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Abstract

The origin of log-periodic oscillations around the power-law trend of the escape probability from a precritical at-

tractor and of the noise-free stochastic multiresonance, found in numerical simulations in chaotic systems close to crises

is discussed. It is shown that multiple maxima of the spectral power amplification vs. the control parameter result from

a fractal structure of a precritical attractor colliding with a possibly fractal basin of attraction at the crisis point.

Qualitative explanation of the multiresonance, based on a concept of fractal self-similarity, or discrete-scale invariance,

is given and compared with numerical results and analytic theory using a simple geometric models of the colliding

fractal sets.

� 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

Stochastic resonance (SR) is a phenomenon occurring in systems driven by a combination of a periodic signal and

random noise, such that the periodic component of a suitably defined output signal becomes most pronounced for non-

zero input noise intensity [1–5]. A related phenomenon is noise-free (or deterministic) SR which appears in periodically

driven chaotic systems without external random forcing, in which the internal chaotic dynamics can be tuned, by

varying the control parameter, to achieve the maximization of the periodic component of the output signal [6–12]. An

extension of SR is a phenomenon called stochastic multiresonance (SMR) in which the periodic component of the

output signal is maximized for many values of the input noise intensity [13–15]. In the case of models that can be

reduced to a particle moving in a potential field, driven by noise and a weak periodic force, SMR can appear as a

consequence of a particular form of the potential [13,14]. For example, when it is invariant with respect to a discrete

scaling transformation, the strength of the periodic component of the output signal shows log-periodicity as a function

of the input noise intensity. A similar phenomenon, noise-free SMR [10,11], has been recently observed in chaotic maps

close to crises [16,17], in which the control parameter had a small component periodic in time. This effect was explained

as resulting from the collision of the fractal precritical attractor and, possibly also fractal, basin of attraction at the

crisis point. It was shown that collision of these fractal sets is responsible for the appearance of oscillations around the

power-law trend of the escape probability from the precritical attractor as a function of the control parameter

[16,18,19]. As a result, the periodic component of the output signal, defined so that it reflected the escape events of the
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phase trajectory from the precritical attractor, showed multiple maxima as a function of the mean value of the control

parameter. However, possible relationship between the above-mentioned models for SMR in stochastic and chaotic

systems has not been yet studied in more detail.

In this paper we present numerical evidence for the oscillations of the escape probability and for the noise-free SMR

in chaotic maps close to crisis. Then we propose approximate description of these phenomena in terms of fractal self-

similarity, which is just another name for discrete-scale invariance, or invariance with respect to a discrete scaling

transformation [20]. Such a description resembles that for stochastic models of SMR studied in Refs. [13,14]. In par-

ticular, it is predicted that both oscillations of the escape probability and the strength of the periodic component of the

output signal should have a log-periodic component as functions of the control parameter, which is in agreement with

numerical experiments. This shows that our models belong to a wide class of systems exhibiting various forms of log-

periodicity due to discrete-scale invariance, which range from, e.g., diffusion in random quenched systems [21], to

earthquakes [22] to stock markets close to financial crashes [23,24]. However, the fractal structures of the colliding sets

are usually too complex to be described by one discrete scaling transformation, thus the theoretical predictions based on

the concept of discrete-scale invariance are only qualitatively correct. These predictions are compared to the ones based

on a more accurate analytic theory.

2. Systems under study and numerical results

In systems with crises below the critical value qc of a control parameter q there exists a chaotic attractor, above it the

attractor turns into a chaotic saddle as a consequence of a collision with the border of its basin of attraction. Beyond the

crisis point the attractor leaks out of its basin, and consequently one observes chaotic transients, after which the phase

trajectory escapes to some distant part of the phase space. We call the complement of the precritical basin of attraction

a basin of escape since the escape events occur shortly after the phase trajectory enters it. The escape probability, i.e.,

the inverse of the average transient duration, obeys the power scaling law

pðqÞ ¼ Cðq� qcÞc; ð1Þ

where C is a proportionality constant and c P 1=2 is the scaling exponent (henceforth, without loss of generality, we

assume qc ¼ 0). However, the chaotic saddles and, possibly, basins of escape have a discrete fractal structure which

cannot be entirely neglected. This discreteness is reflected in the oscillations superimposed on the basic dependence (1)

