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Abstract. The concept of active Brownian particles is used to model a collective opinion formation process.
It is assumed that individuals in community create a two-component communication field that influences
the change of opinions of other persons and/or can induce their migration. The communication field is
described by a reaction-diffusion equation, the opinion change of the individuals is given by a master
equation, while the migration is described by a set of Langevin equations, coupled by the communication
field. In the mean-field limit holding for fast communication we derive a critical population size, above
which the community separates into a majority and a minority with opposite opinions. The existence of
external support (e.g. from mass media) changes the ratio between minority and majority, until above
a critical external support the supported subpopulation exists always as a majority. Spatial effects lead
to two critical “social” temperatures, between which the community exists in a metastable state, thus
fluctuations below a certain critical wave number may result in a spatial opinion separation. The range
of metastability is particularly determined by a parameter characterizing the individual response to the

communication field. In our discussion, we draw analogies to phase transitions in physical systems.

PACS. 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion —
05.65.4-bSelf-organized systems — 87.23.Ge Dynamics of social systems

1 Introduction

In recent years, there has been a lot of interest in applica-
tions of physical paradigms to a quantitative description
of social [1-7] and economic processes [8-11]

Methods of synergetics [12,13], stochastic pro-
cesses [14,15], deterministic chaos [16-19] and lattice gas
models [20-22] have been successfully applied for this
purpose.

The formation of public opinion [23—-29] is among the
challenging problems in social science, because it reveals a
complex dynamics, which may depend on different inter-
nal and external influences. We mention the influence of
political leaders, the biasing effect of mass media, as well
as individual features, such as persuasion or support for
other opinions.

A quantitative approach to the dynamics of opinion
formation is given by the concept of social impact [20,23],
which is based on methods similar to the cellular automata
approach [30,22]. The social impact describes the force on
an individual to keep or to change its current opinion. A
short outline of this model is given in Section 2. The equi-
librium statistical mechanics of the social impact model
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was formulated in [20], while in [21,27,29] the occurrence
of phase transitions and bistability in the presence of a
strong leader or an external impact have been analysed.

Despite these extensive studies of the social impact
model, there are several basic disadvantages of the con-
cept. In particular, the social impact theory assumes, that
the impact on an individual is updated with infinite veloc-
ity, and no memory effects are considered. Further, there
is no migration of the individuals, and any “spatial” dis-
tribution of opinions refer to a “social”, but not to the
physical space.

In fact, the model of social impact has not been de-
veloped to describe processes of opinion diffusion and mi-
gration. In this paper, we present an alternative approach
to the social impact model of collective opinion forma-
tion, which tries to include these features. Our model is
based on active Brownian particles, which interact via a
communication field. This field considers the spatial dis-
tribution of the individual opinions, further, it has a cer-
tain life time, reflecting a collective memory effect and it
can spread out in the community, modeling the transfer
of information.

Active Brownian particles [31-33] are Brownian par-
ticles with the ability to take up energy from the envi-
ronment, to store it in an internal depot [34,35] and to
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convert, internal energy to perform different activities,
such as metabolism, motion, change of the environment,
or signal-response behavior. As a specific action, the ac-
tive Brownian particles (or active walkers, within a dis-
crete approximation) are able to generate a self-consistent
field, which in turn influences their further movement and
physical or chemical behavior. This non-linear feedback
between the particles and the field generated by them-
selves results in an interactive structure formation pro-
cess on the macroscopic level. Hence, these models have
been used to simulate a broad variety of pattern forma-
tion processes in complex systems, ranging from physical
to biological and social systems [36-38,40,41]

In Section 2, we specify the model of active Brownian
particles for the formation of collective opinion structures.
In Section 3, we discuss the limiting case of fast commu-
nication between the individuals. Further, we investigate
the influence of an external support and derive critical pa-
rameters for the existence of subpopulations as majorities
or minorities. In Section 4, we investigate spatial opin-
ion structures, and estimate critical wave numbers for the
fluctuations, which lead to a spatial separation of the opin-
ions. By deriving two different critical temperatures, we
draw an analogy to the theory of phase transitions.

