluster, i.e., its radius a
as a function of the other parameters. In the case of g(r) = r and �s = 1 we get from
the limiting condition for the stationarity I = 0 at the border of the cluster:

a ≈ 1
16

[
2�R−√

�± � − h±
√

(2�R−√
�± � − h)2 − 32sL

]
: (4)

This is an approximate solution valid for a.R, but it captures all the qualitative
features of the exact one which can be obtained by solving a transcendent equation
(cf. Fig. 1). Here and in the next section we assume that the leader’s opinion is �L=+1,
but the analysis is also valid for the opposite case if h→ −h.

The branch with the “−” sign in front of the square root in Eq. (4) corresponds
to the stable cluster. The one with “+” corresponds to the unstable solution which
separates the basins of attraction of the stable cluster and uni�cation (cf. Fig. 1).
Owing to the two possible signs at the self-support parameter � in (4), the stable and
unstable solutions are split and form in fact two bands. The states within the bands
are “frozen” due to the self-support which may be regarded as an analogy of the dry
friction in mechanical systems. This way also the unstable clusters can be observed for
�¿ 0 and appropriately chosen initial conditions.
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Fig. 1. Cluster’s radius a vs. leader’s strength sL – phase diagram for circular social space. Interactions
proportional to inverse of mutual distance (I˙1=r). Lines correspond to analytical results, points to computer
simulations.

According to Eq. (4) real solutions corresponding to clusters exist provided

(2�R−√
�± � − h)2 − 32sL¿0 : (5)

Otherwise, the general acceptance of the leader’s opinion (uni�cation) is the only
stable state. When, having a stable cluster, the condition (5) is violated by changing
a parameter, e.g. sL or h, one can observe a discontinuous phase transition: cluster →
uni�cation.

On the other hand, if the leader’s strength is too weak, it may be impossible for
him=her not only to form a cluster but also to maintain his=her own opinion. The
limiting condition for the minimal leader’s strength sLmin to resist against the persuasive
impact of the majority can be calculated from the limiting condition IL = 0 (IL – the
impact exerted on the leader):

sLmin =
1
�

(2�R−√
�− h) : (6)

Fig. 1 shows a phase-diagram sL-a for h = 0. All the plots are made for a space
of radius R = 20 (1257 individuals) and � = 1 unless stated otherwise. Points in
Fig. 1 are obtained by numerical simulations of (3) while the curves are solutions
of a transcendent equation following from the stationary condition I(a) = 0. Solid lines
represent stable �xed points – attractors (they correspond to the solution (4) with “−”
sign before the square root); dashed lines represent unstable repellers (corresponding
to “+” in (4)).

We �nd two kinds of attractors: (i) uni�cation (a = R when the leader’s opinion
wins, a= 0 when it ceases to exist) and (ii) a stable cluster resulting from a solution
of (4). In the sL-a space one can distinguish between three basins of attraction. Starting
from a state in the area denoted as I , the time evolution leads to uni�cation with a=0.
The stable cluster attractor divides its basin of attraction into the areas IIa and IIb.
All states from III will evolve to uni�cation with a = 20. Owing to the two possible
signs of self-support parameter � in (4), the attractor and repeller are split. The space
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between their two parts enclose the “frozen” states that do not change in the course
of time. These states correspond to local equilibria of the system dynamics similar to
spin-glass states. Thus, as a result of self-support, even repeller states can be stabilized.
As one can see, the results of computer simulations �t the calculated curves very well.

Taking into account conditions (5), (6) and the two possible opinions of the leader
one can draw a phase-diagram h− sL distinguishing the regions where di�erent system
states are possible [24,26]. Apparently, the system shows multistability in a certain
range of sL and h. It depends on the history which of the states is realized, so we can
observe a hysteresis phenomenon [24,26]. Moving in the parameter space sL−h, while
starting from di�erent con�gurations one can have many possible scenarios of phase
transitions [26].

2.3. E�ects of social temperature

It is obvious that the behaviour of an individual in a group depends not only on
the inuence of others. There are many more factors, both internal (personal) and
external, that induce opinion formation and should be modeled somehow. In our model,
we do this by means of a noisy dynamics, i.e., we use Eq. (2) with the parameter
T ¿ 0. In the presence of noise, the marginal stability of unstable clusters due to the
self-support is suppressed and they are no longer the stationary states of the system. The
borders of the stable clusters become diluted, i.e., individuals of both opinions appear
all over the group. Our simulations [24,26] prove that the presence of noise can induce
the transition from the con�guration with a cluster around the leader to the uni�cation of
opinions in the whole group. There is a well-de�ned temperature Tc that separates these
two phases. To estimate the dependence of Tc on other system parameters analytically,
one can use a mean �eld approach, like methods developed in [24,26]. The two limiting
cases of such an approach correspond to low- and high-temperature approximations and
are discussed in the following.

