DIGEST

Why understanding multiplex social network structuring processes will help us better understand the evolution of human behavior

Curtis Atkisson1 | Piotr J. Górski2 | Matthew O. Jackson3,4,5 | Janusz A. Hołyst2,6 | Raissa M. D'Souza7,4

1Department of Anthropology, University of California, Davis, California, USA
2Faculty of Physics, Warsaw University of Technology, Warsaw, Poland
3Department of Economics, Stanford University, Stanford, California, USA
4External Faculty, Santa Fe Institute, Santa Fe, New Mexico, USA
5Fellow of CIFAR, Toronto, Ontario, Canada
6ITMO University, Saint Petersburg, Russia
7Department of Computer Science, Department of Mechanical and Aerospace Engineering, University of California, Davis, California, USA

Correspondence
Curtis Atkisson, Department of Anthropology, University of California, Davis, CA, USA.
Email: cjatkisson@ucdavis.edu

Funding information
Bank Saint Petersburg, Grant/Award Number: Co-financing of 17-71-30029; H2020 Marie Skłodowska-Curie Actions, Grant/Award Number: 691152; Ministerstwo Nauki i Szkolnictwa Wyższego, Grant/Award Numbers: 329025/PnH/2016, W34/H2020/2016; National Science Foundation, Grant/Award Number: SES-1629446; Russian Science Foundation, Grant/Award Number: 17-71-30029; U.S. Army Research Office, Grant/Award Number: W911NF-13-1-0340; National Science Centre, Poland, Grant/Award Number: 2015/19/B/ST6/02612

Abstract
Social scientists have long appreciated that relationships between individuals cannot be described from observing a single domain, and that the structure across domains of interaction can have important effects on outcomes of interest (e.g., cooperation; Durkheim, 1893). One debate explicitly about this surrounds food sharing. Some argue that failing to find reciprocal food sharing means that some process other than reciprocity must be occurring, whereas others argue for models that allow reciprocity to span domains in the form of trade (Kaplan and Hill, 1985). Multilayer networks, high-dimensional networks that allow us to consider multiple sets of relationships at the same time, are ubiquitous and have consequences, so processes giving rise to them are important social phenomena. The analysis of multi-dimensional social networks has recently garnered the attention of the network science community (Kivelä et al., 2014). Recent models of these processes show how ignoring layer interdependencies can lead one to miss why a layer formed the way it did, and/or draw erroneous conclusions (Górski et al., 2018). Understanding the structuring processes that underlie multiplex networks will help understand increasingly rich data sets, giving more accurate and complete pictures of social interactions.

KEYWORDS
cooperation, food sharing, mathematical model, multiplex networks, social networks

1 SOCIAL NETWORKS, MULTILAYER NETWORKS, AND MULTIPLEX NETWORKS

Social networks are representations of relationships that allow us to use methods from graph theory. Networks consist of nodes, which may be represented as individuals, connected to each other by ties. The category of multilayer networks encompasses all networks consisting of more than one set of nodes and/or ties, where each layer is defined as a unique set of nodes and ties. Multiplex networks are the subset of multilayer networks with two basic properties: (a) all layers share the same set of nodes (i.e., each node replicated in each layer) and (b) all nodes are connected only to themselves across layers (see Figure 1). One example of a multiplex network is a social network with layers formed by different domains of interactions, such as

Received: 22 March 2019 Revised: 9 October 2019 Accepted: 4 April 2020
DOI: 10.1002/evan.21850
hunting, farming, and drinking. In such a domain-specific multiplex network, all individuals could do all those things (i.e., the same set of nodes is shared across domains), but they may do different things with different sets of people.\(^5\)

2 | NETWORK STRUCTURING PROCESSES

We can consider a benchmark model with no constraints. Without costs or interdependencies, individuals would optimize each of their networks by rearranging their relationships. Individuals, however, may be unable to do this due to features of the existing network itself or other reasons, for example, time constraints. We call the rules for how a network changes based on the current features of the networks and the individuals that compose them network structuring processes. These conditions affect the likelihood of a tie arising between two individuals in a given domain or change individuals’ network-based outcomes due to their pattern of ties.

