
Kauffman Boolean model in undirected scale-free networks

Piotr Fronczak, Agata Fronczak, and Janusz A. Hołyst
Faculty of Physics and Center of Excellence for Complex Systems Research, Warsaw University of Technology,

Koszykowa 75, PL-00-662 Warsaw, Poland
�Received 27 July 2007; published 19 March 2008�

We investigate analytically and numerically the critical line in undirected random Boolean networks with
arbitrary degree distributions, including the scale-free topology of connections P�k��k−�. We explain that the
unattainability of the critical line in numerical simulations of classical random graphs is due to percolation
phenomena. We suggest that recent findings of discrepancy between simulations and theory in directed random
Boolean networks might have the same reason. We also show that in infinite scale-free networks the transition
between frozen and chaotic phases occurs for 3���3.5. Since most critical phenomena in scale-free net-
works reveal their nontrivial character for ��3, the position of the critical line in the Kauffman model seems
to be an important exception to the rule.
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Almost 40 years ago Kauffman proposed random Boolean
networks �RBNs� for modeling gene regulatory networks �1�.
Since then, in addition to its original purpose, the model and
its modifications have been applied to many different phe-
nomena like cell differentiation �2�, immune response �3�,
evolution �4�, opinion formation �5�, neural networks �6�,
and even quantum gravity problems �7�.

The original RBNs were represented by a set of N ele-
ments, �t=��1�t� ,�2�t� , . . . ,�N�t��, each element �i having
two possible states: active �1� or inactive �0�. The value of �i
was controlled by k other elements of the network, i.e.,
�i�t+1�= f i(�i1

�t� ,�i2
�t� , . . . ,�ik

�t�), where k was a fixed pa-
rameter. The functions f i were selected so that they returned
values 1 and 0 with probabilities, respectively, equal to p and
1− p. The parameters k and p determined the dynamics of the
system �Kauffman network�, and it has been shown that for a
given probability p, there exists a critical number of inputs
�13�

kc =
1

2p�1 − p�
, �1�

below which all perturbations in the initial state of the sys-
tem die out �frozen phase�, and above which a small pertur-
bation in the initial state of the system may propagate across
the entire network �chaotic phase�.

In fact, the behavior of the Kauffman model in the vicin-
ity of the critical line kc�p� has become a major concern of
scientists interested in gene regulatory networks. The main
reason for this is the conjecture that living organisms operate
in a region between order and complete randomness or chaos
�the edge of chaos� where both complexity and rate of evo-
lution are maximized �8–10�. Analogous behavior has been
noted in Kauffman networks, which in the interesting region
described by Eq. �1� show stability, homeostasis, and the
ability to cope with minor modifications when mutated. The
networks are stable as well as flexible in this region.

Recently, when data from real networks became available
�11,12�, a quantitative comparison of the edge of chaos in
these data sets and RBN models brought the encouraging and

promising message that even such a simple model may
mimic characteristics of real systems quite well.

Since, however, real genetic networks exhibit a wide
range of connectivities, the recent modifications of the stan-
dard RBN take into consideration a distribution of node de-
grees, P�k�. It has been shown that, if the random topology
of the directed network is homogeneous �i.e., all elements of
the network are statistically equivalent�, then the network
topology can be meaningfully characterized by the average
in-degree 	k
, and the transition between frozen and chaotic
phases occurs for �14�

	k
c =
1

2p�1 − p�
. �2�

On the other hand, if the network topology is characterized
by a wide heterogeneity in the connectivity of elements, then
it is useless to characterize the network by the average in-
degree, and instead of 	k
 another parameter must be used. In
the case of a power-law in-degree distribution P�k�
= �����k��−1, where ���� is the zeta function, the characteris-
tic exponent � is the relevant parameter. It has been shown
that the critical line �c�p� in the RBN model defined on
scale-free networks is given by �15�

���c − 1�
���c�

=
1

2p�1 − p�
. �3�

Since 2��c�p��2.5, based on the result �3�, it was claimed
�16� that the abundance of scale-free networks with 2��
�3 in nature and society can be attributed to the presence of
both phases, frozen and chaotic, only in such networks.

Recently, several authors �17,18� have provided a general
formula for the edge of chaos in directed networks charac-
terized by the joint degree distribution P�k ,q�,

	kq

	q


=
1

2p�1 − p�
, �4�

where k and q correspond to in- and out-degrees of the same
node, respectively. The formula �4� shows that the position
of the critical line depends on the correlations between k and
q in such networks. It is also easy to show that the previous
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results �1�–�3� immediately follow from �4� if one assumes a
lack of correlations P�k ,q�= Pin�k�Pout�q�.