2 Stochastic model of opinion change
and migration

Let us consider a 2-dimensional spatial system with the
total area A, where a community of N individuals (mem-
bers of a social group) exists. Each of them can share one
of two opposite opinions on a given subject, denoted as
0; =+1;i=1,...,N. Here, 0; is considered as an individ-
ual parameter, representing an internal degree of freedom.
Within a stochastic approach, the probability p;(6;,t) to
find the individual ¢ with the opinion 6;, changes in the
course of time due to the following master equation:

%pi(‘gi,t) = w(0:]07)pi (0, 1) — pi(0i, 1) D w(6;6:).
0, 0,
(1)

Here, w(#;|0;) means the transition rate to change the
opinion §; into one of the possible opinions #; during the
next time step, with w(6;|6;) = 0. In the considered case,
there are only two possibilities, either 6; = +1 — 6] = —1,
or §; = —1 — 0/ = +1. In the social impact theory [20,23],
it is assumed that the change of opinions depends on the
social impact, I;, and a “social temperature”, T' [21,27].
A possible ansatz for the transition rate reads:

w(0;16;) =1 exp{L;/T}. (2)

Here, n [1/s]| defines the time scale of the transitions. T'
represents the erratic circumstances of the opinion change:
in the limit 7" — 0 the opinion change is more determined
by I;, leading to deterministic transitions. As equation (2)
indicates, the likelyhood for changing the opinion is rather
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small, if I; < 0. Hence, a negative social impact on indi-
vidual ¢ represents a condition for stability. To be specific,
in the social impact theory, I; may consist of three parts:

=1 4 If 4 I (3)

I? represents influences imposed on the individual by
other members of the group, e.g. to change or to keep
its opinion. I, on the other hand, is kind of a self-support
for the own opinion, I; < 0, and I$* represents external
influences, e.g. from government policy, mass media, etc.
which may also support a certain opinion.

Within a simplified approach of the social impact the-
ory, every individual can be ascribed a single parameter,
the “strength”, s;. Furthermore, a social distance d;; is
defined, which measures the distance between each two
individuals (4, ) in a social space [20,23], which does not
necessarily coincide with the physical space. It is assumed
that the impact between two individuals decreases with
the social distance in a non-linear manner. The above as-
sumptions are included in the following ansatz [21,27]:

N
I; = —0; Z Sjgj/d?] —es; +eb; (4)
J=1,37#i

¢ is the so-called self-support parameter, and n > 0 is
a model constant. The external influence, e; may be re-
garded as a global preference towards one of the opinions.
A negative social impact on individual ¢ is obtained, (i) if
most of the opinions in its social vicinity match its own
opinion, or (ii) if the impact resulting from opposite opin-
ions is at least not large enough to compensate its self-
support, or (iii) if the external influences do not force the
individual to change its opinion, regardless of self-support
or the impact of the community.

In the form outlined above, the concept of social im-
pact has certain drawbacks: The social impact theory as-
sumes that the impact on an individual is instantaneously
updated, if some opinions are changed in the group (which
basically means a communication with infinite velocity).
Spatial effects in a physical space are not considered here,
any “spatial” distribution of opinions refers to the social
space. Moreover, the individuals are not allowed to move.
Finally, no memory effects are considered in the social im-
pact, the community is only affected by the current state
of the opinion distribution, regardless of its history and
past experience.

In this paper, we want to modify the theory by includ-
ing some important features of social systems: (i) the exis-
tence of a memory, which reflects the past experience, (ii)
an exchange of information in the community with a finite
velocity, (iii) the influence of spatial distances between in-
dividuals, (iv) the possibility of spatial migration for the
individuals. It seems more realistic to us that individuals
have the chance to migrate to places where their opinion is
supported rather than change their opinion. And in most
cases, individuals are not instantaneously affected by the
opinions of others, especially if they are not in their close
vicinity.
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As a basic element of our theory, a scalar spatio-
temporal communication field hg(r,t) is used. Every in-
dividual contributes permanently to this field with its
opinion #; and with its personal strength s; at its cur-
rent spatial location r;. The information generated this
way has a certain life time 1/ [s], further it can spread
throughout the system by a diffusion-like process, where
Dy, [m?/s] represents the diffusion constant for informa-
tion exchange. We have to take into account that there
are two different opinions in the system, hence the com-
munication field should also consist of two components,
6 = {—1,+1}, each representing one opinion. For simplic-
ity, it is assumed that the information resulting from the
different opinions has the same life time and the same way
of spatial distribution; more complex cases can be consid-
ered as well.

The spatio-temporal change of the communication
field can be summarized in the following equation:

ghg 231699 (51‘*1‘1)

- 5h0(rat) + DhAhG(rvt)' (5)
Here, 69,9, is the Kronecker Delta indicating that the in-
dividuals contribute only to the field component which
matches their opinion 6;. §(r — r;) means Dirac’s Delta
function used for continuous variables, which indicates
that the individuals contribute to the field only at their
current position, r;. We note that this equation is a
stochastic partial differential equation with

Zé r—r;)

being the microscopic density [32] of the individuals
changing their position due to equation (8). Hence, the
changes of the communication field hy(r,t) are measured
in units of a density of the personal strength s;.

