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Abstract. An economic system which exhibits chaotic behaviour has been stabilized 
on various periodic orbits by use of the Ott-Grebogi-Yorke method. This procedure 
has been recently applied to controlling chaotic phenomena in physical, chemical 
and biological systems. We adopt this method successfully for Feichtinger's generic 
model of two competing firms with asymmetrical investment strategies. We show 
that the application of this control method to the particular economic process 
considered brings a substantial advantage: one can easily switch from a chaotic 
trajectory to a regular periodic orbit and simultaneously improve the system's 
economic properties. Numerical simulations are presented in order to illustrate the 
effectiveness of the whole procedure. 
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1 Introduction 

It is now generally accepted that many evolutionary processes of economic systems 
should be described by nonlinear equations (Haag 1990, Weidlich 1991, Weidlich 
and Braun 1992, Mosekilde and Thomsen 1992, Lorenz 1993, Haag, Hilliges and 
Teichmann 1993). However, one characteristic feature of nonlinear models is the 
possible appearance of deterministic chaos. This means that, although the con- 
stitutive equations of motion are deterministic, their solutions may exhibit a chaotic 
(non-periodic) structure (Chen 1988, Moseklide and Larsen 1988, Haag 1992, Puu 
1992, Feichtinger 1992). 

The observation of time series in economics always suggests the presence of 
stochastic and chaotic elements in the interactions and decisions of market agents. 

* The work was supported by the Alexander von Humboldt-Stiftung and by the Polish National 
Council (KBN) Grant No 2 P302038 04. 
Correspondence to: J.A. Ho|yst; FAX: 48(2)6282171; e-mail: jholyst(a!if.pw.edu.pl 



32 J.A. Hotyst et al. 

Hence, entrepreneurs or other decision makers in the economic system may face the 
difficult task of dealing with an economic system which behaves in an unpredictable 
way. However, there exist various causes for the unpredictability. 

Firstly, it may occur that an otherwise regularly behaving economic system is 
disturbed by exogenous stochastic perturbations and random shocks. These in- 
fluences are of course not predictable since they are caused by a variety of external 
factors. 

Secondly, the chaotic dynamics of an economic system can be generated by the 
endogenous nonlinear dynamics without any external influence of the interacting 
relevant variables. This is a case of deterministic chaos that will be treated in this 
paper. 

In the case of a chaotic economy instruments on the firm level (e.g. changes in the 
stock of strategic investments) which enable the management to influence and to 
control the market dynamics in a predictable way are highly welcome. Here we shall 
discuss a method for transforming the irregular dynamics into a regular one in the 
case of deterministic chaos. This ingenious method was recently proposed by Ott, 
Grebogi and Yorke (OGY) (Ott et al. 1990). It enables one to force the chaotic 
trajectory onto a periodic orbit by a correction mechanism. This particular mechan- 
ism has the form of a small, time-dependent perturbation of a certain control 
parameter. The OGY method has already been successfully applied to controlling 
chaos in physical (Ditto, Rauseo and Spano 1990), chemical (Parmananda, Sherard, 
Rollins and Dawald 1993) and biological (Garfinkel, Spano, Ditto and Weiss 1992) 
systems. The aim of this work is to point out that the OGY method can also be of 
great importance for the control in case of a chaotic economy. 

In Section II of our paper we give a brief review of the OGY control method. In 
Section III we remind of the main properties of a chaotic model consisting of two 
competing firms which was recently developed by Feichtinger (Feichtinger 1992). 
This model will be treated as a generic model of a chaotic economy. We want to 
stress that the aim of this work is not to give a detailed foundation of the model. In 
Section IV we present results of our analytical and numerical calculations that 
demonstrate the stabilization of the chaotic trajectory in Feichtinger's model by use 
of the OGY method. 

2 The method 

In order to control the chaotic system we introduce an algorithm developed by Ott, 
Grebogi and Yorke (1990) in the form that was discussed in Dressier and Nitsche 
(1992). The main points of the method are based on the following observations: 

(a) A chaotic solution of a nonlinear dynamic system (i.e. a chaotic attractor) can 
have even an infinite number of unstable periodic orbits in its immediate 
neighbourhood. 

(b) In the neighbourhood of a periodic solution the evolution of the system can be 
approximated by an appropriate local linearization of the equations of motion. 