In this paper, we derive a general relation describing the
position of the critical line in undirected RBNs with an arbi-
trary distribution of connections P�k�. Specific cases, includ-
ing homogeneous as well as strongly heterogeneous �i.e.,
scale-free� random network topologies, are discussed. We
also generalize our derivations to the case when the scale-
free network topology is characterized not only by the expo-
nent � but also by the minimal node degree kmin=m, which
controls the density of connections. We show that for �
→� the parameter m corresponds to the original parameter k
used in the standard Kauffman model defined on regular ran-
dom graphs, in which the number of connections is the same
for all elements.

In order to find the position of the critical line in RBN,
one has to examine the sensitivity of its dynamics with re-
gard to the initial conditions. In numerical studies such a
sensitivity can be analyzed quite simply. One has to start

with two initial states �0=��1�0� ,�2�0� , . . . ,�N�0�� and �̃0
= ��̃1�0� , �̃2�0� , . . . , �̃N�0��, which are identical except for a
small number of elements, and observe how the differences

between both configurations �t and �̃t change in time. If a
system is robust then the studied configurations lead to simi-
lar long-time behavior; otherwise differences develop in
time. A suitable measure for the distance between the con-
figurations is the overlap x�t� defined as

x�t� = 1 −
1

N
�
i=1

N

��i�t� − �̃i�t�� . �5�

Note that, in the limit N→�, the overlap becomes the prob-
ability for two arbitrary but corresponding elements �i�t� and
�̃i�t� to be equal. Moreover, the stationary long-time limit of
the overlap x=limt→� x�t� can be treated as the order param-
eter of the system. If x=1, then the system is insensitive to
initial perturbations �frozen phase�, while for x�1, the initial
perturbations propagate across the entire network �chaotic
phase�.

In the following, we will partially reproduce the annealed
computation �carried out by Derrida and Pomeau �13��, and
generalize it to the case of undirected random graphs with
arbitrary degree distribution. The case of directed networks
has been studied by Aldana �15�, and also by Lee and Rieger
�17�.

Thus, having in mind that x�t� corresponds to the prob-
ability that a given element i possesses the same value in
both configurations, �i�t�= �̃i�t�, two different situations have
to be considered. If all the ki inputs of �i�t� are equal to the
coresponding inputs of �̃i�t�, which occurs with probability
�x�t��ki, then one has �i�t+1�= �̃i�t+1�. On the other hand, if
at least one of the ki inputs of �i�t� differs from its counter-

part in �̃t, which occurs with probability 1− �x�t��ki,
then �i�t+1�= �̃i�t+1� only if f i(�i1

�t� , . . . ,�iki
�t�)

= f i(�̃i1
�t� , . . . , �̃iki

�t�) regardless of the values of the inputs in

each configuration. The probability of such an event is p2

+ �1− p�2. Taking all the above together, one finds that the

probability x�t+1� that �i�t+1�= �̃i�t+1� averaged over all
elements is given by

x�t + 1� = �
k=1

�

„�x�t��k � 1 + �1 − �x�t��k��p2 + �1 − p�2�…Q�k� ,

�6�

where Q�k� represents the probability that an arbitrary link
leads to the node of degree k. Of course, in regular random
networks in which all nodes have the same connectivity the
distribution Q�k�= P�k� and Eq. �6� simplifies to the well-
known equation considered in the seminal paper by Derrida
and Pomeau �13�. In uncorrelated networks, Q�k� corre-
sponds to the degree distribution of the nearest neighbors,

Q�k� =
k

	k

P�k� . �7�

Equation �6� can be understood as a map x�t+1�=M(x�t�),
where

M�x� � 1 − 2p�1 − p�1 − �
k=1

�

xkQ�k�� . �8�

It can be shown that the change of stability of the fixed point
of the map x=M�x�, which occurs when

lim
x→1−

dM�x�
dx

= 1, �9�

determines the phase transition between the ordered and cha-
otic regimes �cf. �15�.�. Substituting �8� into �9�, one gets the
condition for the phase transition:

	k2

	k


=
1

2p�1 − p�
. �10�

In the following we will analyze Eq. �10� in classical random
graphs and in scale-free networks where the second moment
	k2
 becomes important �it diverges for ��3�.

