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We studied the behavior of an Ising spin model on different hierarchical scale-free networks using
Monte Carlo simulations. We observed a phase transition from ferromagnetism to paramagnetism
and a power-law behavior of critical temperature with network size. Two different order parameters
were used: a standard average network spin and a weighted network spin. The critical temperature

is a power-law function of the ratio
〈k2〉
〈k〉

PACS numbers: 05.80.+q, 89.75.-k, 89.75.Fb

I. INTRODUCTION

To do.

II. MODEL

We considered three models of hierarchical scale-free
networks: the first, which is the deterministic, Ravasz-
Barabasi (RB) mode [1], the second, the P1 model [2],
which is stochastic generalization of the deterministic
one, and the next one, the PD model [2], which is a
variation of the P1 model.

A. Deterministic model of hierarchical network RB

The starting point is a cluster of five fully connected
nodes (a cluster of hierarchy 0). One node in the cluster
is the central node. The central node of the cluster is the
center of hierarchy 0. Next, we generate four replicas of
this first cluster and connect the four external nodes of
the replicated clusters to the central node of the first clus-
ter. Now that we have a 25-node module, we again gen-
erate four replicas, but this time ther are replicas of the
25-node module. Next we connect 16 peripheral nodes
of large clusters to the central node of the first cluster,
obtaining a new bigger cluster of 125 nodes. We repeat
the process until we get a network of a desired hierarchy,
as Fig.1.

The growth of a network also starts with a single (clus-
ter of hierarchy 0) with m + 1 fully connected nodes,
where m is a random number from uniform distribution.
One node in a cluster we call center of hierarchy 0. Next
we call our cluster the central one and create a random
number m of similar clusters. Each one is created in the
same way as the central one, but we choose number m
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FIG. 1: Network of hierarchy d = 2 in RB model.

for every one independently therefore, they may include
different numbers of nodes. Next we connect a fraction p
of all nodes in non-central clusters to the central node in
the central cluster. This node becomes the central node
of hierarchy 1. We repeat the process until we get a net-
work of a desired hierarchy fig2.
If we take PM (m) = (m, m0), where m0 is a constant
P1 model simplified to the RB model, with a number of
nodes and degree distribution determined strictly by p
and m0. The PD model is a variation of the P1 model,
where in each hierarchy d we connect not a part p of
nodes but a part pd.
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FIG. 2: Network of hierarchy d = 2 in P1 model.

B. Simulations

We put every spin si=+1,-1 on the sites (vertexes)
of the network, assumed ferromagnetic coupling between
linked spins and a constant coupling strength J = 1
and Boltzmann constant kB = 1, where temperature
T = J

kB
. We conducted standard Monte Carlo simulation

with Metropolis Algorithm (average number of time steps
for relaxation was between 100 and 200 Monte Carlo time
steps [MCS], depending on the size (hierarchy) of the net-
work). During numerical simulations for each hierarchy
(size N) of the network, we observed two types of order
parameter. The first one was the standard magnetization
M of the whole network:

M =
1

N

∑

i=1

si (1)

Where N is a number of vertexes in the network. And
the second one was weighted magnetization S:

S =
1

2E

∑

i=1

ki 〈si〉 (2)

Where E is a number of links in the network. To
investigate a critical temperature Tc of the system for
phase transition magnetic susceptibility was observed,
respectively, for M (eq.3) and S (eq.4):

XM = βN(
〈

M2
〉

− 〈M〉
2
) (3)

XS = βN(
〈

S2
〉

− 〈S〉
2
) (4)

Where 〈M〉 and 〈S〉 are averages over time (100[MCS]).