Instead of a social impact, the communication field
hg(r,t) influences the individual ¢ as follows: At a cer-
tain location r;, the individual with opinion 6; = +1
is affected by two kinds of information: the informa-
tion resulting from individuals who share his/her opinion,
ho=+1(r;,t), and the information resulting from the oppo-
nents hg=—_1(r;,t). The diffusion constant D}, determines
how fast he/she will receive any information, and the de-
cay rate 0 determines, how long a generated information
will exist. Dependent on the local information, the individ-
ual has two opportunities to act: (i) it can change its opin-
ion, (ii) it can migrate towards locations which provide a
larger support of its current opinion. These opportunities
are specified in the following.

For the change of opinions, we can adopt the transition
probability, equation (2), by replacing the influence of the
social impact I; with the influence of the local communi-
cation field. A possible ansatz reads:

w(0;10;) = n exp{[ho: (v, t) —

rmcr

(6)

he(rs, )]/ T}
(7)
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As in equation (2), the probability to change opinion 6;
is rather small, if the local field hy(r;,t), which is related
to the support of opinion 6;, overcomes the local influ-
ence of the opposite opinion. This effect, however, is scaled
again by the social temperature T', which is a measure for
the randomness in social interaction. Note, that the social
temperature is measured in units of the communication
field.

The movement of the individual located at space co-
ordinate r; may depend both on erratic circumstances
and on the influence of the communication field. Within a
stochastic approach, this movement can be described by
the following overdamped Langevin equation:

OéahT \/2D f

- (3
ry

dri
dt

(®)

In the last term of equation (8) D,, means the spatial diffu-
sion coefficient of the individuals. The random influences
on the movement are modeled by a stochastic force with a
d-correlated time dependence, i.e. £(t) is the white noise
with (€(0)& (1) = b 8(t — ).

The term he(r,t) in equation (8) means an effective
communication field which results from hg(r,t) as speci-
fied below. It follows that the overdamped Langevin equa-
tion (8) considers the response of the individual to the
gradient of the field he(r,t), where «; is the individ-
ual response parameter, weighting the importance of the
information received. In the considered case, the effec-
tive communication field he(r,t) is a certain function of
both components, hi1(r,t), of the communication field,
see equation (5). One can consider different types of re-
sponse, for example the following:

(i) The individuals try to move towards locations which
provide the most support for their current opinion 6;.
In this case, they only count on the information which
matches their opinion, he(r,t) = hg(r,t), and follow
the local ascent of the field (a; > 0).

The individuals try to move away from locations which
provide any negative pressure on their current opinion
;. In this case, they count on the information resulting
from opposite opinions (6), he(r,t) = he/ (r,t), and
follow the local descent of the field (a; < 0).

The individuals try to move away from locations, if
they are forced to change their current opinion 6;,
but they can accept a vicinity of opposite opinions,
as long as these are not dominating. In this case, they
count on the information resulting from both support-
ing and opposite opinions, and the local difference be-
tween them is important: he(r,t) = [ho(r,t) —he(r, 1))
with «; > 0.

(i)

(i)

Additionally, the response parameter can also consider
that the response occurs only, if the absolute value of
the effective field is locally above a certain threshold hgp,:

=0 [|he(r,t)| hine], with ©O[y] being the Heavyside
function: © = 1, if y > 0, otherwise ©® = 0. We note
that for the further dlscussmns in Sections 3 and 4, we
assume he(r,t) = hg(r,t) for the effective communication
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m m
3’ = C+l h+1q !t) ’ hi(i't) C'l4—‘.

Fig. 1. Circular causation between the individuals with differ-
ent opinions, C_1, C41 and the two-component communication
field, ho(r,t).

field (case 1), while o; = o is treated as a positive constant
independent of ¢ and he(r,t).

In order to summarize our model, we note the non-
linear feedback between the individuals and the communi-
cation field as shown in Figure 1. The individuals generate
the field, which in turn influences their further movement
and their opinion change. In terms of synergetics, the field
plays the role of an order parameter, which couples the in-
dividual actions, and this way initiates spatial structures
and coherent behavior within the social group.

The complete dynamics of the community can be for-
mulated in terms of the canonical N-particle distribution
function

P(Q;fat) = P(Hlarla"'aeNarNat)a (9)

which gives the probability to find the N individuals with
the opinions 61, ...,0x in the vicinity of ry,...,ry on the
surface A at time t. Considering both opinion changes

and movement of the individuals, the master equation for
P(8,r,t) reads:

SR =Y [w(@)PE 1)~ w(@0)PE 1)
0'#8
N
=3 [V (@ Viho(r,t) P(6,1,1)) = Dy AiP(r,0,1)].

