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a b s t r a c t

As the world becomes more and more interconnected, our everyday objects become part of the
Internet of Things, and our lives get more and more mirrored in virtual reality, where every piece
of information, including misinformation, fake news and malware, can spread very fast practically
anonymously. To suppress such uncontrolled spread, efficient computer systems and algorithms
capable to track down such malicious information spread have to be developed. Currently, the most
effective methods for source localization are based on sensors which provide the times at which they
detect the spread. We investigate the problem of the optimal placement of such sensors in complex
networks and propose a new graph measure, called Collective Betweenness, which we compare against
four other metrics. Extensive numerical tests are performed on different types of complex networks
over the wide ranges of densities of sensors and stochasticities of signal. In these tests, we discovered
clear difference in comparative performance of the investigated optimal placement methods between
real or scale-free synthetic networks versus narrow degree distribution networks. The former have a
clear region for any given method’s dominance in contrast to the latter where the performance maps
are less homogeneous. We find that while choosing the best method is very network and spread
dependent, there are two methods that consistently stand out. High Variance Observers seem to do
very well for spread with low stochasticity whereas Collective Betweenness, introduced in this paper,
thrives when the spread is highly unpredictable.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

The recent development of consumer electronics, social media
and online services is changing our society with unprecedented
pace. The Internet is used no longer only for communication but
also for shopping, banking, learning, entertainment, and most of
all, sharing and searching for information. The number of smart
devices used in everyday life is growing, most of them connected
to the Internet to access Online Social Networks (OSN), hosted by
such platforms as Twitter, Facebook, or Instagram. The Internet
became the primary source of news, opinions and comments for
many people [1]. As always, new technologies bring not only new
opportunities but also new threats. The Internet has become a
target for wide range of attacks, including propagation of mis-
information, and malware, as well as medium for fraudulent
activities [2,3]. Naturally, such nefarious spread is on funda-
mental level similar to traditional epidemiology concerned with
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biological pathogen spread and therefore those two are often
compared [4–12]. While the process of spreading of biological
or digital viruses has been well studied for many years [13–16],
new methods for detecting and preventing malicious content in
OSN are still being developed [17,18]. The pace of this research
has been accelerating recently, particularly in regard of an im-
portant problem of locating spread source of malicious or harmful
information [19–29].

Despite all these efforts, many challenges still remain. One
such challenge is an optimal sensor placement to monitor the
network of interest in the least expensive and unobtrusive way.
There have been plenty of recent works tackling this issue (see
Section 2 below), however, there is a lack of comprehensive, state
of the art, comparative studies of this research. This motivated us
to conduct such a review ourselves. In this paper, we compare
performance of six algorithms (five representing the best known
solutions and the sixth used as a null model, see Section 4
below) used in this field in various scenarios with varying spread
stochasticity, network topology and the amount of information
accessible by the spread monitoring sensors.
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Table 1
Computational complexity of studied algorithms. Here n = |V | is the number
of nodes, m = |E| is the number of links, b = |S| is the number of sensors
(budget), and γ is an experimentally obtained scaling exponent from the linear
model best fitting to results of numerical simulations (see Fig. 1).
Algorithm Complexity γ Parallelizable?

High Coverage Rate [30] O(bn) 1.80(2) No
Betweenness Centrality [31] O(nm) 2.17(1) Yes
Collective Betweenness O(nm + bn log2 n) 2.77(3) Partially
High Variance Observers [32] O(b2n2) 3.91(1) Yes
K-Median [33] O(b2n2) 4.08(3) Yes

Fig. 1. Average time needed for determining the sensors set (density of sensors
ρ = 0.05) versus the size of Erdős–Rényi network with average degree ⟨k⟩ = 8.
Error bars representing confidence interval of level 0.95 are smaller than symbols
in most cases. Solid lines are linear models ln(time) = γ ln(size) + const. The
values of γ are presented in Table 1. HV-Obs and K-Median were parallelized
using 16 threads.

2. Related works

Spinelli & Celis et al. have introduced a method called High
Variance Observers (Section 4.4) and tested it in the context of
what they call a budget and a transmission variance [32,34,35].
The budget is simply the number of sensors we are allowed to use
while the transmission variance is, of course, a measure of how
non-deterministic the monitored spread is. While their results
look promising, we find both the range of transmission vari-
ance and the number of networks considered not comprehensive
enough.

Zhang et al. have analyzed centrality based methods and
showed that none is be a clear-cut winner in terms of perfor-
mance [30]. While in their work the range of sensor densities is
respectable, they do not consider effects of stochasticity at all.
Based on their results, for our comparisons, we chose one of the
centrality measures (Section 4.1) that seems slightly better than
the rest of them.

In contrast to above work, we consider both – sensor den-
sity and transmission variance – in a wide range of values and
on top of that we use eight different networks as our testing
environments.

There have also been some works on online sensors selection
to be able to take into account the spread evolving dynamics [35–
37]. However, we consider such approach to be beyond the scope
of our study because it introduces new issues and challenges.

On similar note there has been some impressive work by
Zejnilovic et al. [38–40], Wang [23], Fang et al. [41], Li et al. [29]
and Shi et al. [42] where new localization methods are introduced
and several methods for sensor placement are studied. Never-
theless, the localization scheme and, most importantly, certain

assumptions are different than the ones we are using in this paper
and therefore we will omit those as well.

3. Basics

3.1. Spreading model

We use Susceptible–Infected model [43] to simulate propaga-
tion over the complex network. SI model has only one parameter,
infection rate β , which is a probability per time step that infected
node will transmit the infection to the uninfected neighbor. The
infected nodes try to infect their neighbors in every time step.
The distribution of the number of time steps needed to transmit
the infection is geometric, with µ = 1/β and σ =

√
1 − β/β .

We define transmission variance ξ according to Spinelli et al. [32],
as the ratio between the standard deviation and the mean of
the number of times steps needed to transmit the infection ξ =

σ/µ =
√
1 − β . Please note that ξ is nothing else than inverse of

propagation ratio λ [25,28].

3.2. Source localization algorithm

For the localization of spread source, Pinto-Thiran-Vetterli [25]
algorithm is used in restricted form (PTVA-LI [28]).

Let us have a network G = (V , E), with V , E being its known
sets of vertices (nodes) and edges (links) respectively, defining
our system. In this system, we place our set of sensors S ⊂ V ,
that is the nodes that report at what time they got infected, and
an unknown origin of infection o∗. Normally (i.e., in PTVA), we
would also register from whom given sensor received the virus,
however, this is where the restricted form part comes in — we use
limited information version, namely PTVA-LI and only the times of
infection are given by the sensors.