(c) Small perturbations of any control parameter p of the equations of motion can 
shift the chaotic trajectory towards the so-called stable manifold of the chosen 
periodic orbit. 

(d) The points belonging to the stable manifold approach the periodic solution in 
the course of time. 
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The application of the method becomes very straightforward for two-dimensional 
dissipative systems with a discrete time evolution. In Section III the method will be 
applied to the Feichtinger model (Feichtinger 1992). Let us assume that the 
evolution of the system is described by a two-dimensional map: 

r,+ 1 = F(r,;p) (1) 

where n = 1,2,3 ... are subsequent discrete points in time, r, = [x,,  y , ]  pairs of real 
numbers describing our system and p a control parameter. Let us assume that we are 
able to temporally change the parameter p around its value pO. Furthermore we 
assume that there exists an unstable periodic solution of(l). In the simplest case it is 
a so-called fixed point P(rY), i.e. a point r I which fulfills the equation 

r f = F(r I; po). (2) 

Let us now consider the points of the chaotic (strange) attractor with the same 
control parameter pO. According to (a) some of these points lie in the neighbourhood 
of the fixed point P(rl). According to (b) we approximate the evolutionary equation 
(1) using a linearization of the function F(r,;p ~ in r , - r  s =  &,. Besides small 
deviations of the parameter p from pO shall also be allowed. In this way we obtain 

6r,+ 1 -~ ~ 6 r ,  + w~p, (3) 

with 6p, = p, _pO. ~ is the Jacobian matrix of the function F(r,;p) at the point 
(rl; pO) 

-cqVX(x, y; p) c?F"(x, y; p)-] 
oy [ 

gFY(x ' Y; P), eFY(x_2'Y; P) ] o (4) 
CX (~y _] (r =rf:p=p ) 

w is a vector defined by 

t , l  
\ op J(r=r/-;p=pO) 

The Jacobian ~)  possesses the eigenvalues 21,22 and the eigenvectors el, e2 defined 
by the equations 

Yrr)ea~2) = .~ t2)e l t2) .  (6) 

The unstable fixed point r I in the neighbourhood of the chaotic attractor must be 
a so-called saddle point (Schuster 1988). This is equivalent to the condition ])~1l < 1 
and 1221 > 1 or vice versa. The corresponding eigenvectors e I and e 2 define the stable 
and unstable directions of the fixed point r ~r in the domain of linearity (see Fig. 1). 
Assuming that the eigenvectors elt2) are normalized, i.e. lelt2)l = 1, one can now find 
a pair of vectors fl, t"2 that are perpendicular to the unstable and stable axis, 
respectively: 

f l  ' e2  = f 2 ' e l  = O, (7) 

fl "% = f2"% = 1. (8) 

The vectors fl and t"2 together form a so-called contravariant basis. 
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Fig. 1. Schematic diagram of the stabilization procedure. Black circles and blackarrows re- 
present the unperturbed chaotic trajectory that in point A approaches the neighbourhood of 
the stable manifold of the unstable fixed point P. By means of a perturbation of a control par- 
ameter the trajectory can be shifted to this manifold. Further evolution towards the fixed point is 
represented by white circles. Along the stable manifold the fixed point is attractive 

Our key conception is to vary the parameter p in an appropriate way (see (3)) in 
order to shift the position of the trajectory r, of the system to the stable manifold of 
the fixed point r I. Because of the attractivity of the fixed point along the stable 
direction the trajectory will approach the fixed point r s. If r n + ~ is not on the stable 
manifold, the trajectory will fail to reach the fixed point r I and within a few time 
steps it will disappear somewhere in the state space. To cause the trajectory of the 
system to lie on the stable manifold, the vector f r .  + 1 should possess no component 
perpendicular to the stable axis. The condition for such a shift can easily be 
expressed using the contravariant eigenvector f2: 

f2"fr, + 1 = 0. (9) 

Here the usefulness of the contravariant basis becomes clear. The contravariant 
basis is introduced in order to obtain a vector f2 which is perpendicular to the stable 
direction (in high-dimensional systems to all stable directions), fir. + ~ to lie on the 
stable manifold is only guaranteed if fr.+~ is perpendicular to fv Taking into 
account that f r  n can be expanded as follows: 

f r ,  = (fl "&,)el + (f2"fr,)%, (10) 

condition (9) together with (3),(6), and (10) leads to the following shift of the control 
parameter p (Dressier 1992): 

fp .  - 22 f2.~r . (11) 
f2. W 

Fig.1 illustrates our procedure. For higher periodic orbits that consist of finite series 
[ r l  r I . rk I ]  with r~+ 1 = F(r~; p) for n = 1, 2...(k - 1) and r{ = F(rkY; p) the stabiliz- 

