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Abstract

A two-dimensional map describing chaotic behaviour of an economic model has been stabilized
on various periodic orbits by the use of Pyragas time-delayed feedback control. The method
avoids fancy data processing used in the Ott–Grebogi–Yorke approach and is based solely on
the plain measurement and time lag of a scalar signal which in our case is a value of sales
of a �rm following an active investment strategy (Behrens–Feichtinger model). We show that
the application of this control method is very straightforward and one can easily switch from a
chaotic trajectory to a regular periodic orbit and simultaneously improve the system’s economic
properties. c© 2000 Elsevier Science B.V. All rights reserved.

PACS: 05.45.Gg; 87.23.Ge
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1. Introduction

It is generally accepted that economy belongs to extremely complex systems [1,2] and
from the physics point of view both deterministic [3,4] and stochastic [5,6]
descriptions are needed to describe main features of its dynamics. On the other hand,
controlling of at least some economical processes seems to be one of the most important
and challenging tasks facing the economists and politicians responsible for economi-
cal policy. In the present paper we make use of the theory of chaos control [7–9] to
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show how the method of time-delayed feedback control can be applied to suppress
deterministic chaos in a simple micro-economical model of two competing �rms.

We start our paper with a short presentation (Section 2) of the so-called OGY and
Pyragas methods of chaos control. Section 3 is devoted to properties of the chaotical
Behrens–Feichtinger model while Section 4 includes results of numerical simulations
of chaos control by the use of several time-delayed feedback control methods for this
model. In Section 5 we present the theoretical analysis of our numerical results.

2. Principles of chaos control

In the paper [7] Ott, Grebogi and Yorke (OGY) introduced a method of chaos control
that started a new direction of research for physicists working on chaotic systems [8].
The OGY-method makes use of the observation that a chaotic solution possesses in its
immediate neighborhood in�nite number of unstable periodic orbits (UPO-s). Although
the OGY-method is well understood from the theoretical point of view its experimental
implementations are seriously limited by the fact that all quantities needed to calculate
values of a system control parameter are not directly given in an experimental data
chain and to perform the control one needs to apply a complex data analysis. In the
papers [10,11], it has been presented how the OGY method can be applied to suppress
chaos in a simple microeconomical model [12].

In contrast to the OGY method the method of chaos control introduced by Pyragas
[9] can be easily applied to experimental systems where the equations of motion are
not known. The theoretical background for this method can be found in [13–15]. Let
us assume that equation of motion for a continuous in time dynamical system r(t)
subjected to control force k(t) is

ṙ= h(r(t); k(t)) (1)

and in the absence of control, k ≡ 0, there is UPO of the period �. Then one can use
the following control force to stabilize this UPO

k(t) :=K
∞∑

�=0

s�{g[r(t − ��)] − g[r(t − (�+ 1)�)]} : (2)

Here g[r(t)] is a scalar quantity that can be obtained from a measurement of the
system state r(t), while s� are control parameters. The parameter K can be considered
as the total control amplitude. The important feature of the control force given by (2)
(it is a generalized version of the so-called extended time delayed autosynchronisation
method [16]) is the property that for properly chosen coe�cients s� the control force
k(t) tends to zero when the system reaches the desired UPO. For the original method
proposed by Pyragas [9] there is s� = ��; 0 and the control amplitude K is the only
parameter that is needed to be �xed. One can show however [14] that in such a case
the e�ective control is limited to UPO-s that ful�ll the relation ��¡c where � is the
largest Lyapunov exponent of the desired UPO and c is a constant of the order of 2.
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This limitation can be overcome if there are more nonzero control coe�cients, for
example s� = R� [14]. Another limitation of this method is caused by the Lyapunov
exponents that correspond to stable directions of the uncontrolled UPO but they may
bifurcate and become positive due to the nonzero control term [15].

Various discrete versions of the control force (2) have been studied in the literature,
e.g. [17–21]. Similarly as for time-continuous systems [13–15] analytical results for this
kind of control base on the Floquet theory and it has been found that the limitation
of the control is connected with the number of real Floquet multipliers (correspond-
ing to the desired UPO) which are greater than unity [17,18,20]. Moreover, several
types of bifurcation diagrams including Hopf bifurcations have been observed in such
delayed-feedback control systems [21].

