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Noisefree stochastic multiresonance near chaotic crises
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We report on the phenomenon of noisefree stochastic multiresonance that appears in a natural way in
systems where the threshold crossing probability has a nonmonotonous derivative with respect to the control
parameter. In particular, we consider periodically driven chaotic dynamical systems above crisis threshold
where the nonmonotonicity is caused by the fractal structure of precritical attractors and, possibly, their basins
of attraction. The spectral power amplification as a function of the control parameter can be easily obtained
from the postcritical average transient times, and the heights of its multiple maxima can be estimated on the
basis of simple geometric models.
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Stochastic resonance~SR! @1–3# appears in periodically
driven systems with noise. Noisefree SR@4,5# is a related
phenomenon observed in chaotic systems where the inte
chaotic dynamics plays the role of noise. The essence
these phenomena is that the transmission of a periodic si
through the system is optimum for nonzero intensity of
stochastic or internal noise, respectively. It has also b
noticed that in some systems the signal transmission is m
mized for several different noise levels; this phenomenon
recently been given a name stochastic multiresonance~SMR!
@6#. In this paper we show that in a large class of syste
SMR appears as a natural consequence of their dynam
properties.

Among systems with SR the threshold crossing~TC! sys-
tems form an important class@2,7#. We consider the case o
discrete dynamics with a control parameterq modulated by
the input signal,q(n)5q01q1cos(v0n), wheren is the itera-
tion number. The parameterq0 controls the average level o
internal noise. The output signal is defined as 1 when a
lected system variable crosses a given threshold, and 0
erwise. As a measure of SR we take the spectral power
plification ~SPA! s5uP1u2/q1

2, whereP1 is the first Fourier
component of the output signal. In the adiabatic approxim
tion P1 can be derived@7# from the modulated TC probabil
ity P

P15T0
21 (

n50

T021

P@q01q1 cos~v0n!#exp~2 iv0n!, ~1!

where the integerT052p/v0@1 is the modulation period
The SPA at a pointq0 can be thus considered as a function
of the TC probability on the interval@q02q1 ,q01q1#. If
P(q) is smooth and differentiable, then forq1 small enough,
in the linear approximationP15(q1/2)(dP/dq)uq0

. How-

ever, as will be shown below,P(q) can be a complicated an
nondifferentiable function. Then it is better to replace t
derivative at a single pointq0 by its average, i.e., the differ
ence quotient on the interval@q02q1 ,q01q1#. Thus we get
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P15P8q1/2, ~2!

where P85@P(q01q1)2P(q02q1)#/(2q1). This approxi-
mation, although simple, provides a useful intuition abo
the shape of the SPA and yields a good quantitative ass
ment as well. Typically the probabilityP(q)50 for suffi-
ciently smallq ~no noise! and grows monotonically withq
~with monotonic derivative! that can lead to only one maxi
mum of P8 and the corresponding single maximum ofs.
However, if the derivative fluctuates ‘‘at the scale ofq1’’
multiple maxima of the SPA~i.e., multiresonance! can be
expected.

Here we focus on noisefree SR in dynamical systems
the vicinity of chaotic crises@8#. In such systems below th
critical valueqc of a control parameterq there exists a cha
otic attractor, above it the attractor converts to a chao
saddle as a consequence of a collision with the border o
basin of attraction~in other words, with the basin of escape!,
and chaotic transients can be observed. The system bou
around the saddle for some time, and then rapidly escape
some other part of the phase space. The escape probab
i.e., the inverse of the average transient time obeys the po
scaling law

P~q!5C~q2qc!
g, ~3!

where C is a constant andg>1/2 is the scaling exponen
~henceforth, without loss of generality, we assumeqc50). It
is known, however, that the scaling law~3! gives only a
rough trend of the functionP(q), and sometimes quite larg
oscillations around it can appear@8,9#. They are caused by
fractal structures of the attractor and, possibly, basin of
cape colliding in crisis. In the following we investigate SR
such systems with periodically modulated control parame
The escape events can be treated as TC events@10# that
produce one-step long pulses in the, otherwise zero, ou
signal. It is shown that the oscillations ofP(q) lead to the
SMR.