We assume that the inception time of the virus t0 is unknown,
and only the mean and variance of the transmission time µ, σ per
link are known (but not exact propagation times).

The goal, of course, is to locate o∗

From infection times reported by sensors we construct an
observed delay vector d:

d = (t2 − t1, t3 − t1, . . . , tb − t1)T (1)

where b is the number of sensors (budget), ti is an infection time
of sensor si ∈ S, and t1 is the infection time of a reference sensor
that is needed here since the t0 is unknown.

For each node in the system v ∈ V we compute a deterministic
delay vector µ:

µv = µ
(
|P(v, s2)| − |P(v, s1)|, . . . , |P(v, sb)| − |P(v, o1)|

)T (2)

where |P(v, si)| is number of edges on a shortest path connecting
nodes v, si. We also compute the covariance matrix Λv , each
element i, j of which is given by:

Λi,j = σ 2
×

{
|P(si, s1)| i = j,
|P(si, s1) ∩ P(sj, s1)| i ̸= j

(3)

Finally we compute a score for each node v and use maximum
likelihood rule to determine the most probable origin of the
epidemic ô:

ô = argmax
v∈V

µT
vΛ

−1
v (d − 0.5µv) (4)

When ô = o∗ we count it is as a success. See evaluation metrics
below for details.

Since in general G can be any graph and PTVA is optimal on
trees, one must construct a BFS (breadth first search) tree on each
node v ∈ V and apply the above described procedure (eq. (2)–(4))
on each tree respectively.
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Fig. 2. The overlap coefficient as a function of density of sensors for all networks used in this study. All panels have the same horizontal axis. The results for
synthetic networks are averaged over 50–150 realizations. Error bands represent the confidence intervals at the level 0.95.

4. Algorithms

We compare the following six methods of efficient sensors’
selection.

4.1. Betweenness centrality (BC)

This popular and simple heuristic takes the nodes with largest
betweenness centrality, which is computed independently for
every node v ∈ V as

SBC = argmax
S

∑
v∈S

∑
i,j∈V
i̸=j̸=v

σ
(v)
ij /σij, (5)

where σ
(v)
ij is the number of shortest paths between i and j which

contain v and σij is the total number of shortest paths between
them.

4.2. High coverage rate (coverage)

The algorithm, proposed by Zhang et al. selects a set of the sen-
sors SCoverage which has the maximum number of unique neigh-
bors [30]. The nodes which have an sensor as a neighbor are
covered, and the fraction of covered nodes in the network is called
coverage rate. This method saturates, since usually the density
of sensors which gives coverage rate equal one is significantly
smaller than one.
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Fig. 3. Comparison of source localization quality for five sensor placement strategies in case of Erdős–Rényi graph (n = 1000, ⟨k⟩ = 8). A black solid line denotes
the results for randomly placed sensors. The confidence intervals at the level 0.95 are smaller than symbols.

To avoid the problem of saturation, additional stages are added
to the algorithm in the following manner. The first stage is iden-
tical as originally proposed by Zhang et al. [30]. The sensors are
chosen greedily, one by one, and each new sensor increases the
coverage rate until it reaches unity. When the coverage rate be-
came one, the next stage starts. In the second stage, the algorithm
selects sensors which maximize the number of nodes which have
two sensors as the neighbors (double-covered nodes). In the third

stage algorithm maximizes the number of triple-covered nodes
and so on until the desirable density of sensors is reached.

4.3. K-median (K-Median)

K-Median placement was proposed by Berry et al. for efficient
detectability of a flow in municipal water networks [44]. This
method minimizes the sum of distances between the nodes and
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Fig. 4. Comparison of source localization quality for five sensor placement strategies in case of Random Regular Graph (n = 1000, ⟨k⟩ = 8). A black solid line
denotes the results for randomly placed sensors. The confidence intervals at the level 0.95 are smaller than symbols.

the closest sensors. If V is the set of all nodes, d(i, j) is the length
of the shortest path between nodes i and j, SK-Median set of sensors
is

SK-Median = argmin
S

∑
i∈V

min
o∈S

d(i, o) (6)

4.4. High variance observers (HV-Obs)

The algorithm introduced by Spinelli et al. is based on path
covering strategy [32]. This method looks for a set of sensors
SHV-Obs(L) that maximizes the cardinality of PL(S), which is the set
of nodes that lie on a shortest paths of length at most L between
any two sensors in the set S.
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Fig. 5. Comparison of source localization quality for five sensor placement strategies in case of Degree Sequence Algorithm (n = 1000, ⟨k⟩ = 7.67). A black solid
line denotes the results for randomly placed sensors. The confidence intervals at the level 0.95 are smaller than symbols.

High Variance Observers is designed for small density of sen-
sors, since |PL(S)| increases quickly with the number of sensors
and can easily reach the number of all nodes in the network.
Here, to solve this problem, we extend the algorithm in the
similar way as in the case of High Coverage Rate method. A node
which lies on an exactly one shortest path of length at most L
between any two sensors in the set S is called single-path-covered.

A double-path-covered node lies on two shortest paths, triple-path-
covered lies on three shortest paths and so on. In the first stage,
the algorithm selects greedily the sensors which maximize the
number of single-path-covered nodes until all nodes are single-
path-covered. Then, the second stage starts, in which the number
of double-path-covered is maximized and so on until the desirable
density of sensors is reached.
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Fig. 6. Comparison of source localization quality for five sensor placement strategies in case of Barabási–Albert model (n = 1000, ⟨k⟩ = 7.98). A black solid line
denotes the results for randomly placed sensors. The confidence intervals at the level 0.95 are smaller than symbols.

4.5. Collective betweenness (CB)

We propose a novel method which maximizes a new measure
called Collective Betweenness:

SCB = argmax
S

∑
i,j∈V
i,j/∈S

σ
(S)
ij /σij, (7)

where S denotes a set of sensors, σ
(S)
ij is the number of shortest

paths between i and j which pass through any node belonging
to S and σij is the total number of shortest paths between them.
In this approach each shortest path is counted only once (even
if it passes through many nodes belonging to S), therefore value
of CB for the set S is different than simple sum of Betweenness
Centralities of all nodes in S.
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Fig. 7. Comparison of source localization quality for five sensor placement strategies in case of Configuration Model (n = 1000, ⟨k⟩ = 7.02). A black solid line
denotes the results for randomly placed sensors. The confidence intervals at the level 0.95 are smaller than symbols.