3. Behrens–Feichtinger model

We will show the e�ects of chaos control by time-delayed feedback using a simple
microeconomical model [12] of two �rms X and Y competing on the same market of
goods. The �rms perform active investment strategies, i.e., their temporary investments
depend on their relative position on the market. The strategies are asymmetric: the �rm
X invests more when it has an advantage over the �rm Y while the �rm Y invests
more if it is in a disadvantageous position compared to the �rm X . One assumes that
sales xn; yn of both �rms measured in discrete time steps n=1; 2; 3; : : : evolve according
to the equations

xn+1 = Fx(xn; yn) = (1 − �)xn +
a

1 + exp[ − c(xn − yn)]
; (3)

yn+1 = Fy(xn; yn) = (1 − �)yn +
b

1 + exp[ − c(xn − yn)]
: (4)

The constants � and � (with 0¡�; �¡ 1) are the time rates at which the sales of both
�rms decay in the absence of investments while second terms on the r.h.s. of Eqs. (3)
and (4) describe the in
uence of investments at time n on the sales at time (n + 1).
Parameters a and b describe the investment e�ectiveness of both �rms or scales of
their investments while the parameter c is an “elasticity” measure of the investment
strategies. Eqs. (3) and (4) form a two-dimensional map rn+1=F(rn), where rn=[xn; yn]
and F=[Fx; Fy], that completely de�nes the evolution of our discrete dynamical system.
Depending on the speci�c values of parameters �; �; a; b and c solutions of (3) can be
regular or chaotic [10–12]. An example of a chaotic attractor corresponding to the map
(3) with parameters a0 = 0:16; b0 = 0:9; c0 = 105; �0 = 0:46; �0 = 0:7 is presented in
Fig. 1. The model can also be considered as a nonlinear extension of the Richardson
model of arms races [12].
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Fig. 1. Chaotic evolution of sales xn and yn in the Behrens–Feichtinger model. Unstable �xed point is
depicted by the open circle and unstable period-two orbit is marked by the pair of open squares.

4. Numerical simulation of chaos control

4.1. Chaos control by changes of investment sizes

Let us assume that the �rm Y would like to change the chaotic behaviour of its sales
and tries to control the market by introducing additional amount of investments. To
stabilize the market on a period-one or on a period-two orbit the �rm needs to introduce
at every moment n changes of its investments that are proportional to di�erences yn−
yn−1 or yn − yn−2. In such a case, the equation describing the evolution of sales of
this �rm reads

yn+1 = Fy(xn; yn) + FK : (5)

Here FK means a control force and we will assume that

FK = Kyy(yn − yn−m) ; (6)

where m is the delay lag that can be equal to the period of the controlled orbit, i.e.,
m=1 for the period-one orbit and m=2 the period-two orbit while Kyy is an appropriate
control coe�cient. Results of simulations of such a control are presented in Fig. 2. One
can see that at n = 44 the �rm Y switched on the control to stabilize the market at
the period-one orbit. As the result sales xn and yn of both �rms were �xed to constant
values but unfortunately these values are below mean values of sales corresponding
to uncontrolled, chaotic market. At the moment n = 174 the control stabilizing the
period-one orbit was switched o� and the market came back to the chaotic behaviour.
At the moment n=308 the control of the period-two orbit was switched on. As the result
sales xn and yn of both �rms oscillated periodically between two values. However, in
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Fig. 2. Time dependence of the control amplitude Kyy , the control force FK (Eq. (6)) and sales xn; yn.
Results of stabilization procedure are clearly seen. Thin lines depict mean values of the sales in various time
intervals.

such a case, corresponding mean values of sales were larger than means calculated for
the uncontrolled, chaotic behaviour. It follows that in order to increase its sales (as
compared to chaotic behaviour) the �rm can stabilize the market on the period-two
orbit. We stress that although the control of the market was introduced by the �rm
Y but actually the whole system was stabilized and consequently the sales xn of the
�rm X became also periodic. It is interesting that the sales of the �rm X decreased
for the period-one orbit and increased for the period-two orbit similarly as the sales of
the �rm Y . This e�ect is of course at the cost of all other �rms acting on the market
and in
uencing the dynamics of the �rms X and Y due to nonzero values of decay
parameters �; � in Eqs. (3). The fact that the period-one orbit leads to the decrease of
sales while period-two orbit leads to the increase of sales is a direct consequence of
the particular position of these periodic orbits in the chaotic attractor (see Fig. 1).