Let us begin with an example of the He´non map:xn11

5p2xn
22Jyn , yn115xn with J520.3 that shows a bound
©2001 The American Physical Society04-1
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ary crisis atpc51.426 921 11 . . . : there is a strange attracto
for p,pc and divergence to infinity forp.pc . After every
escape event the trajectory is reinjected on the precrit
attractor. Figure 1 shows the TC probabilityP(p) and the
corresponding curvess(p0) obtained by replacingp with
p(n)5p01p1cos(v0n) @p2pc , p02pc , andp1 correspond
to q, q0 and q1 in Eqs. ~3! and ~1!, respectively#. Roughly
regular oscillations ofP(q) due to the fractal structure of th
attractor @9# can be seen and the SPA shows multip
maxima. It is apparent that the approximation~2! reproduces
the actual SPA from the escape probability very well.

To make a comparison, the plain power law~3! and the
corresponding SPA have been plotted in Fig. 1~dotted lines!.
In this case only the first maximum is recovered. It occ
since forq,0 there isP(q)50 so the difference quotien
P8 increases monotonically for2q1,q0,q1, and then for
q0.q1 decreases ifg,1 or further increases ifg.1. So
wheng,1 a maximum of the curves vs q0 appears atq0
5q1, while wheng.1 there is no maximum at all, at lea
within the region where Eq.~3! holds true. In our example
g50.858 and the first maximum in Fig. 1~b! results from the
power law alone. From Eqs.~2! and ~3! its height is

smax5~2gCq1
g21/4!2. ~4!

Using the value ofC fitted from the log-log plot ofP(p) we
obtainsmax whose value agrees well with the height of t
first maximum in Fig. 1~b!. From Eq.~4! it follows that the

FIG. 1. The escape probability~a! and the SPA~b! for the crisis
in Hénon map: thick solid lines — direct numerical simulation
thin solid line in~b! — the SPA obtained from the numerical esca
probability using Eq.~2!, dotted lines — the plain power scalin
law ~3! and the corresponding SPA, dash-dotted lines — model~5!
curves. The parameters arep15231025, T051024, g50.858, a
50.158, h50.517, C50.386, z50.554, anda50.65. The dots
denote the maximasmax

(k) estimated from Eq.~7! with ~from left! k
55 andk54, and the square — the first maximum from Eq.~4!.
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height of the first maximum decreases withq1 as smax

}q1
2g22. However, similarly as Eq.~3!, this scaling law

gives only a general trend for a sufficiently large range ofq1
because of the fractal-induced oscillations.

All the other maxima in the SPA in Fig. 1~b! are a con-
sequence of seemingly tiny oscillations ofP(p). In order to
assessP(p) and s(p0) we use a simple geometric mod
valid for two-dimensional maps@9,11#. Assume that at the
crisis pointp2pc[q50 the attractor is locally a setA (k) of
weighted parabolas accumulating at the point of collis
with the basin of escape that is modeled by the half-pla
y.0:

A (k)5 ø
i 50

k

AiøAk11 , ~5!

where

Ai5$~x,y!:y52x22aa i1q%,

Ak115$~x,y!:y52x21q%,

the relative measure distributionm(Ai)5(12h)h i and
m(Ak11)5hk11, and the parametersa,hP(0,1), a.0.
Taking a largerk means to take a finer approximation of th
infinite fractal set. The probability of the escape event
proportional to the measure of the attractor overlapping
basin of escape,P(q)5zm(q), z5const. The functionP(q)
reproduces the power law trend~3! with regular oscillations
superimposed on it. The parametersa, h, and g can be
derived from the eigenvalues of the periodic orbit mediat
in the crisis and the relationg5 ln h/ln a11/2 @9#. Similarly,
z can be obtained fromC and the other model parameter
The model curve can be fitted to numerical data@Fig. 1~a!#
by choosing properly the parametera.