(10)

The first line of the right-hand side of equation (10) de-
scribes the “gain” and “loss” of individuals (with the coor-
dinates ry,...,ry) due to opinion changes, where w(6[0")
means any possible transition within the opinion distri-
bution @ which leads to the assumed distribution 6. The
second line describes the change of the probability density
due to the motion of the individuals on the surface. Equa-
tion (10) together with equations (5, 7) forms a complete
description of our system.

3 The case of fast communication
3.1 Derivation of mean value equations

Let us first restrict to the case of very fast exchange of
information in the system. Then, spatial inhomogenities
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are equalized immediately, hence, the communication field
hg(r,t) can be approximated by a mean field hg(t):

}_lg(t) = %/he(r,t) d7"2,

A

(11)

where A means the system size. The equation for the mean
field hg(t) results from equation (5):

Ohy(t .
ot) _ —Bho(t) + sig (12)
ot
with s; = s and the mean density
__Ng _ N
ng = 7 ;o = A, (13)

where the number of individuals with a given opinion 6
fulfils the condition

> Np=Ny1+ Ny =N = const. (14)
0

We note that in the mean—field approximation no spatial
gradients in the communication field exist. Hence, there is
no additional driving force for the individuals to move, as
assumed in equation (8). Such a situation can be imagined
for communities existing in very small systems with small
distances between different groups. In particular, in such
small communities also the assumption of a fast informa-
tion exchange holds. Thus, in this section, we restrict our
discussion to subpopulations with a certain opinion rather
than to individuals at particular locations.

Let p(Np, t) denote the probability to find Ny individ-
uals in the community which shares opinion 8. The master
equation for p(Ni1,t) explicitely reads:

0

EP(N+1775) = W(N41[Ny1 — 1) p(N41 — 1,1)
+W(N41[ N1+ 1) p(Ny1 + 1, 2)
—p(Ny1,t) [W(Ny1 + 1| Nya)

+ W(Ny1 — 1|Ny1)]. (15)

The transition rates W (M |N) appearing in equation (15)
are assumed to be proportional to the probability to
change a given opinion, equation (7), and to the num-
ber of individuals which can change their opinion into the
given direction:

W(Ny1 +1|Ny1) = Ny exp {(hy1 — ho1)/T},
W (Ni1 = 1[Ny1) = Nyan exp {—(hy1 —h-1)/T}. (16)

The mean values for the number of individuals with a cer-
tain opinion can be derived from the master equation (15)

<N9(t)> = Z Ny p(Neat)a

{No}

(17)

where the summation is over all possible numbers of
Ny which obey the condition equation (14). From equa-
tion (17), the deterministic equation for the change of (Ny)
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can be derived in the first approximation as follows [42]
(see also [1,3,7]):

d
5 No) = (W(No + 1| Np) — W(Np —1|Ne)) - (18)
For N,i, this equation reads explicitely:
d hyi(t) —hoq(t
G ) = (Vo exp | 22
hyi(t) —hoq(t
—Ny1n exp [_M] > - (19)

Introducing now the fraction of a subpopulation with opin-
ion 0, xg = (Ng)/N, and using the standard approxima-
tion to factorize equation (19), we can write it as:

Z1 = (1 = z41)n exp(a) — z417 exp(—a),
a = [h+1(t) — h_l(t)} /T

Via Ah(t) = hy1 — h_1, this equation is coupled with the
equation

(20)

Ah = —B AR + s (235+1 - 1) (21)
which results from equation (12) for the two field
components.

3.2 Critical and stable subpopulationm sizes

Within a quasistationary approximation, we can assume
that the communication field relaxzes faster than the dis-
tribution of the opinions into a stationary state. Hence,

with hg = 0, we find from equation (12):

pstat — SN

+1 — Wx-i-l ) BS_T;Tt = %(1 — .Z'+1)

2sn (22)

- = th = —
= Aval = .
a K| T4+1 K

Here, the parameter x includes the specific internal condi-
tions within the community, such as the total population
size, the social temperature, the individual strength of the
opinions, or the life time of the information generated. In-
serting a from equation (22) into equation (22), a closed
equation for &y is obtained, which can be integrated with
respect to time (Figure 2a). We find that, depending on &,
different stationary values for the fraction of the subpopu-
lations exist. For the critical value, k® = 2, the stationary
state can be reached only asymptotically. Figure 2b shows
the stationary solutions, &y = 0, resulting from the equa-
tion for zyq:

(I —z41) exp[rapr] =2 exple(l—z4a)]. (23)
For k < 2, z1 = 0.5 is the only stationary solution, which
means a stable community where both opposite opinions
have the same influence. However, for k > 2, the equal
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Fig. 2. (a) Time dependence of the fraction z41(¢) (Eq. (20))
of the subpopulation with opinion +1 for different initial con-
ditions and for three different values of x: 1.0 (solid line); 2.0
(dot-dashed line), 3.0 (dashed line). (b) Stationary solutions
for 41 (Eq. (23)) for different values of k. The bifurcation at
the critical value k° = 2 is clearly visible.

distribution of opinions becomes unstable, and a sepa-
ration process towards a preferred opinion is obtained,
where x11 = 0.5 plays the role of a separation line. We
find now two stable solutions where both opinions coex-
ist with different shares in the community, as shown in
Figure 2. Hence, each subpopulation can exist either as a
magjority or as a minority within the community. Which
of these two possible situations is realized, depends in a
deterministic approach on the initial fraction of the sub-
population. For initial values of x;; below the separatrix,
0.5, the minority status will be most likely the stable sit-
uation, as Figure 2a shows.

The bifurcation occurs at k¢ = 2, where the former

stable solution z4; = 0.5 becomes unstable. From the
condition k¥ = 2 we can derive a critical population size,
N¢=p0BAT/s, (24)

where for larger populations an equal fraction of oppo-
site opinions is certainly unstable. If we consider e.g. a
growing community with fast communication, then both
contradicting opinions are balanced, as long as the pop-
ulation number is small. However, for N > N°€, i.e. after
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a certain population growth, the community tends to-
wards one of these opinions, thus necessarily separating
into a majority and a minority. Which of these opinions
would be dominating, depends on small fluctuations in
the bifurcation point, and has to be investigated within a
stochastic approach. We note that equation (24) for the
critical population size can be also interpreted in terms
of a critical social temperature, which leads to an opin-
ion separation in the community. This will be discussed in
more detail in Section 4.

From Figure 2b, we see further, that the stable coexis-
tence between majority and minority breaks down at a cer-
tain value of k, where almost the whole community shares
the same opinion. From equation (23) it is easy to find
that e.g. k &~ 4.7 yields 41 ~ {0.01;0.99}, which means
that about 99% of the community share either opinion +1
or —1.

3.3 Influence of external support

Now, we discuss the situation that the symmetry between
the two opinions is broken due to external influences on
the individuals. We may consider two similar cases: (i)
the existence of a strong leader in the community, who
possesses a strength s; which is much larger than the usual
strength s of the other individuals, (ii) the existence of an
external field, which may result from government policy,
mass media, etc. which support a certain opinion with a
strength sy,.

The additional influence sexs := {s1/4, sm/A} mainly
effects the communication field, equation (5), due to an
extra contribution, normalized by the system size A.

If we assume an external support of opinion 6 = +1,
the corresponding field equation in the mean—field limit
(Eq. (12)) and the stationary solution (Eq. (22)) are
changed as follows:

}_l+1 = 7ﬁi_l+1(t) —+ 87_7,£L'+1 + Sext

— sn Sex
hif?t = 5 Ty1 =+ eﬁt
1 Sex
a_lﬁ<ﬂf+1§)+ﬁTt,' (25)

Hence, in equation (23) which determines the stationary
solutions, the arguments are shifted by a certain value:

(I —241) exp |:’€=T+1 + Sﬁe;t}

=41 exp |:I€ (1—z41) — Se"t] :

3T

Figure 3 shows how the critical and stable subpopulation
sizes change for subcritical and supercritical values of k,
dependent on the strength of the external support.

For k < k¢ (Fig. 3a), we see that there is still only
one stable solution, but with an increasing value of sext,
the supported subpopulation exists as a majority. For
k > k¢ (Fig. 3b), we observe again two possible stable

(26)

The European Physical Journal B

00 | ]
0.0 05 1.0 15 2.0

S*

(a)
10 | ]
08 | ]
06 | ]
RSO T ]
0.2 ///\ ]
00| ]
0.0 0.1 0.2 03 0.4

S*

(b)

Fig. 3. Stable fraction of the subpopulation, z%3", as a func-

tion of the strength s* = sext /BT of the external support. (a)
k =1, (b) kK = 3. The dashed line in (b) represents the sep-
aration line for the initial conditions, which lead either to a
minority or a majority status of the subpopulation.

situations for the supported subpopulation, either a mi-
nority or a majority status. But, compared to Figure 2b,
the symmetry between these possibilities is now broken
due to the external support, which increases the region of
initial conditions leading to a majority status.