[16,18,19]. One can distinguish between normal and anomalous oscillations. The normal oscillations are connected with

the subsequent branches of the fractal saddle entering, with the rise of q, the basin of escape which results in the roughly

log-periodic modulation of the slope of the curve pðqÞ. The anomalous oscillations, including sections in which pðqÞ
decreases against the general trend, appear if the basin of escape has also a distinct fractal structure. In general, the

shape of the curve pðqÞ is quite complex, resulting from the overlap of two incommensurate fractal structures; nev-

ertheless, the basic log-periodic oscillations can often be distinguished.

Henceforth our attention is constrained to systems with discrete time. In order to study SR a small periodic com-

ponent is added to the control parameter, q ! qðnÞ ¼ q0 þ q1 cosðx0nÞ. The systems are then treated as threshold-

crossing (TC) systems exhibiting SR [25,26], and the escape events of the phase trajectory from the precritical attractor

are identified with threshold-crossing events. The output signal is defined as equal to one if at a given time step the

escape event took place and zero otherwise. As a measure of the periodicity of the output signal the spectral power

amplification (SPA) is used, defined as r ¼ Sðx0Þ=q2
1, where Sðx0Þ is the height of the peak in the output power spectral

density at the periodic signal frequency. The SPA turns out to possess multiple maxima as a function of the mean value

of the control parameter.

The first system under study is the H�eenon map: xnþ1 ¼ p � x2n � Jyn, ynþ1 ¼ xn with J ¼ �0:3 which shows a

boundary crisis at pc ¼ 1:42692111 . . .: for p < pc a strange attractor exists, for p > pc the system diverges to infinity. In

order to investigate SR pðnÞ ¼ p0 þ p1 cosðx0nÞ is assumed, and the TC events are defined as the departure of the phase

trajectory towards infinity (after every such event the trajectory is reinjected at random on the precritical attractor and

the evolution is continued after a short transient without changing the phase of the periodic signal). The following

identification of parameters can be made: q � p � pc, q0 � p0 � pc, q1 � p1.

The second system under study is the kicked spin map [27,28]. The model describes the motion of a classical

magnetic moment (spin) S, jSj ¼ S, in the field of uniaxial anisotropy and impulse transversal magnetic fieldeBBðtÞ ¼ B
P1

n¼1 dðt � nsÞ given by the Hamiltonian H ¼ �AðSzÞ2 � eBBðtÞSx, where A > 0 is the anisotropy constant. The

time evolution is determined by the Landau–Lifschitz equation with damping, _SS ¼ S
 Beff � ðk=SÞS
 ðS
 BeffÞ,
where Beff ¼ �dH=dS and k > 0 is the damping parameter. The equation can be integrated and denoting by Sn the spin
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vector just after the nth field pulse one finds a two-dimensional map Snþ1 ¼ T ½Sn� whose explicit form is given in Refs.

[27,28]. For S ¼ 1, A ¼ 1, s ¼ 2p, k ¼ 0:1437002 . . . the spin map exhibits attractor merging crisis at Bc ¼ 1:2: for

B < Bc two separate symmetric chaotic attractors, corresponding to the spin ‘‘up’’ (Sz > 0) and ‘‘down’’ (Sz < 0) ori-

entations, coexist, whereas for B > Bc the attractors merge and the spin jumps between these two orientations. In order

to investigate SR BðnÞ ¼ B0 þ B1 cosðx0nÞ is assumed, and the TC events are defined as the jumps between the two

equivalent spin orientations. The following identification of parameters can be made: q � B� Bc, q0 � B0 � Bc, q1 � B1.