Since in classical random graphs 	k2
= 	k
2+ 	k
, Eq. �10�
simplifies:

	k
c =
1

2p�1 − p�
− 1. �11�

Let us note that random undirected networks are formally
equivalent to directed networks, in which every undirected
link i− j is replaced by two directed links: i← j and i→ j.
The joint degree distribution characterizing such a directed
network is given by P�k ,q�= P�k�	�k−q�, where P�k� corre-
sponds to the node degree distribution in the original undi-
rected network, and 	�k−q� is the Kronecker delta function.
Now, substituting the obtained joined degree distribution into
Eq. �4�, one immediately gets our Eq. �11�.

Comparing the formula �11� with �2�, one can see that the
critical curve in undirected networks has been shifted by 1 in
comparison with the directed case. Figure 1 presents both
equations as well as numerical simulations of undirected net-
works of three different sizes �N=50, 500, and 5000�. While
in the limit of large 	k
 the results, especially for large N,
agree very well with Eq. �11� �see the inset�, for 	k
→1 �i.e.,
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p→0.5� they differ significantly. The discrepancy results
from the fact that 	k
=1 corresponds to the percolation
threshold in these networks. Because the size of the largest
component near 	k
=1 is significantly smaller than the net-
work size �the network is divided into several unconnected
components�, any perturbation cannot propagate across the
entire system, and the frozen phase is more easily achieved.
This means that it is impossible to verify Eq. �11� in this
range. The closer we are to the percolation threshold, the
smaller the networks �separated pieces of the whole network�
we analyze. One can also show that if one introduces assor-
tativity �i.e., positive degree-degree correlations� to the net-
work the attainable critical connectivity can be significantly
shifted toward 	k
c=1. This happens because the percolation
transition occurs for lower values of 	k
 in assortative net-
works �20,21�. Unfortunately, due to the correlations intro-
duced, analytical treatment is much more difficult in this
case.

Nevertheless, it seems to be possible to modify Eq. �11�
by taking into consideration the size of the largest compo-
nent in such networks. If this modification makes analytical
results comparable with simulations, then it will have impor-
tant implications for the directed case of the RBN. Recently,
the critical �in the sense of attainability� value of the connec-
tivity is such networks has been estimated as 1.87 by finite-
size scaling methods �19� �which significantly deviates from
the predictions of mean-field theory—cf. Eq. �2��. Because
the problem of percolation in directed networks is much
more complicated �see �22,23��, the undirected case we study
here �although less appropriate to model real networks� is the
first step that has to be taken to understand the discrepancies
observed in directed networks. We leave this issue for future
work.

Now, let us analyze scale-free networks with the degree
distribution given by a power law,

P�k� = ����,m�k��−1, �12�

where ��� ,m�=�k=m
� k−� is the generalized Riemann zeta

function �normalization factor�, and the parameter m repre-

sents the minimal node degree, i.e., it controls the density of
connections in the considered networks. Now Eq. �10� takes
the form

��� − 2,m�
��� − 1,m�

=
1

2p�1 − p�
. �13�

In Fig. 2 a comparison of the transcendental equations �13�
�undirected network� for m=1 and �3� �directed network� is
presented. Analytical curves taking into account the finite-
size version of the distribution �12� �where the � functions
have been replaced by finite sums�, as well as results of the
numerical simulations for N=500 and 5000 are also shown
in the figure. One can see that, in the undirected case of
infinite scale-free networks, the transition between the frozen
and chaotic phases occurs for 3���3.5. This means that in
the studied network the critical line has been shifted in com-
parison with the directed case by 
�=1 toward larger values
of the exponent �.

The observation is interesting since most critical phenom-
ena in scale-free networks reveal their nontrivial character
for ��3, making these networks interesting for researchers
�24�. This happens because the second moment of the degree
distribution is size dependent for ��3 �it diverges for
N→��. For example, in the case of the percolation transi-
tion, this means that it is almost impossible to eliminate the
giant connected component in such networks, i.e., they are
ultraresilient against random damage or failure �25,26�. It
also implies the lack of an epidemic threshold in such net-
works, i.e., the networks are prone to the spreading and the
persistence of infections whatever the epidemic spreading
rate is. Finally, in the Ising model defined on scale-free net-
works with ��3, the critical temperature is size dependent.
Taking all the above into consideration, the position of the
critical line in the Kauffman model shows that scale-free
networks with ��3 may also exhibit interesting properties.
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FIG. 1. Phase diagram of Kauffman model defined on classical
random graphs. Frozen phase resulting from Eq. �11� is marked by
the dark gray area. Light gray area shows the difference between
directed and undirected networks.
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FIG. 2. Phase diagram of scale-free networks with m=1. Frozen
phase resulting from Eq. �13� is marked by dark gray area. Light
gray area shows the difference between directed and undirected
networks. Points represent results of numerical simulations, while
the two intermediate lines are solutions of Eq. �13� modified for
finite networks �dot-dashed line for N=500, and dotted line for N
=5000�.
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In previous papers �15,16�, it has been stated that the only
natural parameter determining the network topology is the
scale-free exponent �. In this paper, we introduce the param-
eter m, which does not change the scale-free character of the
node degree distribution, but allows us to control the density
of connections. For m=1 we retrieve the original problem
studied in �15,16�. In Figs. 3 and 4 we present the solutions
of Eq. �13� for different values of the parameter m. As one
can see, for m�2 the frozen phase is preserved only for
sufficiently small and sufficiently large values of the param-
eter p. For a wide range of intermediate values of p, the
frozen phase is unattainable.