Interestingly, at a critical value of Seyt, the possibil-
ity of a minority status completely vanishes. Hence, for a
certain supercritical external support, the supported sub-
population will grow towards a majority, regardless of its
initial population size, with no chance for the opposite
opinion to be established. This situation is quite often re-
alized in communities with one strong political or religious
leader (“fundamentalistic dictatorships”), or in communi-
ties driven by external forces, such as financial or military
power (“banana republics”).

The value of the critical external support, s, of
course depends on k, which summarizes the internal situa-
tion in terms of the social temperature, or the population
size, etc. From equation (26) we can derive the condition
for which two of the three possible solutions coincide, thus
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Fig. 4. Critical external support s; (Eq
of k.

. (27)) as a function

determining the relation between s, and x as follows:

2
¢ 1—y/1-2 )
* Sext 1 R 1 2
c
AT 14+,/1-2] 2 A

Figure 4 shows how much external support is needed to
paralyze a community with a given internal situation (k)
by one ruling opinion. As one can see, the critical exter-
nal support is an increasing function of the parameter &,
meaning that it is more difficult to paralyse a society with
strong interpersonal interactions.

Let us conclude the discussion of the phase transition
in the mean field limit, presented in this section. With re-
spect to the social impact theory [23,5,20,21,29], we note
that phase transitions have been not considered there,
since the focus was on other phenomena so far. On the
other hand, for the case of two opinions, our results well
correspond to those obtained by Weidlich and Haag in a
model of collective opinion formation [1,3]. There, a mas-
ter equation and appropriate utility potentials are used
to analyse the mean-field dynamics of interacting popu-
lations. Similar to our model, the approach used in [1,3]
leads to a phase transition and a corresponding bifurac-
tion diagram. The main difference between both models
is in the interpretation of the bifurcation parameter k.
In our case, k results from other model parameters, e.g.
from the mean “social strength” s which plays a role of a
coupling constant between the opinions and the commu-
nication field. In the model of Weidlich and Haag, on the
other hand, this parameter is interpreted as a derivative
of utility potentials. Our analytic result for the critical ex-
ternal support, equation (27), is in qualitative agreement
with the stability analysis and the computer simulations
presented in [1,3].

4 Critical conditions for spatial opinion
separation

In the previous section, the existence of critical parame-

ters, such as k° or s, has been proven for a community
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with fast communication, where no inhomogenities in the
communication field can exist. In the more realistic case,
however, we have finite diffusion coefficients for the infor-
mation, and the mean-field approximation, equation (12),
is no longer valid. Instead of focussing on the subpopula-
tion sizes, we now need to consider the spatial distribution
of individuals with opposite opinions.

Starting with the canonical N-particle distribution
function, P(@,7,t), equation (10), the spatio-temporal
density of individuals with opinion # can be obtained as
follows:

N
t) = /259791 (5(1‘ — I‘i)

XP(01,r1....,0N,rN,t) dry...dry.  (28)
Integrating equation (10) according to equation (28) and
neglecting higher order correlations, we obtain the follow-

ing reaction-diffusion equation for ng(r,t)

%ng( t)=—-V {ng(r,t) aVhy(r,t)| + D, Ang(r,t)
=3 [wl@16) o) + w(bl6!) s (e.1)]
0'#6
(29)
with the transition rates obtained from equation (7):
w(0'10) = n exp{[ho(r, ) — ho(r, )]/ T}
w(6]g) = 0. (30)

With 8 = {+1, —1}, equation (29) is a set of two reaction-
diffusion equations, coupled both via ng(r,t) and he(r,t).
Inserting the densities ny(r, t) and neglecting any external
support, equation (5) for the spatial communication field
can be transformed into the linear deterministic equation:

%h@( t) — Bhy(r,t) + DpAhy(r,t).

(31)

t) = snp(r,

The solutions for the spatio-temporal distributions of in-
dividuals and opinions are now determined by the four
coupled equations, equation (29) and equation (31). For
our further discussion, we assume again that the spatio-
temporal communication field relazes faster than the re-
lated distribution of individuals into a quasi-stationary
equilibrium. The field hg(r,t) should still depend on time
and space coordinates, but, due to the fast relaxation,
there is a fixed relation to the spatio-temporal distribu-
tion of individuals. Further, we neglect the independent
diffusion of information, assuming that the spreading of
opinions is due to the migration of the individuals. From
equation (31), we find with hy(r,t) = 0 and Dy, = 0:
ho(r,t)