* 1 ~  2 ~ "  " 

ation can also be easily performed if in the equations (4-5) one uses the k-th iteration 
of the function F, F k (r; p) = F o F o F o...o F(r; p) instead of the function F(r; p). Then 

k-times 

each of the points r{, r{ . . . .  rk ~ is a fixed point of the function Fk(r;p) and one can 
evaluate the corresponding values of parameter perturbations (11) in k-steps (Ott, 
Grebogi, York 1990, Dressier, Nitsche 1992). 
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3 The model 

Recently a very illustrative model of two competing firms X and Y was introduced 
by Feichtinger (Feichtinger 1992). This model is a nonlinear extension of Richar- 
dson-type models of arms race. Richardson-type models are motivated and de- 
scribed in detail by Behrens (Behrens, 1992). 

It is not the purpose of the present article to give further justifications of this 
model. Instead we take it as a proxy for a class of nonlinear economic models to 
which the OGY method can be applied. 

In its economic version the model decribes two competing firms X and Yacting 
on the same market of goods where x. and y. are the sales of the firms X and Y, 
respectively measured on a discrete time scale n = 0, 1, 2 . . . .  Both firms observe 
carefully one another because, although they have the opportunity to invest, their 
investment strategies depend on each other and are assumed to be asymmetric: firm 
X will invest more if it has an advantage over firm Y while firm Y will invest more 
if it is in a disadvantageous position compared to firm X. These assumptions mean 
that both firms invest willingly provided that x. > y.  and they both diminish their 
investments in the opposite situation. In case that neither of the firms invests we shall 
assume an exponential decay of their sales. Taking this into account we can write the 
following system of two coupled difference equations for the evolution of sales of 
both firms: 

x .  + 1 = FX(x., Y.; P) = ( 1 - ~) x. + ~x (x., y.;  a, c) (12) 

Yn + 1 = F '  (x., y.; p) = ( 1 - fl)y. + ~ '  (x., y. ;b, c) (13) 

where 

�9 constants ~ and fl (with 0 < r fl < 1) are time rates of sales decay of both firms 
under zero investments, 

�9 functions @X(x., y.;  a, c) and @Y(x,, y.; b, c) describe the influence of investments at 
time n on the sales at time n + 1, with the parameters a, b, c describing the 
investment behaviour. 

The presence of the symbol pe {a, b, c, ~, fl} in (12) and (13) represents the dependence 
of functions FX(x,y;p)  and FY(x,y;p)  on the parameters of the system. To be in 
agreement with the firms' investment strategies we need to choose some step-like 
functions for @~(x., y.; a, c) and ~Y(x., y.; b, c). According to Feichtinger (1992) we 
assume 

a 
@X(x., y.; a, c) - (14) 

1 + exp( - c(x.  - y.)) 

and 

b 
�9 Y(x., y.; b, c) = 1 + exp( - c(x.  - y.))" (15) 

Parameters a and b describe the efficiencies of investments of both firms or scales of 
their investments. Parameter c is a measure of the "elasticity" of the investment 
strategies. Equations (12-13) together with (14-15) form a two-dimensional map 
r. + t = F(r.; p) with r. = [x., y.] and F = IF x, F y] that fully defines the evolution of 
our discrete dynamical system. Depending on the specific values of parameters e, fl, 
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a, b, and c the solutions of (12-13) can be regular or chaotic (Feichtinger, 1992). It 
is easy to see that for chaotic behaviour the conditions 

~ < ~ , a < b  (16) 

are necessary since in all other cases the time paths become monotonic (e. g. 
lim,_~ x,, y. = 0 in case ~ >/~, a < b). 