4.6. Random

This is a benchmark for the rest of methods (a baseline). This
method selects sensors randomly.

4.7. Complexity

Computational complexity is an important criterion for the
usability of the algorithms. As seen in Table 1, time complexity

of methods studied in this article varies from O(nm) to O(b2n2),
where n = |V | is the number of nodes, m = |E| is the number
of links and b = |S| is the number of sensors (budget). The
third column contains the results of numerical experiment in
which the average execution time for each method was measured
as a function of network size (see with Fig. 1). The experiment
was conducted for Erdős–Rényi network with constant density of
sensors ρ = 0.05 and average degree ⟨k⟩ = 8. High Coverage
Rate has the lowest computational complexity among the tested
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Fig. 8. Comparison of source localization quality for five sensor placement strategies in case of University of California network (n = 1020, ⟨k⟩ = 12). A black solid
line denotes the results for randomly placed sensors. The confidence intervals at the level 0.95 are smaller than symbols.

methods. The authors state that the complexity of this algorithm
can be reduced to O(n + m) [30], but our version, which is
resistant to the saturation effect, has complexity O(bn). On the op-
posite extreme, there are High Variance Observers and K-Median.
In case of these algorithms, the maximum network size during
the experiment shown in Fig. 1 is 3000 due to very long time of
computations. Although both methods are well parallelizable, the
maximum possible speed-up is equal to the number of nodes in

the network (and requires this number of threads), which can be
still insufficient for applying these algorithms to large networks.

4.8. Similarity between sets of sensors

The algorithms for sensor placement are very different (except
for BC and CB), yet, the sets of nodes which they generate often
are very similar to each other. We use an overlap coefficient [45]
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Fig. 9. Comparison of source localization quality for five sensor placement strategies in case of University of Rovira i Virgili network (n = 1133, ⟨k⟩ = 9.6). A black
solid line denotes the results for randomly placed sensors. The confidence intervals at the level 0.95 are smaller than symbols.

as similarity measure:

overlap(X, Y ) =
|X ∩ Y |

min(|X |, |Y |)
=

|X ∩ Y |

s
, (8)

where s = |X | = |Y | is the number of sensors. Fig. 2 presents
the overlap coefficient as a function of the density of sensors for
all networks used in this study. The overlap coefficients between

random sensors and other sets of sensors are not shown because
their values are known and equal to the density of sensors ρ.

As expected, the highest overlap occurs for Betweenness Cen-
trality and Collective Betweenness. It oscillates between 0.7 for
the Infectious network and 0.95 for the University of California
network. The most unique set of sensors for every network is the
set given by High Variance Observers method. Any overlap with
this method is always below 0.55.
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Fig. 10. Comparison of source localization quality for five sensor placement strategies in case of Infectious network (n = 410, ⟨k⟩ = 13.5). A black solid line denotes
the results for randomly placed sensors. The confidence intervals at the level 0.95 are smaller than symbols.

5. Evaluation metrics

Two efficiency measures are used for evaluating the quality of
origin detection: the average precision and the Credible Set Size
at 0.95 confidence level. The precision for a single test is defined
as the ratio between the number of correctly located sources
(i.e., true positives, which here equals either zero or one) and the

number of sources found by the method (i.e., true positives plus
false positives, which here is at least one). The tests are repeated
multiple times for different origins and many graph realizations
(for synthetic networks) and then the obtained values of precision
are averaged. The Credible Set Size at the confidence level of α

(α-CSS) is a novel metric introduced by us here. It is the size of the
smallest set of nodes containing the true source with probability



R. Paluch, Ł.G. Gajewski, J.A. Hołyst et al. / Future Generation Computer Systems 112 (2020) 1070–1092 1081

Fig. 11. Summary Diagrams for Erdős–Rényi graph (n = 1000, ⟨k⟩ = 8). The color of the background in each tile indicates which algorithm provides the highest
average precision (top) or the smallest 0.95-CSS (bottom) for a given pair (ξ, ρ). The five colored bars inside each tile, ordered from highest to lowest, illustrate
the ranking of the methods. The height of each bar shows the difference in average precision (or 0.95-CSS) between a given method and the last method. The last
(sixth) method, which is the least effective for a given pair (ξ, ρ) is not shown in a given tile. The heights of bars from all tiles are scaled relative to the height of
the highest bar among them, with a minimum height to recognize the color. The bars on the left sides of Summary Diagrams (for low transmission variance ξ ) are
much lower than bars on the right sides, which means that the differences in average precision and 0.95-CSS between methods are much smaller for low values
of ξ than for large ξ . In case of ER graph, the highest bar in Summary Diagram for average precision (top, ξ = 0.9, ρ = 25%) represents difference of 18(1) percent
points, while the highest bar for 0.95-CSS (bottom, ξ = 0.95, ρ = 25%) corresponds to 230 nodes. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Table 2
The number of nodes in each network n = 1000. The values of the average
degree ⟨k⟩, the average path length (APL) and the global clustering coefficient
are averages of 100 realizations of graphs.
Graph type Degree

distribution
⟨k⟩ APL Global

clustering

Erdős–Rényi Binomial 8.00 3.55 0.008
Random Regular Graph k = const 8.00 3.60 0.006
Degree Sequence Algorithm Poisson 7.67 3.76 0.132
Barabási–Albert P(k) ∼ k−3 7.98 3.17 0.026
Configuration Model P(k) ∼ k−3 7.02 3.36 0.021

α. In other words this metric describes how many nodes with
the highest score should be labeled as origin to have probability
α that the true origin is among these nodes. Probability here is
understood as frequency and computed as a hit rate (recall) from
many realizations of signal propagation and source location.