2.4. Low-temperature mean-�eld approximation

For low temperatures T , i.e., for a small noise level, the cluster of leaders followers
is only slightly diluted and its e�ective radius a(T ) can be treated as an order parameter.
One can then calculate the impact I(d) acting on the group member inside (d¡a)
and outside (d¿a) the cluster respectively [24]:

Ii(d) = − sL
d

− 8aE
(
d
a
;
�
2

)
+ 4RE

(
d
R
;
�
2

)
+ 2

√
�− � ; (7)

Io(d) =
sL
d

+ 8aE
(
d
a
; arcsin

a
d

)
− 4RE

(
d
R
;
�
2

)
+ 2

√
�− � ; (8)

where E(k; ’) =
∫ ’

0 (1 − k2 sin2 �)1=2d� is the elliptic integral of the second kind.
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Fig. 2. Social impact I as a function of distance d to the leader. Leader’s strength sL = 400.

Both functions are plotted in Fig. 2 for sL=400. The system remains in equilibrium,
therefore the impact on every individual is negative (nobody changes his=her opinion).
It approaches zero at the border of the cluster which means that individuals located in
the neighbourhood of that border are most sensitive to thermal uctuations. We can
however observe a signi�cant asymmetry of the impact. It is considerably stronger
inside the cluster. Individuals near the leader are deeper con�rmed in their opinion, so
they are also more resistant against noise in dynamics. When we increase the temper-
ature starting from T ' 0, random opinion changes begin. Primarily, it concerns those
near the border (the weakest impact). As a result, individuals with adverse opinions
appear both inside and outside the cluster. They are more numerous outside because
of the weaker impact (cf. Fig. 2).

E�ectively, we observe the growth of a minority group. This causes the support-
ive impact outside cluster to become still weaker and the majority to become more
sensitive to random changes. It is a kind of positive feedback. At certain value of tem-
perature the process becomes an avalanche, and the former majority disappears. Thus,
noise induces a jump from one attractor (cluster) to another (uni�cation). Such a tran-
sition is possible for every non-zero temperature, but its probability remains negligible
until the noise level exceeds a certain critical value that corresponds to our critical
temperature Tc.

Using Eq. (2) and taking into account Eqs. (7) and (8), we can compute the proba-
bility Pr(�= 1)(r) that an individual at the distance r from the leader, shares opinion
+1, which is assumed as the opinion of the leader. Then, the mean number of all in-
dividuals with opinion +1 may be calculated by integrating this probability multiplied
by the surface density (equaling 1) over the whole space:

n(� = 1)(T ) =
∫ R

0
Pr(� = 1)(r)2�r dr : (9)

This number equals the e�ective area of the circular cluster, so its radius is

a(T ) =

√
n(� = 1)(T )

� : (10)
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Fig. 3. Mean cluster radius a vs. temperature T ; sL = 400. Results of calculation (solid) and computer
simulation (dotted).

Fig. 4. Critical temperature Tc (above which no stable cluster exists) vs. leader’s strength sL. Leader’s
opinion �xed (independent of the group). Line – calculations (Eq. (10)), points – simulations.

Eq. (10) is a rather involved transcendent equation for a(T ) (it appears on the right-hand
side in Ii(r) and Io(r)). For low temperatures T it has three solutions a(T ) corre-
sponding to a stable cluster, an unstable cluster and a social homogeneous state. The
numerical solution for the radius of stable cluster is presented in Fig. 3 together with
results of computer simulations. One should point out that the radius of the cluster
a is an increasing function of the temperature T for the reasons discussed above. At
some critical temperature, a pair of solutions corresponding to the stable and the un-
stable cluster coincide [24,26]. Above this temperature, there exists only the solution
corresponding to the social homogeneous state. Fig. 4 shows the plot of the critical
temperature Tc obtained from (10) as the function of the leader strength sL together
with results of computer simulations.

2.5. High-temperature mean-�eld approximation

For high temperatures or small values of the leader’s strength sL, the cluster around
the leader is very diluted and it is more appropriate to assume that there is a
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spatially homogeneous mixture of leaders followers and opponents, instead of a local-
ized cluster with a radius a(T ). It follows that at each site there is the same probability
0¡p(T )¡ 1 to �nd an individual sharing the leaders opinion, and p(T ) plays the
role of order parameter. Neglecting the self-support (� = 0) one can write the social
impact acting on a opponent of the leader at place x as [26]

I(x) =
sL
g(x)

+ (2p− 1)� �sJD(x) + h ; (11)