Using the model ~5! with the modulatedq(n)5q0
1q1 cos(v0n), whereq0[p02pc , q1[p1, the curves(q0)
can be evaluated analytically. The theoretical curve in F
1~b! deviates from the numerical one for largerp2pc ; this
is connected with the corresponding deviation of the cur
P(p) in Fig. 1~a!. The derivative of the model curveP(q)
fluctuates: it is infinite at the beginning of every oscillatio
q5aa i and decreases forq→aa i 21. It follows that for q0
.q1 we can, in general, observe a series of maxima in
corresponding SPA to the right of the first maximum orig
nating from the power scaling law~3!. All the smaller scale
oscillations ofP(q) yield only some modulation of the rising
slope of the first maximum.

Let us estimate the heightsmax
(k) of the maxima of the SPA

appearing approximately atq0,max
(k) 5aak1q1 when k fulfils

the conditionaak21.2q1. The top of the parabolic segmen
Ak touches then the basin boundary exactly once per mo
lation period. Peaks of this kind dominate in Fig. 1~b!. The
TC probability at the intervalqP@aak,aak21# can be ap-
proximated as@9#

P~q!5z@hk11Aq1hk~12h!Aq2aak#. ~6!
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Replacingq with q(n) in Eq. ~6!, expanding the first root in
the Taylor series aroundq0,max

(k) up to the first-order term in
q1, and evaluating the Fourier transform of Eq.~6! in the
continuous time approximation we get

smax
(k) 5S zhk

4 D 2F h

Aq0,max
(k)

1
8~12h!

3p
A 2

q1
G 2

. ~7!

A similar formula follows from inserting Eq.~6! into Eq.~2!.
Let us now consider the case when not only the attra

but also the basin of escape is a fractal set. This happ
e.g., for crises in the kicked spin map@12#. The model de-
scribes the motion of a classical magnetic moment~spin! S,
uSu5S, in the field of uniaxial anisotropy and impulse tran
versal magnetic fieldB̃(t)5B(n51

` d(t2nt) given by the

HamiltonianH52A(Sz)
22B̃(t)Sx , whereA.0 is the an-

isotropy constant. The time evolution is determined by
Landau-Lifschitz equation with damping,Ṡ5S3Be f f
2(l/S)S3(S3Be f f), where Be f f52dH/dS and l.0 is
the damping parameter. The equation can be integrated
denoting bySn the spin vector just after thenth field pulse
one finds a two-dimensional mapSn115T@Sn# whose ex-
plicit form is given in Ref.@12#.

At S51, A51, t52p, andl50.143 700 2••• the spin
map exhibits attractor merging crisis atBc51.2: for B,Bc
two separate symmetric chaotic attractors correspondin
the spin ‘‘up’’ (Sz.0) and ‘‘down’’ (Sz,0) states coexist
whereas forB.Bc the attractors merge and the spin jum
between these two states. The borders of the basins of es
are fractal@9# and the TC probabilityP(B), i.e., the prob-
ability of jump between the two spin orientations, exhib
complicated oscillations originating from the overlap of t
fractal structures of precritical attractors and their bas
@Fig. 2~a!#. In order to study noisefree SR the pulse amp
tude is modulated,B→B(n)5B01B1 cos(v0n), whereB(n)
denotes thenth pulse amplitude. The resulting curvess(B0)
exhibiting multiple maxima are shown in Fig. 2~b!. Note that
although the curveP(B) is very complicated the SPA is sti
predicted very well using the approximation~2!. As in the
former case the first maximum follows from the trend~3!
while all the others are the consequence of the complica
shape of the TC probability.