In Figs. 1 and 2 the results from numerical simulations of the above-mentioned systems are shown. In both cases the

curves pðqÞ exhibit clear oscillations superimposed on the power-law trend (Figs. 1(a) and 2(a)). In the case of the

H�eenon map the basin of escape is non-fractal, and the almost log-periodic normal oscillations dominate (Fig. 1(a)). In

the case of the kicked spin map the basin of escape is fractal, and its structure is incommensurate with that of the

chaotic saddle; hence pðqÞ shows irregular oscillations with a dominant role of roughly log-periodic anomalous os-

cillations (Fig. 2(a)). In both cases noise-free SMR can be clearly seen, i.e., multiple maxima of the SPA (Figs. 1(b) and

2(b)). The origin of the subsequent maxima and their connection to the general power-law trend (1) and the oscillations

of the escape probability were discussed in detail in Refs. [10,11].

3. Theoretical results

3.1. The model of the fractal chaotic saddle and basin of escape

In order to analyze theoretically the numerical results on the escape probability and noise-free SMR let us introduce

a geometric model of the fractal chaotic saddle and the basin of escape [18,19]. This model incorporates the important

topological properties of the two colliding sets, which we assume to remain identical both below and above the crisis

point.
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Fig. 1. Crisis in the H�eenon map: (a) Mean escape probability p vs. q � p � pc, (b) SPA vs. q0 þ q1, q1 � p1; dots––numerical results,

solid line––theoretical fits using the full formulae, Eqs. (4) and (7), dashed line––theoretical fits using the approximate formulae, Eqs.

(11) and (12); the parameters are p1 ¼ 2
 10�5, T0 ¼ 1024, a ¼ 0:158, g ¼ 0:517, f ¼ 0:554, a ¼ 0:65, c ¼ 0:858, C ¼ 0:467,

B ¼ 0:0931, / ¼ �0:794.
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Fig. 2. As in Fig. 1, but for the crisis in the kicked spin map: the parameters are B1 ¼ 3
 10�4, T0 ¼ 1024, a ¼ 0:00234, g ¼ 0:285,

b ¼ 0:124, bE ¼ 3:27, f ¼ 1:90, a ¼ 1:05, b ¼ 4:022, c ¼ 0:707, C ¼ 0:746, B ¼ �0:428, / ¼ �0:281.
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We assume the model of the fractal chaotic saddle A as a family of K þ 2 parabolic segments Ak (Fig. 3)

A ¼
[Kþ1

k¼0

Ak ¼
[Kþ1

k¼0

ðx; yÞ : y
�

¼ � x2 � ð1� dk;Kþ1Þaak þ q
�
; ð2Þ

where a and a 2 ð0; 1Þ are model parameters. The invariant measure is uniformly distributed along the segments and its

relative density on the segment Ak is assumed as ~llk ¼ ð1� gÞgk for 06 k6K and ~llKþ1 ¼ gKþ1, where 0 < g < 1 is

another model parameter. The model of the non-fractal basin of escape can be assumed as a half-plane y > 0. The

model of the fractal basin of escape is in turn assumed as a family of Lþ 2 stripes Bl (Fig. 3)

B ¼
[Lþ1

l¼0

Bl ¼
[Lþ1

l¼0

ðx; yÞ : ð1
�

� dl;Lþ1Þðblb� blbEÞ6 y6 blb
�
; ð3Þ

where b 2 ð0; 1Þ, b and bE are again model parameters. Taking larger K, L means a finer approximation of the self-

similar fractal sets. The crisis occurs at q ¼ qc ¼ 0 when the uppermost parabolic segment of the saddle A touches the

lowermost stripe of the basin of escape B or the half-plane y > 0. The model parameters a, g, b, bE, a and b are de-

termined by the fractal structure of the saddles and basins of escape of the system under study and can be assessed from

the consecutive magnified plots of the collision region between the chaotic saddle and the basin of escape [18,19]. In

order to model the case with the time-dependent control parameter, q should be replaced with qðnÞ in Eq. (2).