4.2. Chaos control by many delay terms

Let us consider instead of Eq. (6) the following control term:

FK = K1(yn − yn−1) + K2(yn − yn−2) (7)

which is added to the r.h.s. of Eq. (4). Here constants K1 and K2 are control parameters.
Such a control was discussed in [14] for time-continuous system and it was found that
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Fig. 3. Time dependence of the control amplitude K , the control force FK (Eq. (7)) and sales yn.

this control allows to stabilize UPO-s with longer periods or with larger Lyapunov
exponents that the single delay term (6). Here we make use of the property that this
control allows to switch between period-one and period-two orbits using changes of a
single parameter. For example, if K1 = 1:4473K + 0:0868 and K2 = K then as a result
of changes of the parameter K we obtain the dynamics presented in Fig. 3. One has
to point out that the value of the parameter K was changed in such a way that the
term K1 vanished during the intervals corresponding to the control of the period-two
orbit otherwise the control force FK would have not vanished during the stabilization
of this orbit.

4.3. Chaos control by decrease of investment sizes

Although the control represented by Eq. (6) shifted the market towards the more
optimal evolution one can observe in Fig. 2 that during several time steps the control
force was positive, i.e., the �rm Y had to increase its investments to perform this
control. One can ask whether it is possible to stabilize the market just by decreasing
investment values. This question is especially important if one considers force (6)
not as changes of temporary investments but as changes of temporary sales. One can
suppose that decreasing of sales is easy to introduce because it depends just on the
�rm Y but is much more di�cult to cause the corresponding sales increase. Let us
assume that instead of Eq. (6) the control force is given by

FK = Min[0; Kyy(yn − yn−2)] : (8)
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Fig. 4. Time dependence of the control amplitude Kyy , the control force FK (Eq. (8)) and sales yn.

Results of corresponding numerical simulations are presented in Fig. 4. One can see
that the control was successful and the same period-two orbit was stabilized that was
observed in Fig. 2. It is interesting that we were not able to perform the control of the
period-one orbit in a similar way.

4.4. Chaos control by parameter changes

Both control methods discussed above made use of Eq. (5), i.e., we assumed that
the control force FK can be added to the state variable. A more sophisticated control
method uses changes of system parameters (that can be easily accessible) instead of
system variables. In our case such changes are very natural if they are introduced by
the �rm Y for the parameter b that represents its maximal investments values. Let us
assume that Eq. (5) is changed to

yn+1 = (1 − �)yn +
b+ Kyy(yn − yn−m)

1 + exp[ − c(xn − yn)]
; (9)

where m= 1; 2; 3; : : : . The results of numerical simulations for m= 1 and for m= 2 are
presented in Fig. 5. One can see that the control of the period-one orbit (m=1) and of
the period-two orbit (m= 2) is possible by this method. For the �rst case, a constant
value of the control parameter Kyy = 14:7 was used. However such a control was not
possible for the period-two orbit and we had to use time-dependent control amplitude
in the form Kyy=Kyy(n)=−250:88+250(−1)n. In fact, for small values of the control
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Fig. 5. Time dependence of the control force FK =Kyy(yn−yn−m) for Eq. (9) and corresponding sales yn.

forces one can perform linearization for Eq. (9) and as a result the equation can be
reduced to the form of Eq. (5) with the control force given by

FK =
@yn+1

@b
Kyy(yn − yn−2) : (10)

Because the partial derivative (@yn+1)=@b calculated at b= b0 depends on the variables
xn; yn thus for the period-two orbit this derivative is a time-dependent coe�cient. It
follows that values of the control parameter Kyy should be suited to the temporal
element of the periodical orbit.