It is worth noting that, in the limit �→�, the scale-free
distribution �12� transforms into the Dirac delta function
	�k−m� �then 	k2
= 	k
2 and Eq. �10� simplifies to Eq. �1��.
This means that in this limit the scale-free RBN model trans-
forms to the standard RBN model, where all elements have
the same node degree. In Fig. 4 one can see that for �→�
and m=2 the width of the chaotic phase shrinks to zero. In

Fig. 5 we show this width for different values of the param-
eter m. In this figure one can easily recognize the phase
diagram of the standard RBN model, in which for p=0.5 the
critical value of the node degree is m=kc=2.

In summary, we have investigated analytically and nu-
merically the critical line in undirected random Boolean net-
works with arbitrary degree distribution, including homoge-
neous and scale-free topology of connections. Study of the
undirected case of the RBN facilitates understanding of the
impact of percolation phenomena on the unattainability of
the critical line in numerical simulations of classical random
graphs. We have shown also that in infinite scale-free net-
works the transition between the frozen and chaotic phases
occurs for 3���3.5, i.e., the position of the critical line is
shifted by 
�=1 toward larger values of the exponent � in
comparison with the directed case. Since most critical phe-
nomena in scale-free networks reveal their nontrivial charac-
ter for ��3, the position of the critical line in the Kauffman
model seems to be an important exception to the rule.
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�P.F.�, by the State Committee for Scientific Research in Po-
land under Grant No. 1P03B04727 �A.F.�, and by the Minis-
try of Education and Science in Poland under Grant No.
134/E-365/6.PR UE/DIE 239/2005-2007 �J.A.H.�.

APPENDIX

In the following, we present an explanation of the method
used in the numerical simulations.

To generate networks with the desired node degree distri-
bution �scale-free in our case�, we apply the method intro-
duced by Bender and Canfield �27�. We assign for each node
i a number ki �taken from a specific degree sequence� of
“stubs”—ends of edges emerging from the node. Then we
choose pairs of these stubs uniformly at random and join
them together to make complete edges. We do not allow
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FIG. 3. Critical lines for scale-free RBNs with m=1 �solid lines
and filled points�, m=2 �dashed lines and open points�, and m=3
�dotted lines and crosses�. Thin lines are solutions of Eq. �13�, while
the thick lines are solutions of the same equation modified for net-
works of size N=5000. Points correspond to the results of numeri-
cal simulations.
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FIG. 4. Phase diagram of scale-free networks with different val-
ues of the parameter m.
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FIG. 5. Phase diagram of scale-free RBNs with �→�. The
diagram coincides with the phase diagram of the standard RBN
model. Points for a given m show the width of the chaotic phase
taken from Fig. 4 for �=30.

FRONCZAK, FRONCZAK, AND HOŁYST PHYSICAL REVIEW E 77, 036119 �2008�

036119-4



loops �i.e., edges starting and ending at the same node� or
multiple edges between the same pair of nodes.

In order to generate a power-law degree sequence we ap-
ply the procedure described in �28�. The procedure deter-
mines the minimal and maximal node degree, which allows
us to control the density of the constructed network.

To determine the position of the critical line in the studied
RBNs we calculate the Hamming distance H of two system
configurations after a large number Tend of system updates.
The two configurations differ at time T=0 in one randomly

chosen bit. We set Tend=200 and averaged calculations over
10 000 randomly generated networks �each network has a
different topology of connections, different initial states, and
different functions of nodes�. We set p fixed and observe the
dependence of 	H
 on 	k
 or on � in Erdös-Renyi and scale-
free networks, respectively. For the chaotic phase

	H�Tend�
� 	H�T=0�
, while for the frozen phase 	H�Tend�

→0. The phase transition occurs when 	H�Tend�
= 	H�T
=0�
.
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