4 Results 

Choosing as a generic example the following set of parameter values a ~ = 0.16, 
b ~ = 0.9, c ~ = 105, ~o = 0.46, flo = 0.7 one can easily observe chaotic solutions of x, 
and y, (Fig. 2). The mean values of x. and y. averaged over the chaotic attractor are 
Xchao,c "~ 0.01813 and Ychao,c "~ 0.06702. Let us now assume that firm X is not satisfied 
with the chaotic character of its sales (or country X would like to avoid rapid 
changes of its armament potential) and that it will try to stabilize its market position 
(or country X would like to stabilize the global armaments level). One of the 
possibilities to achieve this aim is to settle down the chaotic trajectory on the fixed 
point r y = [xl, j ]  of the map (12-13) by appropriately changing the scale a of its 
investments. The values o fx  I and yS can easily be found numerically as solutions of 
the system of two coupled transcendental algebraic equations 

a o 

x I = (1 - ~~ + 1 + exp( - c~ I - yY))' (17) 

b o 
yf  = (1 - flO)yl + 1 + exp( - c~ I - yl))" (18) 

For  the chosen set of parameter values we obtain x y ~ 0.01182216, yY ~ 0.04369976 
(see point P in Fig. 2). It is worth stressing that r y is an unstable fixed point, i.e. the 
system will stay in the neighbourhood of r y only for a limited time and then escape 
into other domains of the "phase space" (x., y,). The Jacobian ~ of the map (12-13) 
at the fixed point r ~ reads 

j v  ~ 1 . 0 9 1 6 0 2 ,  -0 .5516017]  (19) 

'~ L3.102760, 2.802760 J" 
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Fig. 2. Chaotic evolution of sales x. and y, in the Feichtinger model (40000 points are depicted). 
Unstable fixed point P and unstable period two (Q,Q') are marked 
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Its eigenvalues are 21 ,-~ 0.5866502 and 2 2 ~ - -  2.297808. The contravariant  vector f2 
corresponding to the unstable direction is f2 ~ [ - 1.089834, 1.190519]. 

Furthermore we can write the vector w (5) as w -- [0.03398870, 0.0]. So the final 
form of the control equation (11) reads: 

6a, = - 62.03245[ - 1.089834(x, - 0.01182216) 

+ 1.190519(y, - 0.04369976)] 

where - 62.03245 is the numerical value of the factor - -  
f 2 -  W ' 

(20) 

Suppose now that firm X is able to change its control parameter  a. (This is 
reasonable because a describes market  investments of X and is its only accessible 
parameter. The second parameter  in the investment function, c, is a physical 
parameter  which cannot be varied by the firm.) We can interprete a as the investment 
budget of firm X. Normally such a budget is fixed or is allowed to vary only within 
the small interval (a ~ - Aa; a ~ + Aa) where Aa is some fixed value. Looking at Fig. 5 
it becomes obvious why firm X has to choose the O G Y  method to control its market  
sales: It seems reasonabie to assume that firm X can change its investment budget 
somewhat. However, no non-chaotic domain can be reached in this way since there 
is a ~  0.16 whereas the first non-chaotic interval begins at a ~ = 0.207. Thus firm 
X would have to increase its investment budget by 29.375% to shift it into the 
domain of regular behaviour. This seems impracticable in most cases. On the other 
hand firm X can regulate the dynamic market  behaviour by changing a only slightly 
if the OGY method is used. 

Then the process of controlling can be performed as follows: 

�9 If at time n the specific values of sales x, and y, are such that [6a,[ > Aa (where 6a, 
is calculated from (20)), the control will not be aetivated and firm X will invest by 
using its "standard" value of the parameter  a, = a ~ 

�9 If at time n the specific values of sales x, and y, are such that ]6a, ] < Aa, then the 
control will be activated and firm X will change its market  investment parameter  
to a, = a ~ + 3a, according to (20). 