Table 3
Basic properties of the real networks used in tests.
Network |V| ⟨k⟩ kmax APL Diameter Global

clustering

Univ. of California 1020 12.2 110 3.0 5 0.046
Univ. of Rovira i Virgili 1133 9.6 71 3.6 8 0.166
Infectious 410 13.5 50 3.6 9 0.436

6. Results

We evaluate the algorithms for sensor placement on several
synthetic networks, such as Erdős–Rényi model [46], Random
Regular Graph, Degree Sequence Algorithm [47] with Poisson dis-
tribution, Barabási–Albert model [48], Configuration Model with
power-law degree distribution and three real networks (one net-
work of human face-to-face contacts and two networks of In-
ternet communications between academics). We study how the
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Fig. 12. Summary Diagrams for Random Regular Graph (n = 1000, ⟨k⟩ = 8). The highest bar for average precision (top diagram, ξ = 0.8, ρ = 15%) represents
difference of 15(1) percent points, while for 0.95-CSS the highest bar (bottom diagram, ξ = 0.95, ρ = 25%) corresponds to 133 nodes. See Fig. 11 for detailed
instruction how to read Summary Diagrams. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

Table 4
Summary Table for Erdős–Rényi graph (n = 1000, ⟨k⟩ = 8) presents the average values of precision (top numbers in cells, in percentages)
and Credible Set Size (bottom numbers in cells) in nine regions of parameter space (ξ, ρ). The first three numerical columns from the left
refer to low, three in the middle to medium, and the last three to high transmission variance ξ . Similarly, columns {1, 4, 7} correspond to
high, {2, 5, 8} to middle, and {3, 6, 9} to low density of sensors ρ. Due to arrangement of the columns, the average precision (0.95-CSS)
always decreases (increases) from left to right side of the table. The best results in each region are printed in bold. The uncertainty of
average precision is given by the confidence interval at the level 0.95. In case of ER graph, K-Median, HV-Obs and Coverage are the best
methods for low transmission variance, while Collective Betweenness is the leading method for high values of ξ . However, Coverage is also
doing well for high ξ if the density of sensors ρ is low.
ξ −→ ⟨0.2; 0.5⟩ ⟨0.5; 0.8⟩ ⟨0.8; 0.95⟩

ρ [%] −→ 20–30 10–20 5–10 20–30 10–20 5–10 20–30 10–20 5–10

Random 96.9(1) 95.9(1) 93.3(1) 67.3(2) 57.3(2) 43.4(3) 16.6(2) 8.7(2) 4.0(1)
1 1 2 17 90 282 307 523 705

Coverage 97.0(1) 96.2(1) 93.9(1) 70.9(2) 63.9(2) 49.6(3) 25.7(3) 16.0(2) 7.2(2)
1 1 2 8 33 191 191 437 682

K-Median 97.1(1) 96.3(1) 94.6(1) 70.2(2) 63.4(2) 50.0(2) 23.5(2) 14.6(2) 6.1(2)
1 1 2 9 38 214 220 434 682

HV-Obs 97.0(1) 96.3(1) 94.4(1) 70.3(2) 61.6(2) 45.1(3) 23.5(3) 13.9(2) 4.4(1)
1 1 2 9 55 260 219 484 721

BC 96.5(1) 95.5(1) 92.3(1) 71.1(2) 62.9(2) 47.3(3) 27.9(3) 16.1(2) 6.7(2)
1 1 2 7 39 198 155 386 626

CB 96.6(1) 95.7(1) 93.3(1) 71.5(2) 63.0(2) 47.1(3) 30.5(3) 16.1(2) 4.9(1)
1 1 2 6 36 221 108 354 625
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Fig. 13. Summary Diagrams for Degree Sequence Algorithm (n = 1000, ⟨k⟩ = 7.67). The highest bar for average precision (top diagram, ξ = 0.9, ρ = 25%)
represents difference of 19(1) percent points, while for 0.95-CSS the highest bar (bottom diagram, ξ = 0.95, ρ = 20%) corresponds to 266 nodes. See Fig. 11 for
detailed instruction how to read Summary Diagrams. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

Table 5
Summary Table for Random Regular Graph (n = 1000, ⟨k⟩ = 8). See Table 4 for detailed instruction how to read Summary Table.
ξ −→ ⟨0.2; 0.5⟩ ⟨0.5; 0.8⟩ ⟨0.8; 0.95⟩

ρ [%] −→ 20–30 10–20 5–10 20–30 10–20 5–10 20–30 10–20 5–10

Random 98.6(1) 97.7(1) 95.1(1) 73.1(2) 63.1(2) 48.0(2) 22.1(2) 12.0(2) 5.5(2)
1 1 1 8 48 217 216 439 657

Coverage 98.9(1) 98.4(1) 96.5(1) 76.9(2) 69.6(2) 53.9(3) 32.1(3) 19.7(2) 8.3(2)
1 1 1 4 17 151 122 395 675

K-Median 98.8(1) 98.5(1) 97.4(1) 75.6(2) 70.0(2) 56.0(2) 30.1(3) 19.8(2) 7.6(2)
1 1 1 5 18 167 144 372 669

HV-Obs 98.9(1) 98.3(1) 96.3(1) 76.2(2) 68.5(2) 51.7(3) 30.8(3) 19.3(2) 7.1(2)
1 1 1 4 21 169 136 409 671

BC 98.6(1) 97.6(1) 94.7(1) 73.2(2) 63.5(2) 48.1(3) 23.9(2) 13.5(2) 6.2(2)
1 1 2 7 43 212 213 434 657

CB 98.7(1) 98.2(1) 96.7(1) 75.0(2) 66.8(2) 51.8(3) 31.7(3) 16.8(2) 5.6(2)
1 1 1 5 32 212 101 378 666

transmission variance ξ influences the quality of source detection
for various densities of sensors ρ. We investigate all networks as
unweighted to limit the space of possible models’ parameters. The
heterogeneity of links is partially incorporated in the stochastic
character of spreading process.

Figs. 3–10 show the results of numerical simulations in the
most straightforward non-aggregated form. In each figure, the top
two rows of charts present average precision, and the bottom
two rows present Credible Set Size at the confidence level of
0.95 as a function of transmission variance ξ for six values of
sensors’ density (5%–30%). As evident, the transmission variance
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Fig. 14. Summary Diagrams for Barabási–Albert model (n = 1000, ⟨k⟩ = 7.98). The highest bar for average precision (top diagram, ξ = 0.75, ρ = 15%) represents
difference of 22(1) percent points, while for 0.95-CSS the highest bar (bottom diagram, ξ = 0.75, ρ = 10%) corresponds to 334 nodes. See Fig. 11 for detailed
instruction how to read Summary Diagrams. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

Table 6
Summary Table for Degree Sequence Algorithm (n = 1000, ⟨k⟩ = 7.67). See Table 4 for detailed instruction how to read Summary Table.
ξ −→ ⟨0.2; 0.5⟩ ⟨0.5; 0.8⟩ ⟨0.8; 0.95⟩