III. NUMERICAL RESULTS

In the ordered network of the given hierarchy d, the
temperature T increased. Fig. 3 presents an example of
M and S versus T for the P1 model. We observed very
similar results for other models (RB, PD).
For low T , we observed very rapid decreaes of S and M ,
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FIG. 3: M (black) and S (red) vs. T , the P1 model, p=0.7,
for uniform m from 2 to 4, d=6 and N=20000.

and due to the finite-size effect, it oscillate about zero.
The presence of weights in order parameter S (eq. 2)
causes higher values because of the high-degree spins. It
takes into account that high-degree spin has a bigger im-
pact on S.
To find out the critical temperature of the system, we
measured magnetic susceptibility, respectively, for M and
S. Fig. 4 shows results for order parameter M and fig.6
shows results for order parameter S (measured in the
same P1 network). Similar results we get for the RB and
PD models. In fig. 4, we can see the presence of two
peaks which cannot be observed in Fig. 6. Weights in S
work as a filter, exposing mainly high degree spins fluc-
tuation. Two peaks of magnetic susceptibility in Fig. 4
betray the presence of more than one critical tempera-
ture. The first peak in graph of XM (T ) locates the criti-
cal temperature for the most weakly connected vertexes
(from hierarchy d = 0,1 or 2, which are 99% of the ver-
texes of the network). We should observe the spectrum
of Tc for each group of vertexes of the given hierarchy,
but it is not clearly seen in Fig. 4 because the number of
vertexes with higher degree is much lower than the num-
ber of vertexes from lower hierarchies and they are not
able to create big fluctuation in the system. Only the
hub of the whole network has sufficient influence on the
network to create a big fluctuation of M during flipping.
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Fig. 5 shows magnetic susceptibility Xd
M for each hier-

archy from 0 to 7. The fluctuation of X0

M near T = 120
betrays a strong correlation between hierarchy d = 0 and
top hierarchies (e.g., hub of the whole network).
Fig. 7 show weighted magnetic susceptibility Xd

M for the
each hierarchy from 0 to 7. We observed the highest value
of weighted magnetic susceptibility for X7

M .
The shapes and tops of the peaks for XM (the second
one) and XS are not so clear at the first glance. The
magnetic susceptibility (eq. 3 and eq. 4) is measured
as a size of the thermal fluctuation in the network. The
tip shape of the peaks results from fluctuation which ap-
pears when with increasing of T (below Tc), the highly
connected sites (central node of the network with degree
k ∼ pγ ∗N) starts flipping. It causes in flipping the net-
work and one big fluctuation appears in the system.
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FIG. 4: XM vs. T for the P1 model, d = 6, p=0.7, for uniform
m from 2 to 4.
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FIG. 5: Xd
M vs. T , spectrum of Xd

M for the given network
of the P1 model, d = 7, p=0.7, for uniform m from 2 to 4,
(avg.=40).
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FIG. 6: XS vs T for P1 model, d = 6, p=0.7, for uniform m

from 2 to 4.
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FIG. 7: Xd
S vs. T , spectrum of Xd

S for the given network
of the P1 model, d = 7, p=0.7, for uniform m from 2 to 4,
(avg.=40). For hierarchy d = 7 we observed the highest value
of weighted magnetic susceptibility.

For further study, we investigated the correlation be-
tween all hierarchies. We define this correlation for tem-
perature T as:

ξM di,dj
=

cov(Mdi
, Mdj

)
√

σ2(di)σ2(dj)
(5)

where Mdi
is define as equ. 1 but concerns only the

nodes that belong to hierarchy di. Covariance and vari-
ance are taken over time t = 100MCS. Fig. 8 presents
the results for ξM 0,dj

(T ). We find the biggest value for

ξM 0,7, (db = 07), when T → T h
c (critical temperature

of the main hab). We observe an increas of correlation
ξM 0,dj

(T ) when given hierarchy di appraoches its own

critical temperature T d
c (compare with Fig. 5). For

lower hierarchies, we observe two peaks at ξM 0,dj
(T ).

When T d
c is near to T h

c the influence of fluctuation from
the main hub of the network overlaps fluctuation from
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hierarchy d, which explains why there is only one peak
at ξM 0,dj

(T ).

We also investigate the correlation ξM 7,dj
(T ) in Fig.