The numerical simulation of this process of investment strategy is presented in Figs. 
3a-3c. During the first 100 steps the system is not controlled at all and the chaotic 
evolution of the sales x, and y, can easily be seen. At time n = 100 (depicted by 
arrows A in Figs. 3a-3c) firm X decides to control the market  by changing its 
investment parameter  a ~ = 0,16 by the maximum shift of Aa = 0.008, i.e. 5% of the 
"standard value" of a ~ Firm X has to wait for the occasion to activate this control 
strategy until time n = 199 (arrows B) because up to this moment  sales x,, y. do not 
fulfill the condition [6a, ] < 0.008 and so the control procedure cannot be activated. 
At n = 199 the control is switched on for the first time and one can see from Fig. 3c 
that the value of the parameter  a,  changes from a198 = 0.16 to a199 ~ 0.164. From 
this moment  on the control is permanently applied until time n = 250 (arrows C) 
when firm X decides to switch offthe control. It is worth mentioning that, except for 
the first few steps, the values of the perturbations of the control parameter  a were 
extremely small and only the last digit was oscillating, 6a, ~ a ~  16.10 v for 
n > 212. The value of the constant a ~ depends on the numerical precision of our 
calculations. For  "absolutely exact" calculations one must take a ~ = 0. In Fig. 3a we 
can see the stabilization of the sales of firm X at a level x I ~ 0.0118 for n > 200. At the 
same time the sales of firm Y are also stabilized (Fig. 3b) at a level y l  ~ 0.0437. 
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Fig. 3. Time dependence of sales x., sales Yn, and values of the investment parameter a.. Results of 
the stabilization on the fixed point and on period two can be easily seen. Dashed lines depict the 
mean values of the sales in various time intervals (chaotic or periodic ones). The meaning of the 
points A, B, C, D, E, and F is explained in the text 

Unfor tunate ly  the values of x s (as well as of  yl) are smaller than the mean values of  
the sales of  firm X (and Y) in the chaotic  region n = 0,1,2...199 

x y yY 
~ 0.65. (21) 

Xchaotir Ychaotic 

Thus,  for this kind of  investment behaviour  an uncontrolled,  chaotic  evolution of  the 
market  will be preferred if firm X wants to maximize its sales. However,  the 
switching from chaotic to non-chaot ic  behaviour  always results in the serious 
advantage  that  the firm can perform market  forecasting, in other words, it will gain 
more  certainty about  the volume of  its sales x,  during the next time steps. In 
a chaotic  system the trajectories are extremely sensitive to the initial condit ions and 
so there would be only little knowledge of this kind. 

O n  the other  hand, regarding equat ions (12-13) as a model  of arms races 
(Behrens 1992), the consequence of  the control  (20) is undoubted ly  a stabilization and 
decrease (by a round  35%) of  the military potentials of both  countries. 

At time n = 250 (arrow C in Figs. 3) we let firm X switch off its market  control  
(from now on the control  parameter  remains constant,  i.e. a,  = a2s o for n > 250). 
Despite this the market  stays stable for about  45 steps as one can see from 
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Figs. 3a-3b (arrow D). It is not until now that the previous stabilization is 
"forgotten" and the system starts again to behave in a chaotic way. At time t = 350 
(arrow E) firm X decides to switch on the market control again. However, at this 
particular time the control is used to stabilize the market on period two. In fact, one 
can easily find in a numerical way that there is 

F(r{; pO) = r{, (22) 

F(r{; pO) = r{, (23) 

with r{ ~ [0.02535584, 0.1110008], r{ ~ [0.01371228, 0.03341212] (see points Q 
and Q' in Fig. 2). Using now the point r{ as the fixed point of the transformation 
F(F(r; pO)) the calculations are analogous to those performed for the fixed point r I. 
For example, the Jacobian a *rv of the function F(F(r;p~ at the point r{ is the FI 
product of the Jacobians j r  of the function F(r; pO) at the points r = r{ and r = r{, i.e. 

ffFF ^F. AF n = Jrz Jr, (24) 

and in our case it can be written explicitly as 

jFF ,~ ~1.180227, - 0.4870004 
r, ~ [_4.995705, 2.646558 J '  

(25) 

The Jacobian (25) possesses the eigenvalues 21 ,,~ 0.3750580 and 2 2 ~ - 1.841390. 
The contravariant vector f2 corresponding to the unstable direction is f2-~ 
[ - 2.283011, 1.380863]. The control procedure for period two was first activated at 
time n = 397 (arrow F) and after few further iterations the system was stabilized. 
Now the sales of the firms X and Y oscillate between Xl ~ and x{ and between y{ and 
y{, respectively. Comparing the mean values of the solutions of period two the 
chaotic mean values 

x{ + x{~y{ + y{ 
2~chao,c ,~ ~ ~ 1.077 (26) 

one can see that the stabilization of the chaotic dynamics on period two brings 
a 7.7% increase of sales for both eompeling firms although the control procedure was 
performed by firm X only. This effect is of course at the cost of all other firms acting 
on the market and influencing the dynamics of our model. 