JD(x) =
∫
DR

1=g(|r− x|) d2r is a function which depends only on the size of the group
and the type of interactions. After a short algebra one gets the following equation for
the probability p(T ) [26]:

p=
1

�R2�

∫ R

0
�Pr(r)2�r dr =

1
R2

∫ R

0

exp[I(r; p)=T ]
cosh[I(r; p)=T ]

r dr ≡ f(p) ; (12)

where I(x; p) is given by (11). Similar to Eq. (10) obtained for low temperatures,
there are three solutions of Eq. (12): the smallest one corresponds to the stable clus-
ter around the leader, the middle one to the unstable cluster which, in fact, is not
observed, and the largest one to the uni�cation. The size of the stable cluster grows
with increasing temperature up to a critical value Tc when it coincides with the un-
stable solution. At this temperature, a transition from a stable cluster to uni�cation
occurs [26]. For T ¿Tc, uni�cation is the only solution, but it is no longer a perfect
uni�cation because due to the noise individuals of the opposite opinion appear. When
the temperature increases further, p(T ) tends to 1

2 which means that the dynamics is
random and both opinions appear with equal probability.

3. Modelling opinion dynamics by means of active Brownian particles

3.1. The model

There are several basic disadvantages of the model considered in the previous chap-
ter. In particular, it assumes, that the impact on an individual is updated with in�nite
velocity, and no memory e�ects are considered. Further, there is no migration of the
individuals, and any “spatial” distribution of opinions refers to a “social”, but not to
the physical space.

An alternative approach [30] to the social impact model of collective opinion for-
mation, which tries to include these features is based on active Brownian particles
[27–29,31,32], which interact via a communication �eld. This scalar �eld considers
the spatial distribution of the individual opinions, further, it has a certain life time,
reecting a collective memory e�ect and it can spread out in the community, modeling
the transfer of information.
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The spatio-temporal change of the communication �eld is given by the following
equation:

@
@t
h�(r; t) =

N∑
i=1

si��;�i �(r− ri) − h�(r; t) + Dh�h�(r; t) : (13)

Every individual contributes permanently to the �eld h�(r; t) with its opinion �i and
with its personal strength si at its current spatial location ri. Here, ��;�i is the Kronecker
Delta, �(r− ri) denotes Dirac’s Delta function used for continuous variables, N is the
number of individuals. The information generated by the individuals has a certain
average life time 1=, further it can spread throughout the system by a di�usion-like
process, where Dh represents the di�usion constant for information exchange. If two
di�erent opinions are taken into account, the communication �eld should also consist
of two components, � = {−1;+1}, each representing one opinion.

In this model, the scalar spatio-temporal communication �eld h�(r; t) [30], plays in
part the role of social impact Ii used in [24,26]. Instead of a social impact, the com-
munication �eld h�(r; t) inuences the individual i as follows: At a certain location
ri, the individual with opinion �i = +1 is a�ected by two kinds of information: the
information resulting from individuals who share his=her opinion, h�=+1(ri ; t), and the
information resulting from the opponents h�=−1(ri ; t). Dependent on the local infor-
mation, the individual reacts in two ways: (i) it can change its opinion, (ii) it can
migrate towards locations which provide a larger support of its current opinion. These
opportunities are speci�ed in the following.

We assume that the probability pi(�i; t) to �nd the individual i with the opinion �i
changes in the course of time due to the master equation (the dynamics is continuous
in time):

d
dt
pi(�i; t) =

∑
�′i

w(�i|�′i)pi(�′i ; t) − pi(�i; t)
∑
�′i

w(�′i |�i) ; (14)

where rates of transition probability are described in a similar way to Eq. (2)

w(�′i |�i) = � exp{[h�′(ri ; t) − h�(ri ; t)]=T} for � 6= �′ (15)

and w(�i|�i) = 0. The movement of the individual located at space coordinate ri is
described by the following overdamped Langevin equation:

dri
dt

= �i
@he(r; t)
@r

∣∣∣∣
ri

+
√

2Dn�i(t) : (16)

In the last term of Eq. (16), Dn means the spatial di�usion coe�cient of the individuals.
The random inuences on the movement are modeled by a stochastic force with a
�-correlated time dependence, i.e., �(t) is white noise with 〈�i(t)�j(t′)〉 = �ij�(t − t′).
The term he(r; t) in Eq. (16) means an e�ective communication �eld which results
from h�(r; t) as a certain function of both components, h±1(r; t) [30]. Parameters �i
are individual response parameters. In the following, we will assume �i=� and he=h�.
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3.2. Critical conditions for spatial opinion separation

The spatio-temporal density of individuals with opinion � can be obtained as follows:

n�(r; t) =
∫ N∑

i=1

��;�i �(r− ri)P(�1; r1; : : : ; �N ; rN ; t) dr1; : : : ; drN ; (17)