9. We observe the biggest correlation for db = 70.
Ising models on scale-free networks are systems with a
wide spectrum of energy landscape for each subelement
(node), with the Boltzman probability for different
macroscopic states. We have to stress that it strongly
depends on time. Our measurements for ξM 7,dj

(T )

were done for t = 100[MCS]. For very long period
of observation, we should expect a full correlation
ξM 7,dj

(T ) → 1 for 0 < T < T h
c .
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FIG. 8: ξM (0, dj) vs. T , correlation between hierarchies 0
and dj (db = 0dj) in the P1 model, d = 7, p=0.7, for uniform
m from 2 to 4, (avg.=40). The strongest correlation between
hierarchy d = 0 and d = 7 (the main hub of the network).
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FIG. 9: ξM (7, dj) vs. T , correlation between hierarchies 7
and dj (db = 7dj) in the P1 model, d = 7, p=0.7, for uniform
m from 2 to 4, (avg.=40). The strongest correlation between
hierarchy d = 0 and d = 7 (the main hub of the network).

For every hierarchical model for each hierarchy d start-
ing from d = 2, we measured XM and XS . From binned
magnetic susceptibility data, we get Tc versus the size
of network N . For every hierarchical model, we find out
power-law behavior Tc ∼ Nγ . Fig. 10 presents the re-
sults for order parameter M and Fig. 11 presents the
results for S. In Fig. 12 we compare the results from
Figs. 10 and 11. The difference in Fig. 12 derives from
fitting errors.
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FIG. 10: Tc vs. N for order parameter M , data (points) and
fitted results (solid lines); the P1 model, p=0.7, for uniform
m from 2 to 4, from fitting γP1 = 0.44; the PD model, p=0.7,
for uniform m from 2 to 4, from fitting γPD = 0.25; and RB
model, from fitting γRB = 0.4.
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FIG. 11: Tc vs N for order parameter S, data(points) and
fitted results (solid lines); the PD model, p=0.7, for uniform
m from 2 to 4, from fitting γP1 = 0.45; the PD model, p=0.7,
for uniform m from 2 to 4, from fitting γPD = 0.28; and RB
model, from fitting γRB = 0.38.

In [5] Bianconi introduced mean field approximation
with weighted spin (eq. 2) (MFAWS) for random
network (Barabasi-Albert) as relationship eq. 6. After
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FIG. 12: Tc vs N , for the hierarchical models; P1 (black), PD
(red) and RB (green), with order parameter M (solid lines)
and S (discontinious lines).

simple algebra, we get eq. 7, where β = 1/T and hi is
external field acting on spin i. With this assumption and
taking β = βc we get the effective critical temperature

which is Tc ∼ ln(N) ∼
〈k2〉
〈k〉 (solution for BA model in

eq. 8).

〈si〉 = tanh[β(JkiS + hi)] (6)

S =
1

2E

∑

i=1

kitanh[β(JkiS + hi)] (7)

Tc

J
=

m

2
ln(N) ∼

〈

k2
〉

〈k〉
(8)

Because our numerical results don‘t satisfy the Bianconi
solution (Tc ∼ ln(N)), we investigated the relationship
eq. 6 on hierarchical models. Figs. 13, 14, and 15 present
the results for two order parameters with T < Tc, re-
spectively, for each hierarchical model. The two order
parameters take effect in shift values at the x-axis.
In Fig. 13, the P1 model has the best compatibility with
MFAWS (eq. 6), spins with few neighbor flips, when
those with many neighbors point to one state most of
the time. In the PD model (Fig. 14) we observed incom-
patibility with MFAWS, spins with an average number
of neighbors flips most often when spins with few and
many neighbors stay in one state. In the PD model in
each hierarchy d we connect a part pd of new nodes. The
PD model has a lower density of links in network than
the P1 model. It produces clusters in the network, which
have opposite magnetization than the rest of the network,
which is what causes incompatibility with MFAWS. The
RB model is fully deterministic; it is a particular case of
the P1 and PD models when we take the distribution of
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FIG. 13: Results for the P1 model, d = 7, p=0.7, for uniform
m from 2 to 4, measured 〈si〉 of site i versus kiβM (red points)
or kiβS(black points) in T = 5, mean field prediction tanh(x)
(solid line), results over 20 networks respective for each order
parameter.
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FIG. 14: Results for the PD model, d = 7, p=0.7, for uniform
m from 2 to 4, measured 〈si〉 of site i versus kiβM (red points)
or kiβS(black points) in T = 5, mean field prediction tanh(x)
(solid line), results over 20 networks respective for each order
parameter.

