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Abstract

Higher order clustering coe$cients C(x) are introduced for random networks. The coe$cients
express probabilities that the shortest distance between any two nearest neighbours of a certain
vertex i equals x, when one neglects all paths crossing the node i. Using C(x) we found that in
the Barab'asi–Albert (BA) model the average shortest path length in a node’s neighbourhood is
smaller than the equivalent quantity of the whole network and the remainder depends only on the
network parameter m. Our results show that small values of the standard clustering coe$cient
in large BA networks are due to random character of the nearest neighbourhood of vertices in
such networks.
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1. Introduction

During the last few years studies of random, evolving networks (such as the In-
ternet, WWW, social networks, metabolic networks, food webs, etc.—for review see
Refs. [1,2, and references therein]) have become a very popular research domain among
physicists. A lot of eEorts were put into investigation of such systems in order to recog-
nise their structure and to analyse emerging complex dynamics. We learned that the
networks are far from being random as ErdFos and R'enyi assumed in random graph
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theory [3,4], but surely they are not so ordered as crystals. Despite network diversity,
most of the real web-like systems share three prominent features [1,2]:

• The average shortest path length l is small. In order to connect two nodes in a
network typically only a few edges need to be passed.

• The average clustering coe$cient C is large. Two nodes having a common neighbour
are also likely to be neighbours.

• The probability that a randomly selected node has exactly k nearest neighbours
follows a power-law (scale-free) distribution P(k) ∼ k−	 with 2¡	¡ 3 in most of
real systems.

A considerable number of network models has been studied in order to capture the
above characteristics. Most of these are based on two ingredients originally introduced
by Barab'asi and Albert [5,6]: continuous network growth and preferential attachment.
In Barab'asi–Albert (BA) model, network starts to grow from an initial cluster of m
fully connected sites. Each new node that is added to the network creates m links
that connect it to previously added nodes. The preferential attachment means that the
probability of a new link to end up in a vertex i is proportional to the connectivity
ki of this vertex. The validity of the preferential attachment was conLrmed within
real networks analyses [7–9]. The BA algorithm generates networks with the desirable
scale-free distribution P(k) ∼ k−3 and small values of the average shortest path. One
can also observe a phase transition for spins located at BA network vertices with a
critical temperature increasing as a logarithm of the system size [10–13]. The only
striking discrepancy between the BA model and real networks is that the value of the
clustering coe$cient predicted by the theoretical model decays very fast with network
size and for large systems is typically several orders of magnitude lower than found
empirically.

In this paper we extend the standard deLnition of the clustering coe$cient by intro-
ducing higher order clustering coe$cients that describe interrelations between vertices
belonging to the nearest neighbourhood of a certain vertex in complex network. Global
characteristics like the standard clustering coe$cient and the average shortest path do
not provide a useful insight into complex network structure and dynamics. We hope
that the higher order clustering coe$cient analyses in real systems [14] may give
some guidelines as to how to model clustering mechanisms. Here, we study higher
order clustering coe$cients in BA model. Our results provide a vivid evidence that
the BA networks are blind to clustering mechanisms.

2. Model description

The standard clustering coe$cient C is one of global parameters used to characterise
the topology of complex networks. For the Lrst time it was introduced by Watts and
Strogatz [15] to characterise local transitivity in social networks. Clustering coe$cient
gives the probability that two nearest neighbours of the same node are also mutual
neighbours. Let us focus on a selected node i in a network, having ki edges which
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Fig. 1. Stage 1: Network in the vicinity of a node i. Stage 2: After removing the node i and its adjacent
links.

connect it to ki other nodes. The value of the clustering coe$cient of the node i is given
by the ratio between the number of edges Ei that actually exist between these ki nodes
and the total number ki(ki − 1)=2 of such edges that could exist in the neighbourhood
of i

Ci =
2Ei

ki(ki − 1)
: (1)

The clustering coe$cient of the whole network is the average of all individual Ci’s
We deLne a clustering coe3cient of order x for a node i as the probability that

there is a distance of length x between two neighbours of a node i. Putting the number
of such x-distances equal to Ei(x), the higher order clustering coe$cients follow:

Ci(x) =
2Ei(x)
ki(ki − 1)

: (2)

C(x) is the mean value of Ci(x) over the whole network. Note that C(x) reduces to
the standard clustering coe$cient for x=1 and

∑
x C(x)=1 for the BA networks with

m¿ 2.
The above deLnition becomes comprehensible after examining Fig. 1. Let us assume

a node i with ki = 5. The node determines its nearest neighbourhood that in this case
consists of vertices {1; 2; 3; 4; 5}. The aim is to Lnd higher order clustering coe$cients
Ci(x) of the node i. The table below gives the shortest distances between vertices
adjacent to the node i. The distances were taken from the Fig. 1 (Stage 2)

1 2 3 4 5

1

2

3

4

5




− 1 1 4 1

1 − 1 4 2

1 1 − 3 2

4 4 3 − 5

1 2 2 5 −



:
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Summing over all pairs of vertices one obtains

x

Ei(x)

Ci(x)




1 2 3 4 5

4 2 1 2 1

0:4 0:2 0:1 0:2 0:1


 :

3. Numerical results

Fig. 2 shows the higher order clustering coe$cients dependence on the network size
N . Nodes determined as belonging to the nearest neighbourhood of any vertex in BA

Fig. 2. Higher order clustering coe$cients versus network size N for m = 3 and 4.
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Fig. 3. Higher order clustering coe$cient distributions in BA networks of given sizes N for m = 3 and 4.

network are more likely to be second (x = 2), third (x = 3) and further neighbours
when N increases.