It is worth mentioning what would happen if both firms tried to control the 
system simultaneously but with an incompatible choice of fixed points, e.g. firm 
X seeking to adjust a so as to settle onto x y, y l  whilst firm Y trying to adjust b so as to 
settle onto the orbit of period two. It is clear that if the control mechanism is strictly 
performed as mentioned above (control should be activated for 16a, I < Aa and 
16b, I < Ab, respectively) the firm whose control is activated first will succeed. Once 
the system is stabilized onto the fixed point or the orbit of period two, the other firm 
will have no possibility to get the system out of the dynamics imposed by the 
controlling firm without drastically changing its investment behaviour. 

The time r required to reach a stabilized orbit (the length of a chaotic transient) 
depends on the system parameters, the value of the maximal perturbation of the 
control parameter Aa, and on initial conditions. The mean value ( z )  calculated for 
an ensemble of initial conditions behaves as (Ott, Grebogi and Yorke 1990) 

( r )  ~ (Aa)-~ (27) 
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Fig. 4. Mean values (~) of the time needed to create the stabilized orbit as a function of the values 
Aa of the maximal allowed perturbation of the control parameter. Symbols represent numerical 
data, a line shows the result of theoretical predictions (Eqs. 27, 28) 

with the exponent ~ depending on the eigenvalues of the Jacobian calculated at the 
fixed point: 

ln[22[ 
7 = 1 21n[21 [. (28) 

Because there is l,lll < 1 and 1~.21 > 1, the exponent 7 is always positive. Therefore 
the mean time ( ~ )  decreases with an increase of the parameter Aa. The numerical 
results are displayed in Fig. 4. They are in quite a good agreement with (27-28). 

We assumed here that the control was performed by firm X only. However the 
whole procedure could be used by firm Y as well for which the parameter b should be 
perturbed. 

There are several problems that must be solved before the idea of controlling 
a chaotic economic system presented here can be practically applied: 

�9 The influence of additional non-deterministic noise can substantially limit the "life 
time" of the stabilized orbit. This non-deterministic noise can arise from an 
uncertain b = b. = 6 +  g, where bis a long run average value ofb  and g. a small 
stochastic perturbation. This is reasonable because a complete knowledge of the 
value b in firm Y's investment function (I) y cannot be assumed. In order to avoid 
this destabilizing effect of external noise the amplitude Aa should be large enough 
(Ott, Grebogi and Yorke 1990). 

�9 In case of market models with continuous time-dependence an appropriate 
Poincar6 surface should be performed (Schuster 1988). 

�9 Even in the case that no exact theoretical model describing the economic 
dynamics is known the stabilization problem can be solved by use of the 
Grassberger-Procaccia method (Schuster 1988, Roy, Murphy, Maier and Gills 
1992). 

5 Conclusions and outlook 

We have shown in this paper that for a simple model of an economic system 
consisting of two competing firms on a goods market an effective control of chaos is 
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possible. Here the variables behaving chaotically are the market  shares of the firms. 
The decision makers of one firm take influence on the economy by controlling the 
stock of its market  investments in dependence on the current sales of both firms. This 
control was performed using a small time-dependent feedback calculated from the 
Ott -Grebogi-Yorke algorithm. It is one of our main results that a moderate  
variation of few percent of the corresponding parameter  is sufficient in order to 
prevent chaos and to lock-in onto a predictable dynamical mode. The effect of this 
control is a periodic evolution of the system. As there are several periodic orbits 
available, the system can easily be switched by appropriate market  strategies 
between different types of periodic motion (period one, period two, etc.) and the 
optimal solution can be chosen. As a consequence we conclude that, at least for 
particular cases, the control of chaos is not costly. It may even save a lot of 
management  power and improper  investments if the control starts at the "right" 
time when the trajectory of the system is close to an unstable periodic orbit. So far 
our results are based on discrete-time dynamic equations. The control of chaos in 
continuum models of economic processes will be investigated in further work. The 
influence of external noise (exogenous fluctuations) on the effectivity of the chaos- 
control mechanism is of practical importance and will also be investigated. The 
method can also be used for empirical systems where no equations of motion are 
known provided that the dynamics of such systems is "sufficiently deterministic", i.e, 
the level of"indeterministic noise" is low enough. A further point of current work is 
the application of the Grassberger-Procaccia analysis to real economic time series 
which exhibit a chaotic structure in order to construct their dynamics and to 
investigate control mechanisms of chaos. 
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