ρ [%] −→ 20–30 10–20 5–10 20–30 10–20 5–10 20–30 10–20 5–10

Random 94.1(1) 93.1(1) 91.2(1) 67.7(2) 58.6(2) 45.4(3) 22.0(2) 12.1(2) 5.5(2)
2 2 2 7 29 141 180 402 623

Coverage 93.8(1) 93.2(1) 91.9(1) 70.7(2) 64.3(2) 52.3(3) 31.1(3) 20.1(2) 9.5(2)
2 2 2 5 10 75 73 252 545

K-Median 94.2(1) 93.1(1) 91.2(1) 67.9(2) 58.4(2) 45.2(3) 22.1(2) 12.1(2) 5.6(2)
2 2 2 7 29 139 180 401 619

HV-Obs 93.9(1) 93.3(1) 92.4(1) 70.5(2) 62.5(2) 47.9(3) 29.9(3) 18.1(2) 6.3(2)
2 2 2 5 15 120 86 326 634

BC 93.1(1) 92.1(1) 89.7(2) 70.4(2) 63.7(2) 50.3(2) 33.6(3) 21.4(2) 9.9(2)
2 2 2 5 11 80 59 227 495

CB 93.3(1) 92.5(1) 90.6(2) 71.0(2) 64.5(2) 50.8(3) 35.8(3) 22.8(2) 9.2(2)
2 2 2 5 10 85 39 192 489

is a major factor in the quality of source detection. For the low
transmission variance, the precision provided by any reasonable
algorithm for sensor placement is very high. In the opposite case,
for the very high transmission variance, the quality of all methods
is rather poor. The middle range of the variance transmission is
characterized by the largest differences in precision and 0.95-CSS

between the tested algorithms. The limit of this range depends
on the density of sensors — it shifts towards the higher values
of transmission variance with the higher density of sensors. This
behavior can be observed for all types of synthetic and some real
networks.
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Fig. 15. Summary Diagrams for Configuration Model (n = 1000, ⟨k⟩ = 7.02). The highest bar for average precision (top diagram, ξ = 0.7, ρ = 10%) represents
difference of 19(1) percent points, while for 0.95-CSS the highest bar (bottom diagram, ξ = 0.85, ρ = 15%) corresponds to 273 nodes. See Fig. 11 for detailed
instruction how to read Summary Diagrams. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

Table 7
Summary Table for Barabási–Albert model (n = 1000, ⟨k⟩ = 7.98). See Table 4 for detailed instruction how to read Summary Table.
ξ −→ ⟨0.2; 0.5⟩ ⟨0.5; 0.8⟩ ⟨0.8; 0.95⟩

ρ [%] −→ 20–30 10–20 5–10 20–30 10–20 5–10 20–30 10–20 5–10

Random 89.7(1) 88.0(1) 83.1(2) 42.0(2) 35.2(2) 25.3(2) 3.3(1) 2.2(1) 1.2(1)
4 6 14 264 398 540 673 745 815

Coverage 88.6(1) 86.0(1) 80.2(2) 51.9(2) 46.4(2) 36.2(3) 15.1(2) 11.6(2) 7.0(2)
4 7 16 97 143 248 434 523 639

K-Median 87.7(1) 85.3(1) 80.4(2) 50.6(2) 45.5(2) 36.2(3) 15.0(2) 11.6(2) 6.7(2)
5 8 16 105 148 248 453 528 638

HV-Obs 89.8(1) 89.3(1) 87.5(2) 40.5(2) 34.7(2) 26.7(2) 3.2(1) 2.0(1) 1.1(1)
4 4 6 276 394 531 667 749 834

BC 88.1(1) 85.3(2) 79.5(2) 51.0(2) 45.8(2) 36.5(3) 14.7(2) 11.9(2) 7.9(2)
5 8 17 107 152 248 459 529 624

CB 88.6(1) 86.2(1) 80.8(2) 52.2(2) 47.2(2) 37.7(3) 15.6(2) 12.3(2) 7.7(2)
4 7 15 93 136 238 422 508 623

Summary Diagrams presented in Figs. 11–18 visualize exten-
sive amount of complex results in an innovative way. In each
figure, the top diagram refers to average precision, while the
bottom diagram relates to 0.95-CSS. Each diagram consists of
96 tiles (16 values of ξ and 6 values of ρ). The color of the

background in each tile indicates which algorithm provides the
highest average precision (top) or the smallest 0.95-CSS (bottom)
for the given pair (ξ, ρ). Moreover, inside each tile there are five
colored bars, ordered from highest to lowest, that illustrate the
ranking of the methods. The first bar relates to the best algorithm
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Fig. 16. Summary Diagrams for University of California network (n = 1020, ⟨k⟩ = 12.2). The highest bar for average precision (top diagram, ξ = 0.8, ρ = 30%)
represents difference of 29(1) percent points, while for 0.95-CSS the highest bar (bottom diagram, ξ = 0.9, ρ = 25%) corresponds to 489 nodes. See Fig. 11 for
detailed instruction how to read Summary Diagrams. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

Table 8
Summary Table for Configuration Model (n = 1000, ⟨k⟩ = 7.02). See Table 4 for detailed instruction how to read Summary Table.
ξ −→ ⟨0.2; 0.5⟩ ⟨0.5; 0.8⟩ ⟨0.8; 0.95⟩

ρ [%] −→ 20–30 10–20 5–10 20–30 10–20 5–10 20–30 10–20 5–10

Random 87.1(1) 85.5(1) 78.6(2) 40.9(2) 33.9(2) 23.7(2) 4.4(1) 2.5(1) 1.3(1)
6 8 32 242 355 520 638 714 800

Coverage 86.7(1) 84.7(1) 78.5(2) 49.3(2) 44.0(2) 34.5(3) 14.3(2) 9.8(2) 5.6(2)
6 8 26 135 181 310 434 523 653

K-Median 86.3(1) 85.0(1) 79.2(2) 47.7(2) 43.6(2) 34.4(3) 12.0(2) 8.8(1) 5.1(1)
7 8 25 151 189 315 459 528 654

HV-Obs 87.6(1) 86.5(1) 83.3(2) 43.1(2) 35.4(2) 24.1(2) 6.3(1) 3.3(1) 1.2(1)
5 7 14 230 349 511 587 694 803