In order to study this case analytically@11#, apart from the
model of the fractal attractor~5! the model of the fracta
basin is assumed@9# as a setB ( l ) of stripes accumulating a
the point of collisiony50:

B ( l )5 ø
j 50

l

BjøBl 11 , ~8!

whereBj5$(x,y):b j (b2bE)<y<b jb%, Bl 115$(x,y)0<y
<b l 11b%, and 0,b,1, b.bE.0. The model curveP(q),
whereq[B2Bc , can be fitted to the numerical data@Fig.
2~a!# by choosing properly the parametersa andb. The other
parameters can be evaluated either as in the case o
Hénon map, or from the magnified plots of the collision r
gion of the fractal attractor and basin of escape@9#.
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Strong maxima of the SPA resulting from the overlap
the two fractal structures again appear to the right of the fi
maximum in Fig. 2~b!. There are maxima connected eith
with entering the stripeBl , @positive slope ofP(B)# or the
‘‘hole’’ between stripesBl and Bl 21 @negative slope of
P(q)# by the attractor branchAk . These maxima appea
approximately atq0,max

(k,l ) 5aak1b8b l1q1, where b85b or
b85b2bE in the two above-mentioned cases, respective
the top of the parabolic segmentAk touches the lower borde
of the stripe or hole again once per modulation period. T
height of the maxima can be estimated as in the previ
example, using the approximation~6! for the attractor and
considering only one stripeBl of the basin. In the first case
under the assumptionsaak21.2q1 , b lbE.2q1, the height
of the maximumsmax

(k,l ) can be obtained from Eq.~7! after
substitutingq0,max

(k,l ) for q0,max
(k) . In the second case, provide

that aak21.2q1 , b l 21(b2bE)2b lb.2q1, the height can
be estimated as

s̃max
(k,l )5S zhk

4 D 2F h

Aq0,max
(k,l ) 2b8b l

2
h

Aq0,max
(k,l ) 2bb l

1
12h

Aq0,max
(k,l ) 2b8b l2aak

2
8~12h!

3p
A 2

q1
G 2

. ~9!

Comparison between the theoretical and numerical result

FIG. 2. As in Fig. 1 for the crisis in the spin map; the das
dotted lines result now from combined models~5! and ~8!. The
parameters areB15331024, T051024, g50.707, a50.002 34,
h50.285, b50.124, bE53.27, C50.715, z51.90, a51.05, and
b54.022. The dots denote the maximasmax

(k,l ) estimated from Eq.~7!
with ~from left! (k,l )5(2,4), (2,3), (1,4), (1,3), the triangles de

note the maximas̃max
(k,l ) estimated from Eq.~9! with ~from left!

(k,l )5(2,4) and (1,4), and the square — the first maximum fro
Eq. ~4!.
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Fig. 2~b! shows that the agreement is not as good as in
1~a!. Nevertheless, the shape of the curves(B0) and the
order of magnitude of the maxima are qualitatively p
dicted.

Note that in both above-mentioned cases the curveP(q)
has a self-similar structure. Maxima of the SPA can be
scribed by the introduced models forq0 of order q1. The
effect of the smaller scale structure ofP(q) is typically hid-
den in the rising slope of the first maximum. Forq@q1 our
simple models do not recover the smaller scale oscillati
of P(q) that are, however, present and lead to a series
virtually random sharp maxima ofs(q0).

To conclude, in this paper we showed that TC syste
with a nonmonotonous derivative of the TC probability as
function of the control parameter are a generic class of m
els in which SMR appears. In particular, we considered
neighborhood of chaotic crises where noisefree SMR occ
as a consequence of the fractal structure of precritical att
d
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tors and, possibly, of their basins. This fractal structure
well reflected in the SPA; thus SR seems to be a subtle
for the investigation of such structures. The SPA, in turn, c
be obtained easily and with high accuracy from the TC pr
ability using the modified linear approximation~2!. It should
be stressed that SMR near crises appear naturally as a
sequence of the dynamical properties of the system, and
of an arbitrarily introduced potential with some invarian
properties@6#. We believe that similar kind of mechanism
leads to SMR also in other systems where the probability
the event determining SR~e.g., escape rate from potenti
well in bistable systems! has a nonmonotonous derivativ
~cf. @4#!.
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