P(�; r; t)=P(�1; r1; : : : ; �N ; rN ; t) is the canonical N -particle distribution function which
gives the probability to �nd the N individuals with the opinions �1; : : : ; �N in the
vicinity of r1; : : : ; rN on the surface A at time t. The evolution of P(�; r; t) can be de-
scribed by a master equation [30] which considers both Eqs. (15) and (16). Neglecting
higher-order correlations, one obtains from Eq. (17), the following reaction–di�usion
equation for n�(r; t) [28,30]:

@
@t
n�(r; t) = −∇[n�(r; t)�∇h�(r; t)] + Dn�n�(r; t)

−
∑
�′ 6=�

[w(�′|�) n�(r; t) − w(�|�′) n�′(r; t)] (18)

with the transition rates given by Eq. (15). Eq. (18) together with Eq. (13) form a set
of four equations describing our system completely.

Now, let us assume that the spatio-temporal communication �eld relaxes faster than
the related distribution of individuals to a quasi-stationary equilibrium. The �eld h�(r; t)
should still depend on time and space coordinates, but, due to the fast relaxation, there
is a �xed relation to the spatio-temporal distribution of individuals. Further, we neglect
the independent di�usion of information, assuming that the spreading of opinions is
due to the migration of the individuals. Using ḣ�(r; t) = 0, si = s and Dh = 0 we get

h�(r; t) =
s

n�(r; t) : (19)

Inserting Eq. (19) into Eq. (18) we reduce the set of coupled equations to two
equations.

The homogeneous solution for n�(r; t) is given by the mean densities

�n� =
�n
2

where �n=
N
A
: (20)

Under certain conditions however, the homogeneous state becomes unstable and a
spatial separation of opinions occurs. In order to investigate these critical conditions,
we allow small uctuations �n� ∼ exp(�t+ ikr) around the homogeneous state �n� and
perform linear stability analysis [30]. The resulting dispersion relations read

�1(k) = −k2C + 2B; �2(k) = −k2C ;

B=
�s �n
T

− �; C = Dn − �s �n
2

: (21)
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It follows that stability conditions of the homogeneous state, n�(r; t) = �n=2, can be
expressed as

T ¿Tc1 =
s �n

; D¿Dcn =

�
2
s �n

: (22)

If the above conditions are not ful�lled, the homogeneous state that corresponds to
paramagnetic phase is unstable (i) against the formation of spatial “domains” where
one of opinions �=±1 locally dominates, or (ii) against the formation of a ferromag-
netic state where the total numbers of people sharing both opinions are not equal.

Case (i) can occur only for a systems whose linear dimensions are large enough,
so that large-scale uctuations with small wave numbers can destroy the homogeneous
state [30]. In case (ii), each subpopulation can exist either as a majority or as a minor-
ity within the community. Which of these two possible situations is realized, depends
in a deterministic approach on the initial fraction of the subpopulation. Breaking the
symmetry between the two opinions due to external inuences (support) for one of
the opinions would increase the region of initial conditions which lead to a majority
status. Above a critical value of such a support, the possibility of a minority status
completely vanishes and the supported subpopulation will grow towards a majority,
regardless of its initial population size, with no chance for the opposite opinion to be
established [30].

4. Conclusions

This work discusses the possibilities of phase transitions in models of opinion
formation which are based on the social impact theory (two opinions case). In the
presence of a strong leader situated in the centre of a �nite group, a transition can
take place from a state with a cluster around the leader to a state of uniform opinion
distribution where virtually all members of the group share the leader’s opinion. The
transition occurs if a leader’s strength exceeds a well de�ned critical value or if the
noise level (“social temperature”) is high enough. The weaker the leader’s strength
is, the larger noise is needed. The value of the critical temperature can be calcu-
lated using mean �eld methods where either the existence of an e�ective value of the
cluster radius (low-temperature method) or a spatially homogeneous mixture of both
opinions (high-temperature method) is assumed. Numerical simulations con�rm the
analytic results.

The extension of the social impact model is based on the concept of active Brow-
nian particles which communicate via a scalar, multi-component communication �eld.
This allows us to take into account e�ects of spatial migration (drift and di�usion),
a �nite velocity of information exchange and memory e�ects. The reaction–di�usion
equation for the density of individuals with a certain opinion is obtained. In this model,
the transition can take place between the “paramagnetic” phase, where the probabil-
ity to �nd any of opposite opinions is 1

2 at each place (a high-temperature and a
high-di�usion phase), the “ferromagnetic” phase with a global majority of one opinion
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(a low-temperature and a low-di�usion phase) and a phase with spatially separated
“domains” with a local majority of one opinion (an intermediate phase).
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