BC 85.2(1) 82.4(1) 75.4(2) 47.9(2) 43.0(2) 33.6(2) 15.0(2) 11.6(2) 7.1(2)
8 13 38 162 201 333 481 535 651

CB 86.0(1) 84.1(1) 78.1(2) 49.4(2) 45.1(2) 35.7(2) 16.4(2) 12.6(2) 7.0(2)
6 9 27 132 169 304 413 483 630

in the given tile, the second refers to second best and so on. The
sixth algorithm in given tile is not shown, since it height would be
zero. This is because the height of each bar shows the difference
in average precision (or 0.95-CSS) between the method to which
this bar refers and the worst (sixth) method in given tile. Then,

the heights of bars from all tiles are scaled relative to the height of
the highest bar among them, with a minimum height to recognize
the color. This calibration allows to compare bars from various
region of parameter space at cost of comparison of bars within
one tile. Summary Diagrams give quick insight into results and
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Fig. 17. Summary Diagrams for University of Rovira i Virgili network (n = 1133, ⟨k⟩ = 9.6). The highest bar for average precision (top diagram, ξ = 0.8, ρ = 25%)
represents difference of 21(1) percent points, while for 0.95-CSS the highest bar (bottom diagram, ξ = 0.85, ρ = 10%) corresponds to 535 nodes. See Fig. 11 for
detailed instruction how to read Summary Diagrams. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

Table 9
Summary Table for University of California network (n = 1020, ⟨k⟩ = 12). See Table 4 for detailed instruction how to read Summary Table.
ξ −→ ⟨0.2; 0.5⟩ ⟨0.5; 0.8⟩ ⟨0.8; 0.95⟩

ρ [%] −→ 20–30 10–20 5–10 20–30 10–20 5–10 20–30 10–20 5–10

Random 89.4(1) 88.1(1) 84.6(2) 41.7(2) 36.5(2) 27.5(2) 2.1(1) 1.5(1) 0.9(1)
3 4 8 359 493 612 757 818 872

Coverage 87.9(2) 85.1(2) 80.3(2) 52.5(2) 43.4(2) 32.6(2) 11.0(2) 4.9(1) 2.2(1)
3 6 17 83 178 349 419 567 713

K-Median 84.8(2) 81.1(2) 75.9(2) 39.9(2) 30.7(2) 22.3(2) 3.7(1) 1.8(1) 1.0(1)
6 14 58 188 337 511 557 676 775

HV-Obs 90.4(1) 89.1(1) 87.3(2) 43.2(2) 36.9(2) 28.2(2) 2.5(1) 1.7(1) 0.8(1)
3 3 5 389 526 626 769 818 887

BC 87.0(2) 85.0(1) 80.2(2) 54.7(2) 48.4(2) 36.0(2) 19.6(3) 12.2(2) 4.4(1)
4 5 15 59 125 306 329 499 678

CB 87.2(2) 85.3(1) 80.5(2) 55.3(2) 48.7(2) 36.0(2) 20.2(3) 12.1(2) 4.1(1)
4 5 15 55 122 305 318 498 673

show in legible way which algorithms lead in which regions of
the parameter space.

To better understand and interpret these complex results, we
partition the parameter space into nine regions of similar size and

shared boundaries which correspond to low, medium and high
transmission variance and density of sensors. Tables 4–11 present
average values for precision (top numbers in cells, in percentages)
and Credible Set Size (bottom numbers in cells) in these regions.
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Fig. 18. Summary Diagrams for Infectious network (n = 410, ⟨k⟩ = 13.5). The highest bar for average precision (top diagram, ξ = 0.35, ρ = 25%) represents
difference of 33(1) percent points, while for 0.95-CSS the highest bar (bottom diagram, ξ = 0.85, ρ = 20%) corresponds to 173 nodes. See Fig. 11 for detailed
instruction how to read Summary Diagrams. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

In each table, the first three numerical columns from the left refer
to low, three in the middle to medium, and the last three to high
transmission variance ξ . Similarly, columns {1, 4, 7} correspond
to high, {2, 5, 8} to middle, and {3, 6, 9} to low density of sensors
ρ. This arrangement of columns causes the precision decreases
from left to right side of the table. The best results in each region
are printed in bold. The uncertainty of precision is given by the
confidence interval at the level 0.95.

6.1. Tests on synthetic networks

For each model of network and each value of ρ we execute
the following script 100 times:

1. Generate a new graph.
2. Find sets of sensors according to six different selection

strategies (Random, Coverage, K-Median, HV-Obs, BC and
CB).

3. For each value of ξ repeat 100 times:

(a) Simulate spread from random source using SI model.
(b) Locate the source six times using different sets of

sensors.

As a result, the values of average precision and the average
Credible Set Size at the confidence level 0.95 for each point (ρ, ξ )
are computed from 104 attempts to locate the source. Table 2
presents the characteristics of studied networks.

6.1.1. Erdős-Rényi Graph (ER)
This random graph is constructed by connecting every pair

of nodes with probability p. The resulting network has binomial
degree distribution with the average degree ⟨k⟩ = pn. The
average path length (APL) scales linearly with ln n (it is a property
of so-called small-world networks) and it is much smaller than the
number of edges. The global clustering coefficient is p since the
probability that two connected nodes have a common neighbor
is uniform for all nodes and equal to p. According to Table 4,
Coverage and K-Median are the best approaches for sensor place-
ment in ER graph for the moderate transmission variance range
ξ ∈ ⟨0.5; 0.8⟩ and the density of sensors below or equal to
20%. For larger budgets ρ ∈ ⟨20%; 30%⟩ Collective Betweenness
delivers the highest quality of source detection in that range of
transmission variance. Also CB is the very effective when spread
is highly stochastic ξ ∈ ⟨0.8; 0.95⟩ and the density of sensors
higher or equal to 10%. For the low transmission variance range
all methods give the same values for the Credible Set Sizes with
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Table 10
Summary Table for University of Rovira i Virgili network (n = 1133, ⟨k⟩ = 9.6). See detailed instruction how to read Summary Table under
Table 4.
ξ −→ ⟨0.2; 0.5⟩ ⟨0.5; 0.8⟩ ⟨0.8; 0.95⟩

ρ [%] −→ 20–30 10–20 5–10 20–30 10–20 5–10 20–30 10–20 5–10

Random 77.5(1) 75.2(2) 71.6(2) 39.1(2) 32.6(2) 24.3(2) 4.0(1) 2.5(1) 1.5(1)
4 5 7 115 232 399 566 738 880

Coverage 73.2(2) 71.7(2) 68.9(2) 45.7(2) 39.6(2) 30.4(2) 12.4(2) 6.9(1) 3.3(1)
4 5 8 32 76 208 255 419 630

K-Median 69.2(2) 66.0(2) 60.3(2) 41.1(2) 33.6(2) 22.9(2) 16.1(2) 9.9(2) 4.6(1)
7 12 57 58 119 313 299 449 670

HV-Obs 75.5(1) 74.3(2) 74.1(2) 40.8(2) 33.9(2) 26.9(2) 5.0(1) 2.9(1) 1.7(1)
4 4 4 99 208 371 480 707 899

BC 70.6(2) 68.5(2) 65.4(2) 45.2(2) 40.1(2) 31.1(2) 19.1(2) 13.5(2) 6.2(1)
5 6 9 23 40 138 137 251 545

CB 70.8(2) 68.8(2) 66.1(2) 45.9(2) 40.7(2) 31.4(2) 19.9(2) 14.0(2) 6.3(2)
5 6 9 22 39 143 128 252 549

the confidence level 0.95, but K-Median has the highest average
precision.