5. Theoretical analysis of chaos control

To understand the results of our numerical simulations, we need to remind that
controlling chaos is connected with stabilization of UPO-s. It follows that Lyapunov
exponents of the stabilized orbit must be changed in such a way that all of them
become negative. For systems with discrete-time dynamics Lyapunov exponents �i can
be easily calculated as logarithms of absolute values of eigenvalues of the system
Jacobian. The peculiar feature of such an analysis is the fact that the Jacobian of the
controlled system Ĵ K is a matrix, the dimension D of which is always higher than the
dimension d of the Jacobian Ĵ 0 corresponding to the uncontrolled system. This fact
is connected with appearing of additional degrees of freedom that are e�ects of the
control force. For example, if the control is performed for a period-one orbit according
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Fig. 6. Dependence of Lyapunov exponents on the control parameter Kyy in the case of the control of the
period-two orbit using Eq. (6).

to Eq. (6) (with m= 1) we can write the whole dynamics as

xn+1 = Fx(xn; yn) ;

yn+1 = Fy(xn; yn) + Kyy(yn − zn) ;

zn+1 = yn : (11)

In the above case, the dimension of controlled system equals to D = 3. Similarly for
the control of period-two orbit, i.e., when m= 2 in Eq. (6), one obtains the system of
four coupled equations. This fact leads to appearance of new branches of Lyapunov
exponents in the controlled system. These additional Lyapunov exponents tend to minus
in�nity when all control parameters tend to zero however they may limit the possibility
of the chaos control by time-delay feedback method similarly as it was found for
time-continuous systems [13–15]. Observing changes of all Lyapunov exponents as a
function of the control parameter one can �nd that the limitations come from two facts.
First, there can exist a collision of a branch of Lyapunov exponent corresponding to the
unstable direction of the uncontrolled system with an additional Lyapunov exponent.
After the collision there exists a pair of two conjugated eigenvalues of the system
Jacobian and further changes of the control parameter cause an increase of the resulting
common Lyapunov exponent. Second, the Lyapunov exponents that correspond to stable
directions of the uncontrolled system, i.e., that are negative in the absence of the control
force, can become positive as the result of the control. This e�ect can also be connected
with a collision of an old branch of stable Lyapunov exponents with a new branch
coming from minus in�nity. In Fig. 6, we present the plot of analytically calculated
Lyapunov exponents for the control of the period-two orbit that was performed using
Eq. (6). The grey box marks the region of the values of the control parameter Kyy
when we observed the successful control. One can see that the region �ts very well to
the region where all Lyapunov exponents are negative. Fig. 7 shows the corresponding
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Fig. 7. Dependence of Lyapunov exponents on the control parameter Kxx in the case of the control of the
period-one orbit using Eq. (12).

Fig. 8. Dependence of Lyapunov exponents on the control parameter Kyy in the case of the control of the
period-one orbit using Eq. (9).

diagram for the control of the period-one orbit when the control force

FK = Kxx(xn − xn−1) (12)

was added to the r.h.s. of Eq. (3) and one can see that for all values of the control
parameter Kxx at least one of the Lyapunov exponents is positive. In fact, we observed
that it was not possible to stabilize the period-one orbit using this kind of control.
We stress however that the control of the period-one orbit was possible when we used
the control term in form (6) with m = 1 (see Fig. 2). It follows that the success of
the control depends on the variable that is used for time-delayed feedback, and the
delay lag.

A similar situation occurs when we apply the control by parameter changes. Fig. 8
shows the plot of analytically calculated Lyapunov exponents when the control method
given by Eq. (9) is used for the period-one orbit (compare Fig. 5). One can see
that there is a narrow region of the values of the parameter Kyy where the control is
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Fig. 9. Dependence of Lyapunov exponents on the control parameter Kxy in the case of the control of the
period-one orbit using Eq. (13).

possible, i.e., when all Lyapunov exponents are negative. On the other hand, Fig. 9
corresponds to the control represented by the equations

xn+1 = (1 − �)xn +
a+ Kxy(yn − yn−1)

1 + exp[ − c(xn − yn)]
;

yn+1 = Fy(xn; yn) : (13)

One observes that it is not possible to stabilize the period-one orbit using this kind of
control.