We briefly highlight a few network structuring processes that arise in the context of multiplex networks. Ties might arise in multiple domains between the same individuals because features of the individuals that make a tie likely in one domain are also operating in other domains. This may include things like personality or risk tolerance: individuals who are wary of being caught alone after dark may fish together in mid-day and chop firewood in the evening, also together. Ties between individuals in one domain may be more likely if they are connected in other domains. Examples are incidental network membership (discussed in detail below), as well as benefits to bundling relationships: a person who is a great hunter but poor fisher in an environment of high day-to-day variability in domain-specific returns might offer to be an exchange partner in both domains with someone who is a poor hunter but great fisher. Individuals may struggle to reorganize their networks if the probability of removing a tie depends on other domains of the network. This includes such processes as constraining outside options: the excellent hunter might threaten to not hunt with the excellent fisher if the excellent fisher does not fish with them. Finally, outcomes may be the result of interactions between domains. This includes processes such as alignment of incentives: if a hungry hunter is a poor hunter in a cooperative hunting exercise, then that individual’s partners in the hunting domain might share additional food with him, therefore having a connection in the food sharing domain, so that hunting returns are higher for everyone.

3 | INCIDENTAL NETWORK MEMBERSHIP

We now discuss one important but specific example of a multiplex network structuring process to illustrate some of our main points. The process of incidental network membership rests on a few key premises. First, relationships require time and effort. Second, organisms do not have infinite time and resources. Third, relationships in some domains have a higher net benefit. If these premises are true, then organisms will prioritize optimizing networks in the domains with the highest net benefit. Given finite time and resources, organisms may optimize their entire multiplex network by extending a relationship with a partner on one important domain into a less important domain—even if that individual is not an optimal partner in the other domain. This can result in nonoptimal networks when considered as a single layer.

As an illustration, the Makushi of southern Guyana grow and process cassava into a product that is shelf-stable for years by parching the cassava with beef fat to remove the water to make what they call farine.\(^6\) Processing cassava to make farine involves many steps, which must occur concurrently. Because of this, it is the best use of time to have several people working together on different stages of the process, constantly adding more cassava to the farine pan. Indeed,
women (who do most of this work) have preferred cassava parching
partners and are rather consistent in their use of those partners
(CA observation). These women spend large amounts of time
together, talking constantly. It is common to hear women seeking out
advice on their personal lives or reproductive decisions. Since these
women have already received such information as a by-product of
their cassava processing, they may not be motivated to pay an addi-
tional cost to recruit better partners in their advice network for only
marginally better information. By increasing the efficiency of one layer
of the multiplex network (cassava processing), inefficiencies have
been introduced on another layer (the reproductive advice network).

4 | A MODEL OF A NETWORK
STRUCTURING PROCESS

We now discuss a formal model of a network structuring process by
Górski and colleagues in more detail.7 This model examines how cou-
pling between two layers of a multiplex network impacts the
probability of reaching a system equilibrium (a type of network opti-
mality), such that looking from a single-layered perspective, all individ-
uals are happy with the relationships they have. In the real world, this
“network optimality” implies that individuals are able to get and main-
tain the relationships they would like. In this model, each tie in each
domain possesses a real weight ranging from −1 to +1. Positive and
negative weights correspond to good and bad relations between indi-
viduals, respectively. The weights can change in time, and the change
of a tie weight between two individuals in a domain at each time step
is determined by their relationship at the previous time step, their
relationships with neighbors they share in common in the focal
domain, and the current tie weight in the other domain. The impact of
the current tie weight in the other domain can vary in strength due to
coupling between layers. The coupling between layers in this model
can be asymmetrical such that a tie weight in Layer A changes more in
response to the tie weight in Layer B than the reverse. An example of
this would be that people already processing cassava together can
give each other reproductive advice since they are spending the time
together anyway, but those already giving reproductive advice may