6.1.2. Random regular graph (RRG)
Nodes in RRG are connected at random, but with the con-

straint that each node has the same degree. RRG has a slightly
lower global clustering coefficient and a higher average path
length than ER graph with the same number of nodes and edges.
Table 5 shows that K-Median and Coverage provides the highest
quality of source detection, but for the most stochastic processes
and largest budgets, Collective Betweenness gives the smallest
Credible Set Sizes at the confidence level 0.95 and it is the second
best in the average precision. In this region (the highest trans-
mission variance and density of sensors), difference between the
efficiency of Collective Betweenness and Betweenness Centrality
is the largest among all studied networks and all regions. In fact,
for ξ = 0.95 and ρ ∈ ⟨25%, 30%⟩ CB provides the highest average
precision, while BC is the second worse in that region (see Fig. 12).

6.1.3. Degree sequence algorithm (DSA)
This model is a random synthetic network with the high

clustering coefficient. The algorithm takes a sequence of nodes’
degrees as an input and global clustering coefficient as parameter,
and returns the list of links forming the graph. The degrees of
nodes are selected from the Poisson distribution for easier com-
parison with ER graph. The results presented in Table 6 indicate
a significant advantage of Collective Betweenness over the other
methods for the transmission variance ξ ⩾ 0.5 and the density
of sensors ρ ⩾ 10%. For the smaller budgets ρ ⩽ 10%, Coverage
and Betweenness Centrality provide higher precision than CB. In
the case of low transmission variance ξ ⩽ 0.5, HV-Obs gives the
highest precision for ρ ⩾ 20%. In contrast to the results for ER
and RRG, here K-Median performs poorly, with exception of cases
with the lowest values of transmission variance and the largest
numbers of sensors.

6.1.4. Barabási–Albert Model (BA)
This algorithm uses the preferential attachment rule to gener-

ate a scale-free network, which has a smaller average path length
and a higher clustering coefficient than Erdős–Rényi graph (but
sill much smaller than for real social networks). Fig. 14 reveals
fragmentation of parameter space into three distinct regions. The
first region includes all the densities of sensors with the transmis-
sion variance ξ < 0.5. In this region, HV-Obs provides the highest
quality of source localization (the lower density of sensors is, the
bigger is the advantage of HV-Obs over competitors). The second
region, in which CB is the most effective method, includes all
the densities of sensors with the transmission variance ξ > 0.5,
except of the corner with the highest transmission variance and
the lowest density of sensors, where BC is the best method.

6.1.5. Configuration model (CM)
This model generates a random graph from a given degree se-

quence. In our studies, we use the power law degree distribution
for easier comparison with the Barabási–Albert model. Although
the results shown in Table 8 are consistent with the results for
BA network, Fig. 15 reveals a small subregion (with the medium
transmission variance σ = 0.55 and the high density of sensors
ρ ⩾ 15%) where the leading method is Coverage.

6.1.6. Summary of tests on synthetic networks
The results in Tables 4–8 show that for the low transmission

variance ξ ∈ ⟨0.2; 0.5⟩, the profit from choosing the particular
set of sensors is very small when the density of sensors exceed
10%. In the case of lower density of sensors, the highest quality of
source detection is provided by HV-Obs (for the Degree Sequence
Algorithm, Configuration Model, Barabási–Albert model) and K-
Median (for the Erdős–Rényi graph, Random Regular Graph).
On the opposite side, for the high transmission variance ξ ∈

⟨0.8; 0.95⟩, the gain from using specific sensors is much higher,
but the choice of algorithm depends on the network type. For
Erdős–Rényi the best are Coverage (when ρ ⩽ 10%) and Collective
Betweenness (when ρ > 10%). Coverage is also the best choice
for Random Regular Graph. For the Degree Sequence Algorithm,
Barabási–Albert and Configuration Model, the highest precision
and the smallest Credible Set Size at the confidence level 0.95
are provided by the Collective Betweenness. Also in the middle
range of transmission variance ξ ∈ ⟨0.5; 0.8⟩ The Collective
Betweenness is the best algorithm for these graphs (except DSA
with low density of sensors), but for ER and RRG it gives way to
Coverage and K-Median.

6.2. Tests on real networks

The real networks used in the study come from the Koblenz
Network Collection [49] (KONTECT). Table 3 presents the charac-
teristics of these networks. For each real network and each pair
of (ρ, ξ ) we simulate the spread from a random source and locate
the source using different sets of sensors 104 times.

6.2.1. University of California
This network contains information about the message ex-

changes between the users of an online community of students
from the University of California, Irvine [50] A node represents
a user and the directed multiple edges represent messages. We
transform the network to undirected one in the same way as
Spinelli et al. [32], by aggregating all edges between a given pair
of nodes and leaving only the connections with at least one edge
in both directions. Then we remove iteratively all nodes with
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Table 11
Summary Table for Infectious network (n = 410, ⟨k⟩ = 13.5). See Table 4 for detailed instruction how to read Summary Table.
ξ −→ ⟨0.2; 0.5⟩ ⟨0.5; 0.8⟩ ⟨0.8; 0.95⟩

ρ [%] −→ 20–30 10–20 5–10 20–30 10–20 5–10 20–30 10–20 5–10

Random 78.8(2) 73.2(2) 59.7(3) 31.6(2) 24.1(2) 14.9(2) 4.0(1) 2.8(1) 1.9(1)
6 9 19 51 76 107 181 234 272

Coverage 77.1(2) 71.7(2) 59.8(3) 36.5(2) 28.1(2) 18.8(2) 8.2(2) 4.5(1) 3.1(1)
6 10 20 30 44 70 100 136 184