- %ng(r, £) (32)

which can now be inserted into equation (29), thus reduc-
ing the set of coupled equations to two equations.
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The homogeneous solution for ny(r,t) is given by the
mean densities:

g = (ne(r, 1)) = (33)

| 3

Under certain conditions however, the homogeneous state
becomes unstable and a spatial separation of opinions oc-
curs. In order to investigate these critical conditions, we
allow small fluctuations around the homogeneous state 74:

one

<1 (34)

ng(r,t) = ng + 0ng ; ‘ -

Inserting equation (34) into equation (29), a linearization
gives:

dong asn Nsn
5 = [Dn— 25 } Adng + [ 3T — } (6ng — dn_yg).
(35)
With the ansatz
dng ~ exp (At + ikr) (36)

we find from equation (35) the dispersion relation A(k)
for small inhomogeneous fluctuations with wave vector k.
This relation yields two solutions:

A(k) = _—k:2 C+2B; M\(k) :_—k:2 C
Nsn asn
B = — N = Dn —_—_—
g7 " 25
For homogeneous fluctuations we obtain from equa-
tion (37)

(37)

2nsn
)\ =
1 3T

which means that the homogeneous system is marginally
stable as long as Ay < 0, or s7/8T < 1. This result agrees
with the condition k < 2 obtained from the previous mean
field investigations in Section 3. The condition k£ = 2 or
B = 0, respectively, defines a critical social temperature

—2n; A=0 fork=0 (38)

sn
B
For temperatures 7' < 7Y, the homogeneous state
ng(r,t) = /2, where individuals of both opinions are
equally distributed, becomes unstable and the spatial sep-
aration process occurs. This is in direct analogy to the
phase transition obtained from the Ising model of a fer-
romagnet. Here, the state with x < 2 or T > TT, re-
spectively, corresponds to the paramagnetic or disordered
phase, while the state with x > 2 or T' < TT, respectively,
corresponds to ferromagnetic ordered phase.

The conditions of equation (38) denote a homogeneous
stability condition. To obtain stability against inhomoge-

neous fluctuations of wave vector k, the two conditions
A1(k) <0 and A2(k) < 0 have to be satisfied.

TS = (39)
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Taking into account the critical temperature 77, equa-
tion (39), we can rewrite these conditions, equation (37),
as follows:

K> (anDg) — 2 (T—711) >0
K2 (Dn - D;) > 0. (40)

Here, a critical diffusion coefficient D, for the individuals
appears, which results from the condition C' = 0:

a sn
D =— —- 41
=55 (41)
Hence, the condition
D,, > Dy, (42)

denotes a second stability condition. In order to explain
its meaning, let us consider that the diffusion coefficient
of the individuals, D,,, may be a function of the social
temperature, T. This sounds reasonable since the social
temperature is a measure of randomness in social inter-
action, and an increase of such a randomness leads to an
increase of a random spatial migration. The simplest rela-
tion for a function D, (T) is the linear one, D,, = uT. By
assuming this, we may rewrite equation (40) using a sec-
ond critical temperature, Ts instead of a critical diffusion
coefficient D5, :

K2 (T—TC)—Q <5—1>>0
1% 2 n T =

K2 (T - T;) > 0. (43)
The second critical temperature 7% reads as follows:
e  sn o (44)

=2 _ @ e
o B 2!

The occurrence of two critical social temperatures 775, T
allows a more detailed discussion of the stability condi-
tions. Therefore, we have to consider two separate cases
of equation (44): (1) TY > Ty and (2) 7Y < T5, which cor-
respond either to the condition o < 2u, or o > 2u, re-
spectively.

In the first case, TY > T5, we can discuss three ranges
of the temperature T":

(i) For T' > Ty both eigenvalues A; (k) and A2(k), equa-
tion (37), are nonpositive for all wave vectors k and
the homogeneous solution 71/2 is completely stable.
For Ty > T > Ty the eigenvalue Ay(k) is still non-
positive for all values of k, but the eigenvalue A (k)
is negative only for wave vectors that are larger than
some critical value k? > k2:

(i)

29 TS —T
k2= "1 21 : 4
T uT T—T¢ (43)
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This means that, in the given range of temperatures,
the homogeneous solution 7/2 is metastable in an in-
finite system, because it is stable only against fluc-
tuations with large wave numbers, i.e. against small-
scale fluctuations. Large-scale fluctuations destroy the
homogeneous state and result in a spatial separation
process, i.e. instead of a homogeneous distribution of
opinions, individuals with the same opinion form sep-
arated spatial domains which coexist. The range of the
metastable region is especially determined by the value
of a < 21, which defines the difference between 17 and
Ts.

For T < Ts both eigenvalues A1 (k) and Az(k) are pos-
itive for all wave vectors k (except k = 0, for which
A2 = 0 yields), which means that the homogeneous so-
lution 71/2 is completely unstable. On the other hand all
systems with spatial dimension L < 27 /k. are stable
in this temperature region.