FIGURE 2 Observing only a single layer of a multiplex network may lead a researcher to wrong conclusions. This figure shows the probability of networks of size N with randomly generated initial tie weights and two layers reaching optimality (O) for the multiplex.7 β_1 and β_2 are coupling coefficients. For instance, β_1 represents the influence of the tie weights in Layer 2 on the tie weights in Layer 1, and β_2 the reverse. The color at each pixel shows O, for that combination of β_1 and β_2, ranging from black (O = 0) to white (O = 1). An uncoupled layer ($\beta_1 = \beta_2 = 0$) always reaches optimal states (O = 1). However, the coupling between layers decreases the probability of reaching optimality. Therefore, a researcher ignoring the other layer may draw wrong conclusions about individual layers in the multiplex—the researcher might wrongly think to have discovered nonoptimality in the single-layered network [Color figure can be viewed at wileyonlinelibrary.com]
not have cassava around to process together. The analysis of the model finds that if layers are completely disconnected from each other, network optimality is achieved independently in each of the domains. If one layer is much more strongly driven by the other layer than the reverse, network optimality is achieved because the dominant layer will drag the other layer to its state. But for the parameter space between those extremes, where both layers impact each other, network optimality may not always be achieved. Furthermore, the parameter space in the coupling strength for which optimality is often achieved decreases as network size increases. Figure 2 shows the probability of optimality given different coupling strengths for networks of four sizes. The results for each network size are given in its own panel. This figure, therefore, allows us to compare the effect of coupling strength on the probability of reaching optimality for four networks of different sizes. This model demonstrates that ignoring the coupled nature of networks may result in failing to find expected relationships between networks and outcomes. This conclusion may be unwarranted, however, because the underlying structure was not accounted for. We give some thoughts about how this may be addressed in data below.

This model leads us to a central formal finding in the nascent study of multiplex network structuring processes: looking at domain-specific networks without appreciating the multiplex structure can lead us to the wrong conclusions (e.g., assuming each layer of the network rather than the entire network is being optimized). This applies to research that concentrates solely on network structure and/or formation, as well as research studying the effect of networks on outcomes. If we examine a single domain to find optimality, we are unlikely to find optimality simply because we have not examined the whole network: agents will be optimizing across their entire multiplex network.

5 ANALYZING SOCIAL NETWORKS GIVEN MULTIPLEXITY

Models of multiplex networks indicate that their effects are pervasive. The development of tools to analyze these types of networks has thus far proceeded by network scientists using publicly available data sets such as transportation networks. Many anthropologists spend extensive amounts of time observing how complex behaviors are enacted in small-scale societies. The small scale of these networks provides a tractable data set from which one may draw insights. Because of this, the insights of anthropologists can help develop better measures and methods more quickly. Evolutionary anthropologists, in particular, will be able to contribute much to our understanding and analysis of network structuring processes because they are explicitly interested in how things develop over time. This indicates that, at a minimum, evolutionary anthropologists can contribute considerable insight into these issues by working with network scientists who are developing measures and methods for the understanding and analysis of multi-layer social networks.

Furthermore, we anticipate that theoreticians and methodologists will be interested in working with evolutionary anthropologists who study social networks because they oftentimes gather data which are inherently multiplex and will already have such data. As an example, many people evolutionary anthropologists work with practice mixed subsistence strategies. As such, they may have already asked questions such as “With whom do you hunt?”, “With whom do you fish?”, “With whom do you cut down fields?”, and “With whom do you go to the market?.” Therefore, if someone was working in a population that practices a mixed subsistence strategy, they may have already gathered multiplex networks in the course of gathering data on subsistence. Many other people interested in the effect of social networks on outcomes will have gathered similarly multiplex data, meaning that these data sets will be ideal for theoreticians and methodologists to work with.