K-Median 52.0(2) 46.6(2) 44.9(3) 25.4(2) 17.2(2) 12.0(2) 13.1(2) 7.1(1) 2.8(1)
84 84 68 167 178 155 228 256 265

HV-Obs 79.8(2) 74.9(2) 64.3(2) 30.3(2) 23.6(2) 16.1(2) 2.8(1) 2.5(1) 1.9(1)
6 9 17 56 94 120 202 271 311

BC 72.7(2) 66.4(2) 53.2(2) 36.8(2) 28.5(2) 18.2(2) 11.4(2) 7.3(1) 4.1(1)
9 13 27 31 46 81 77 122 177

CB 72.6(2) 67.4(2) 54.7(3) 37.2(2) 28.8(2) 18.4(2) 11.7(2) 6.8(1) 3.7(1)
9 13 24 32 48 82 79 130 185

less than two connections until the minimum node degree in
the network is two. The results of numerical tests contained in
Table 9 are very similar to the results for Barabási–Albert model
(Table 7). The most effective method for the low transmission
variance ξ is HV-Obs, while for the medium and high ξ , the best
quality of source detection is provided by Betweenness Centrality
and Collective Betweenness.

6.2.2. University of rovira i virgili
This is the email communication network at the University

Rovira i Virgili in Tarragona in the south of Catalonia in Spain [51].
An undirected link between two nodes (users) is created when at
least one email was sent from one user to another. The results
obtained for this network are in line with the results for synthetic
scale-free networks and the University of California network. The
main difference is observed for the low transmission variance
ξ ∈ ⟨0.2; 0.5⟩ and ρ ⩾ 10%, where all sets of sensors perform
worse than random ones (see Table 10).

6.2.3. Infectious
This network contains human face-to-face interactions during

the exhibition INFECTIOUS: STAY AWAY in 2009 at the Science
Gallery in Dublin [52]. Edges represent contacts which lasted
for at least 20 s. Only the data from the day with the most
interactions was used. The network is characterized by highest
average degree and clustering coefficient among all tested graphs.
Table 11 shows that the low transmission variance region is again
dominated by HV-Obs, in particular for ρ ⩽ 10%. The best option
for the high transmission variance is Betweenness Centrality, and
Collective Betweenness is the first choice for medium range of ξ ,
except of a region with the low density of sensors ρ ⩽ 10%, where
Coverage performs better.

6.2.4. Summary of tests on real networks
In our tests, locating the source of information is much more

challenging on real networks than on artificial ones due to high
clustering coefficient of such networks. On the other hand, em-
ploying the right strategy of sensor placement can be more fruit-
ful in case of the real systems than for the synthetic ones. The
common denominator for all the real networks studied in this
paper is the advantage of betweenness-based algorithms over the
rest of methods for the medium and high transmission variance.
In the case of low transmission variance, best strategy for sen-
sor placement are HV-Obs and Random (the latter only for the
University of Rovira i Virgili network). For the Infectious network
also Coverage performs well for medium transmission variance
(in particular for ξ = 0.55).

7. Discussion

In this article we review the methods of sensor placement for
the source localization in complex networks, both real and syn-
thetic, using a well established propagation model – Susceptible–
Infected – and the Pinto–Thiran–Vetterli localization algorithm.
We have selected four vastly acknowledged methods for sensor
placement – Betweenness Centrality (BC), High Coverage Rate
(Coverage), K-Median, High Variance Observers (HV-Obs) – and
also have introduced our own method called Collective Between-
ness (CB). We compare all of these methods with each other
and with a baseline method — random selection. As our main
evaluation metrics, we use an average precision of identifying the
actual source of the spread and introduce a new metric called
Credible Set Size that we believe to be more useful in possible
real world scenarios as it conveys a very practical notion of ‘‘how
many nodes do I need to check to say the source is one of them
with credibility α?". The study was conducted over a large range
of values for the two main parameters affecting the propagation
and source identification — the transmission variance ξ and the
density of sensors ρ.

As shown in Tables 4–11 and in Figs. 3–10, right choice of
sensor placement can significantly increase precision and reduce
Credible Set Size. However, the gain of doing so varies from very
high values in some cases to moderate in others. For example,
for the high values of ξ and ρ (see third column in Tables 4–
11) the increase of average precision can reach even 18 percent
(from 2.1 to 20.2, for the University of California network) in
comparison to the baseline random method. On the other hand,
for low values of transmission variance ξ ∈ ⟨0.2; 0.5⟩, the perfor-
mance of different sets of sensors is very similar and a noticeable
gain can be observed only for the scale-free networks when the
density of sensors is rather low. Figs. 11–18 show which methods
outperforms the others for the given transmission variance ξ

and density of sensors ρ. These intricate, colorful mosaics can
be difficult to interpret but some patterns recur across different
networks. The first thing that catches the eye is the difference
between networks with a narrow degree distribution (Erdős–
Rényi, Random Regular Graph and Degree Sequence Algorithm)
and scale-free networks. Unlike the former, performance of the
later splits the parameter space into two clear parts. The sum-
mary maps for Barabási–Albert, Configuration Model, University
of California, University of Rovira and Infectious networks are
visibly divided into two parts. The left part corresponds to the
low transmission variance, and it is dominated by HV-Obs and
Random. The right part represents spreading with higher stochas-
ticity. It is more favorable to CB or BC (with the exception of the
Infectious network, where K-Median also appears as a leader in
a small region). However, in case of ER, RRG and DSA networks,
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Coverage and K-Median are also performing quite well along with
HV-Obs and CB and the domains of the particular methods are
usually more fragmented for these networks than for the real and
scale-free networks.

In summary, among all the studied algorithms for sensor
placement, two of them perform particularly well. The first one
is High Variance Observers which outperforms the others when
transmission variance is low, and the second one is Collective
Betweenness which provides the highest quality of source local-
ization when spreading is highly stochastic and unpredictable.
Despite the large number of tests carried out in this review, there
is still place for additional research on this topic. This work has
been done for unweighted networks, while the connections in
real-world networks are usually not identical and thus future
testing of the source localization on a weighted graphs would be
of great value. Similarly, in our study, we perform source location
when the signal has already reached all sensors whereas one
could imagine situations when we are trying to locate the source
as soon as a small fraction of sensors is reached by the spread and
under such conditions one could imagine significantly different
results than presented here by us.
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