We investigated distributions of the clustering coe$cients C(x) at a given system size
N in BA networks with m= 3 and 4. We found that regardless of N the distributions
of C(x) (when extending x to real values) fairly good Lt the normalised Gaussian
curve (Fig. 3). Moreover, we observed that the standard deviation of these distributions
depends only on the parameter m of the network. The Gaussian-like patterns of C(x) in
BA model express random character of clustering relationships. In fact, it is known that
the distribution of distances between randomly chosen sites in BA network is Gaussian.
It follows that interrelations in the nearest neighbourhood of any vertex in BA model
are similar to interrelations between randomly chosen vertices in the BA network.
Distinctly, there are no mechanisms responsible for clustering in BA algorithm.
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Fig. 4. Characteristic path lengths lcluster and lnetwork versus network size N for m = 3 and 4. For m = 3:
lnetwork is Ltted to 0:82 ln(N ) + 1:02 and lcluster is Ltted to 0:83 ln(N ) + 0:65. For m= 4: lnetwork is Ltted to
0:74 ln(N ) + 0:92 and lcluster is Ltted to 0:73 ln(N ) + 0:65.

The above-described observation can be veriLed by a functional dependence of
centres xc of the distribution C(x) on the network size N . We realised that the value
xc (Fig. 3) expresses both: the order x when C(x) obtains maximum and the average
shortest path length lcluster between vertices belonging to the neighbourhood of any
vertex within a network. Fig. 4 shows that in BA networks the average shortest path
lcluster scales with the system size N in the same way as the average shortest path
length for the whole network lnetwork [1], i.e., in the Lrst approximation as

lcluster ∼ ln(N ) : (3)

We found that the mean distance between two nearest neighbours of the same node
lcluster equals to the mean distance between any two nodes in the network lnetwork
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minus a constant A(m)

lcluster = lnetwork − A(m) ; (4)

where A(m) is approximately independent on the network size N and equals 0.37 and
0.27 for m= 3 and 4, respectively.

4. Conclusions

In summary, we quantiLed the structural properties of BA networks by the higher
order clustering coe$cients C(x) deLned as probabilities that the shortest distance
between any two nearest neighbours of a certain vertex i equals x, when neglecting all
paths crossing the node i. We estimated that the average shortest path length in the
node’s neighbourhood is smaller than the equivalent whole network quantity and the
remainder depends only on the network parameter m. Our results show in a vivid way
that the absence of the clustering phenomenon in BA networks is due to the random
character of the nearest neighbourhood in these networks.

Recently, some alternative algorithms have been suggested to account for the high
clustering found in real web-like systems. Holme and Kim [16] have extended the
standard BA model adding the trial formation rule. Networks built according to their
guidelines exhibit both the high clustering and the scale-free nature. Barab'asi et al.
[17,18] and independently Dorogovtshev et al. [19] have found that scale-free ran-
dom networks can be modelled in a deterministic manner by so-called pseudofractal
scale-free networks. They argued that the high clustering in real networks might result
from their hierarchical topology. It would be interesting to analyse the higher order
clustering coe$cients in these networks and compare it with real data [14].

References

[1] R. Albert, A.L. Barab'asi, Rev. Mod. Phys. 74 (2002) 47.
[2] S.N. Dorogovtshev, J.F.F. Mendes, Adv. Phys. 51 (2002) 1079.
[3] P. ErdFos, A. R'enyi, Publ. Math. 6 (1956) 290.
[4] P. ErdFos, A. R'enyi, Publ. Math. Hung. Acad. Sci. 5 (1960) 17.
[5] A.L. Barab'asi, R. Albert, Science 286 (1999) 509.
[6] A.L. Barab'asi, R. Albert, H. Jeong, Physica A 272 (1999) 173.
[7] H. Jeong, Z. N'eda, A.L. Barab'asi, cond-mat/0104131.
[8] M.E.J. Newman, Phys. Rev. E 64 (2001) 016 132.
[9] M.E.J. Newman, Phys. Rev. E 64 (2001) 025 102.

[10] A. Aleksiejuk, J.A. Ho lyst, D. StauEer, Physica A 310 (2002) 260.
[11] G. Bianconi, private communication.
[12] S.N. Dorogovtshev, A.V. Goltsev, J.F.F. Mendes, cond-mat/0203227.
[13] M. Leone et al., submitted for publication, cond-mat=0203416.
[14] A. Fronczak, et al., in preparation.
[15] D.J. Watts, S.H. Strogatz, Nature 401 (1999) 130.
[16] P. Holme, B.J. Kim, Phys. Rev. E 65 (2) (2002) 026 107.
[17] A.L. Barab'asi, E. Ravasz, cond-mat/0206130.
[18] A.L. Barab'asi, E. Ravasz, T. Vicsek, Physica A 299 (2001) 559.
[19] S.N. Dorogovtshev, A.V. Goltsev, J.F.F. Mendes, cond-mat/0112143.


	Higher order clustering coefficients inBarabási--Albert networks
	Introduction
	Model description
	Numerical results
	Conclusions
	References