Given the constraints of time and funding, it is unreasonable to suggest that everyone gather data on every single behavior or every single borrowed item, for instance. There are some quantitative measures that may help us decide which layers to use in an analysis once we have gathered the data (e.g., matrix correlation or information theoretic measures), but there are currently no methods that help us determine how many layers to gather before data collection. Therefore, it is incumbent on us to use our domain and ethnographic knowledge to think of the most salient layers that we can collect given our various constraints. It is doubtful that the patience of either the researcher or the respondent will be sufficient to gather all networks (CA’s interviews in which participants could nominate alters on over 100 networks took hours to complete), but the logic underlying multiplex structuring processes leads us to believe that any attempt to gather more than one layer is better than none. As an example, the ongoing ENDOW project that is gathering complete network data from one or two communities in over 30 societies asks about six networks. Once we have gathered data, algorithms implemented in programs such as Muxviz\(^\text{10}\) can help us decide how many layers to include in our final analyses.

In addition to being phenomena worthy of study in their own right, multiplex structuring processes complicate traditional network analysis. The structure of the multiplex can result in each layer being arranged suboptimally, giving an additional source of measurement error. We may gather data on a hunting network, for instance, and then try to predict some outcome, like frequency of hunting. If we fail to find an effect, that may be because we did not parse the hunting layer from the rest of the multiplex structure. It may be the case that, all things equal, being more central in a hunting layer leads to increased frequency of hunting, but it could also be the case that people central in the hunting network tend to be central in other layers, and these other networks prevent them from hunting at the frequency they might otherwise. The increased measurement error due to the structure of the multiplex network may mean that sometimes an effect of a layer is found, when it is actually due to a different part of the underlying structure (Type 1 error). Sometimes it will mean that no effect of a single layer is found when there actually is an effect, but that might be because the effect of the underlying structure and the unique effect of that layer go in opposite directions, leading to a false detection of no effect (Type 2 error). If the multiplex network
We illustrated these processes with discussion of two specific examples. First, in incidental network membership, a tie is formed between two individuals in a certain domain not because they are optimal partners for each other, but by virtue of them being connected (perhaps optimally) in another, more important layer. This illustrates the potential inefficiencies that may arise when one domain drives the formation of another. The second example we discussed was a recent model based on coupling between layers of a multiplex network. An example of this sort of coupling across domains showed that it is possible to have large areas of the parameter space where network optimality may not be reached. These two examples show that multiplex structuring processes can lead to nonoptimal networks and that we should incorporate multiplex networks and their structuring processes into our analysis of the evolution of human behavior.

While the development of techniques to incorporate these into our analysis is just the beginning, there are already some promising directions and we expect that many more will be generated. Appreciating the multiplex and linked nature of the domains of interaction humans are involved in will not only add richness to our understanding but also bring us to a better explanation for the causes of behavior.

ACKNOWLEDGMENTS

We would like to acknowledge the Evolution and Ecology of Human Behavior and Culture group at University of California, Davis for comments. J.A.H. and P.G. were partially supported as RENOIR Project by the European Union Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No 691152 and by Ministry of Science and Higher Education (Poland), grant Nos. W34/H2020/2016, 329025/PnH/2016 and National Science Centre, Poland Grant No. 2015/19/B/ST6/02612. J.A.H. was partially supported by the Russian Scientific Foundation, Agreement #17-71-30029 with co-financing of Bank Saint Petersburg. M.O.J. acknowledges financial support under NSF grant SES-1629446. R.M.D. acknowledges financial support under U.S. Army Research Office MURI Award No. W911NF-13-1-0340.

DATA AVAILABILITY STATEMENT

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

ORCID

Curtis Atkisson https://orcid.org/0000-0003-3575-6871

REFERENCES

How to cite this article: Atkisson C, Górski PJ, Jackson MO, Holyst JA, D’Souza RM. Why understanding multiplex social network structuring processes will help us better understand the evolution of human behavior. *Evolutionary Anthropology*. 2020;29:102–107. https://doi.org/10.1002/evan.21850