(iil)

For case (2), TY < Ts, which corresponds to o > 2y, al-
ready small inhomogeneous fluctuations result in an in-
stability of the homogeneous state for T < T3, i.e. we
have a direct transition from the completely stable to
the completely unstable regime at the critical tempera-
ture T' = T5.

That means the second critical temperature 75 marks
the transition into complete instability. The metastable
region, which exists for o < 2pu, is bound by the two
critical social temperatures, 77 and Ts. This allows us
again to draw an analogy to the theory of phase transi-
tions [43]. It is well known from phase diagrams that the
density-dependent coezistence curve TY(i) divides stable
and metastable regions, therefore we can name the criti-
cal temperature T¥, equation (39), as the coezistence tem-
perature, which marks the transition into the metastable
regime. On the other hand, the metastable region is sep-
arated from the completely unstable region by a second
curve T5(7), known as the spinodal curve, which defines
the region of spinodal decomposition. Hence, we can iden-
tify the second critical temperature Ty, equation (44), as
the instability temperature.

We note that similar investigations of the critical sys-
tem behavior can be performed by discussing the depen-
dence of the stability conditions on the “social strength”
s or on the total population number N = An. These in-
vestigations allow the calculation of a phase diagram for
the opinion change in the model discussed, where we can
derive critical population densities for the spatial opinion
separation within the community.

5 Conclusions

We have discussed a simple model of collective opinion
formation, based on active Brownian particles, which rep-
resent the individuals. Every individual shares one of two
opposite opinions and indirectly interacts with its neigh-
bours due to a communication field, which contains the
information about the spatial distribution of the different
opinions. This two-component field has a certain lifetime,
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which models memory effects. Furthermore, it can spread
out in the community, which describes the diffusion of in-
formation. This way, every individual locally receives in-
formation about the opinion distribution, which affects its
further actions: (i) the individual can keep or change its
current opinion, or (ii) it can stay or migrate towards re-
gions where its current opinion is supported. Both actions
depend (a) on a social temperature, which describes the
stochastic influences, and (b) on the local strength of the
communication field, which expresses the deterministic in-
fluences of the decision of an individual.

For supercritical conditions within the community
(e.g. supercritical population size, or supercritical external
pressure, or low temperature etc.), the non-linear feedback
between the individuals and the communication field, cre-
ated by themselves, results in a process of spatial opinion
separation. In this case, the individuals either change their
opinion to match the conditions in their neighbourhood,
or they keep their opinion, but migrate into regions which
support this opinion.

In this paper, we have studied the critical conditions,
which may lead to this separation process. In the spatially
homogeneous case, which holds either for small communi-
ties or for an information exchange with infinite velocity,
the communication field can be described in a mean-field
approximation.

For this case, we derived a critical population size, N°¢
(which is related to a critical social temperature, T7). For
N < N°€, there is a stable balance where both opinions are
shared by an equal number of individuals. For N > N°¢,
however, one of these opinions becomes preferred, hence,
majorities and minorities appear in the community. Fur-
ther, we have shown how these majorities change if we
consider an external support for one of the opinions. We
found, that beyond some critical support, the supported
subpopulation must always exist as a majority, since the
possibility of its minority status simply disappears.

As a second case, we have investigated a spatially inho-
mogeneous communication field, which is locally coupled
to the distribution of the individuals. This coupling is due
to an adiabatically fast relaxation of the communication
field into a quasistationary equilibrium.

Using this adiabatic approximation, we were able to
derive critical conditions for a spatial separation of opin-
ions. We found that above the critical population size
(or for T < T7), the community could be described as
a metastable system, which expresses stability against
small-scale perturbations. The region of metastability is
bound by a second critical temperature, 75, which de-
scribes the transition into instability, where every pertur-
bation results in an immediate separation. Further, we
obtained that the range of metastability is particularly
determined by the parameter «, which characterizes how
strong an individual responses to the information received
from the communication field.

Finally, we would like to note that our model of col-
lective opinion formation only sketches some basic fea-
tures of structure formation in social systems. There is
no doubt, that in real human societies a more complex
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behavior among the individuals occurs, and that decision
making and opinion formation may depend on numer-
ous influences beyond a quantitative description. In this
paper, we restricted ourselves to a simplified dynamical
approach, which purposely stretches some analogies be-
tween physical and social systems. The results, however,
display similarities to phenomena observed in social sys-
tems and allow an interpretation within such a context.
So, our model may give rise to further investigations in
the field of quantitative sociology.
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