6. Conclusions

We have shown that one can control the deterministic chaos in a simple microe-
conomical model describing competition of two �rms and improve simultaneously the
economic e�ciency. The control consists of adding to system variables or to system
parameters appropriate time-delayed feedback, i.e., control terms depending on di�er-
ences between actual and past values of system variables. The success of such a chaos
control is limited by the occurrence of additional Lyapunov exponents that represent
new degrees of freedom and by the behaviour of Lyapunov exponents that correspond
to the stable directions in the uncontrolled system. In general, the possibility of chaos
control depends on the choice of system variables that are used as a time-delayed term
and on the delay lag.

One can ask whether a control of this art is possible in real economical systems. In
our opinion the method can be used and it appears in micro- and macro-economy. In
fact, time-delayed control terms correspond to the behaviour of economical agents that
is known as rational expectations [22,23], when �rms change their policy taking into
account di�erences between values of present and past sales or incomes. It follows that
there can exist intrinsic market properties that suppress the chaotic behaviour.



UNCORRECTED P
ROOF

12 J.A. Ho lyst, K. Urbanowicz / Physica A 000 (2000) 000–000

References

[1] H. Haken, Synergetics. An Introduction, Springer, Heidelberg, 1983; Advanced Synergetics, Springer,
Heidelberg, 1983.

[2] G.A. Cowan, D. Pines, D. Meltzer (Eds.), Complexity. Metaphors, Models, and Reality,
Addison-Wesley, Santa Fe, 1994.

[3] H.W. Lorenz, Nonlinear Dynamical Equations and Chaotic Economy, Springer, Berlin, 1993.
[4] E. Moseklide, E.R. Larsen, System Dyn. Rev. 4 (1988) 131.
[5] R.N. Mantegna, H.E. Stanley, Introduction to Econophysics: Correlations Complexity in Finance,

Cambridge University Press, Cambridge, 1999.
[6] D. Stau�er, D. Sornette, Physica A 271 (1999) 496.
[7] E. Ott, C. Grebogi, J.A. Yorke, Phys. Rev. Lett. 64 (1990) 1196.
[8] T. Kapitaniak, Controlling Chaos, Academic Press, New York, 1996.
[9] K. Pyragas, Phys. Lett. A 170 (1992) 421.

[10] J.A. Ho lyst, T. Hagel, G. Haag, W. Weidlich, J. Evol. Econ., 6 1996 (31).
[11] J.A. Ho lyst, T. Hagel, G. Haag, Chaos, Solitons Fractals 8 (1997) 1489.
[12] G. Feichtinger, in: G. Haag, U. Mueller, K.G. Troitzsch (Eds.), Economic Evolution and Demographic

Change, Springer, Berlin, 1992.
[13] W. Just, T. Bernard, M. Ostheimer, E. Reibold, H. Benner, Phys. Rev. Lett. 78 (1997) 203.
[14] W. Just, E. Reibold, H. Benner, K. Kacperski, P. Fronczak, J. Ho lyst, Phys. Lett. A 254 (1999) 158.
[15] W. Just, E. Reibold, K. Kacperski, P. Fronczak, J.A. Ho lyst, H. Benner, Phys. Rev. E. 61 (2000) 5045.
[16] J.E.S. Socolar, D.W. Sukow, D.J. Gauthier, Phys. Rev. E 50 (1994) 2343.
[17] T. Ushio, IEEE CAS-I 43 (1996) 815.
[18] K. Konishi, H. Kokame, Phys. Lett. A 248 (1998) 359.
[19] M. Ishii, K. Konishi, H. Kokame, Phys. Lett. A 235 (1997) 603.
[20] H. Nakajima, Phys. Lett. A 232 (1997) 207.
[21] G. Chen, J. Lu, B. Nicholas, S.M. Ranganathan, Int. J. Bifurc. Chaos 9 (1999) 287.
[22] M.G. Kusch, B.E. Ydstie, Physica D 72 (1994) 309.
[23] H.W. Lorenz, M. Lohmann, Chaos, Solitons Fractals 7 (1996) 2135.