m as δ(m, m0) (m0 is constant) and a special way of link-
ing new nodes. In Fig. 15, we observed similar behavior
as for the PD model.

In [5] Biaconi showed that for random networks

relationship Tc ∼
〈k2〉
〈k〉 is fulfiled. Fig. 16 presents the

results for the hierarchical networks (P1, PD, RB).
During the simulations, we measured for each network

at once Tc (from XS(T )) and
〈k2〉
〈k〉 , respectively, each

hierarchical model. We find power-law dependence
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FIG. 15: Results for the RB model, d = 7, measured 〈si〉
of site i versus kiβM(red points) or kiβS (black points) in
T = 5, mean field prediction tanh(x) (solid line), results over
20 networks respective for each order parameter.
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FIG. 16: Results Tc vs.
〈k2〉
〈k〉

for the P1 model (red squars),

p=0.7, for uniform m from 2 to 4, for the PD model (green
diamonds), p=0.7, for uniform m from 2 to 4 and the RB
model (black circuls), fitted data (P1, PD, RB) (black solid
line) α = 0.58.

Tc ∼ (
〈k2〉
〈k〉 )α for all hierarchical models (P1, PD, RB),

from fitting α = 0.58.

For more statistical analysis, the relationship
〈k2〉
〈k〉 with

N was observed. During simulations, we measured for

each network at once
〈k2〉
〈k〉 and N , respectively, each

hierarchcial model (P1, PD, RB). Fig. 17 presents the

power-law behavior
〈k2〉
〈k〉 ∼ Nµ.

In the system for T << Tc we flip one spin and left
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FIG. 17:
〈k2〉
〈k〉

versus N for the P1, PD, and RB models, from

fitting µP1 = 0.81, µPD = 0.42 and µRB = 0.66.

it in the new unchangeable state; this procedure we call
pinning. Pinning one spin in mean field approximation
might by seen as introducing an external field in the sys-
tem acting oppositely at its neighbors. During simula-
tions in the ordered network, we started the pinning pro-
cedure from the site with the highest degree and repeated
the procedure for the site with the next highest degree.
Continuing pinning in the system, we measured M . After
a few steps, the whole network reached opposite polariza-
tion, and continued phase transition in the system can be
observed. Fig. 18 presents the results for the P1 model
with average 〈m〉 = 4.5. It is enough to pin the center of
the network (the main hub of the network) and the cen-
ters of neighbor clusters to reach opposite polarization.
We get similar results for the PD and RB models.
For further study, the pinning procedure was changed.
During the simulation when M = M0, we stopped the
pinning procedure and released the pinned spins. Fig.
19 and fig. 20 shows the results for the P1 model. We
get similar results for the PD and RB models. After
releasing the pinning, system reaches the stable state.
These observations can be explained by the structure of
the network; the small density of connection of the clus-
ters results in weak coupling beatween big parts of the
network, and a cluster with opposite polarization from
the rest of the network appears.

IV. CONCLUSIONS

To do.
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FIG. 18: Pinning procedure for the P1 model, d = 5, p = 0.7,
for uniform m from 2 to 4. Results for T = 6 (black) and
T = 9(red). Phase transition after flip 5 highly connected
nodes.
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FIG. 19: Pinning procedure with resetting at M = 0.2 for the
P1 model, d = 5, p = 0.7, for uniform m from 2 to 4. Results
for T = 3.
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