3.2. The analytic theory for the escape probability and spectral power amplification

From the model of Section 3.1 the mean probability of the escape event and the SPA vs. the control parameter can

be evaluated. Consider the model of chaotic saddle (2) creeping into the model basin of escape (3) for q > qc ¼ 0. The

escape probability is proportional to the measure lðqÞ of the overlap of the saddle and the basin of escape [16,17]. The

latter measure is a sum of overlap measures lklðqÞ between the individual parabolic segments Ak of the chaotic saddle

and the stripes Bl of the basin of escape. Thus we obtain

pðqÞ ¼ flðqÞ ¼ f
XKþ1

k¼0

XLþ1

l¼0

lklðqÞ; ð4Þ

where f is the proportionality constant and

lklðqÞ ¼ lkðð1� dl;Lþ1Þðblb� blbEÞ; qÞ � lkðblb; qÞ; ð5Þ

where lkðc; qÞ denotes the measure of the overlap of the segment Ak and a half-plane y > c. The latter measure for

small q� ð1� dk;Kþ1Þaak � c can be approximated as

lkðc; qÞ ¼ ~llk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q� ð1� dk;Kþ1Þaak � c

q
Hðq� að1� dk;Kþ1Þak � cÞ; ð6Þ

where Hð�Þ denotes the Heaviside function.

Fig. 3. The model of the fractal chaotic saddle and the fractal basin of escape.
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The above theory predicts the escape probability pðqÞ with the power-law trend as in Eq. (1), with c ¼ log g=
log a þ 1=2, and oscillations superimposed on it. In the case of the non-fractal basin of escape the form of pðqÞ (Eq. (4))

simplifies significantly (only one sum over k remains) and we get log-periodic normal oscillations with the period log a
[19]. In the case of the fractal basin of escape a complex mixture of oscillations appears. The decreasing (against general

trend) anomalous sections can usually be distinguished with their basic period log b [18,19].

Let us now consider the case of time-dependent control parameter. In the adiabatic approximation x0 ! 0 the

escape probability is slowly time-dependent, pðqÞ ! pðnÞ � pðq0 þ q1 cosðx0nÞÞ [2]. Then the height of the peak Sðx0Þ in
the power spectral density of the output signal is equal to the square of the absolute value of the Fourier component P1

of the escape probability pðnÞ at the frequency x0 [26]. Thus

r ¼ jP1j2

q2
1

¼ jf
PKþ1

k¼0

PLþ1

l¼0 Mkl;1j2

q2
1

; ð7Þ

where Mkl;1 are Fourier components at the frequency x0 of the functions lklðnÞ � lklðq0 þ q1 cosðx0nÞÞ in Eq. (4). The

components Mkl;1 can be obtained analytically; the respective expressions can be found in Ref. [10].

3.3. The approximate theory for the escape probability and spectral power amplification based on the concept of fractal

self-similarity

Let us discuss both the oscillations of escape probability and the noise-free SMR from a perspective of self-similarity

of fractal sets, or discrete-scale invariance [20]. For this purpose let us first consider the case of fractal chaotic saddle

and non-fractal basin of escape. Taking K ! 1 in (2), for small q such that q < a and the approximation (6) is valid,

the escape probability given by Eqs. (4)–(6) remains invariant with respect to a discrete scaling transformation q ! qaj,

j ¼ 0; 1; 2 . . . up to a scaling factor

g�1a�1
2pðaqÞ ¼ pðqÞ: ð8Þ

The origin of the prefactors in the above equation is as follows. For q < a the inspection of Eq. (6) reveals that there is

such k ¼ kmin that Akmin
is the parabolic segment of the saddle with the lowest index whose top is within the basin of

escape y > 0. As q is decreased by the factor a this segment moves out of the basin (i.e., kmin ! kmin þ 1), hence the

invariant measure density of the saddle within the basin is decreased by the factor g. Simultaneously, the length of each

parabolic segment within the basin is decreased by the factor a1=2. Combination of these two changes of the escape

probability leads to Eq. (8).

The invariance property (8) can now be treated as a functional equation for pðqÞ, putting aside the rather complex

form (4) obtained from the models. The general solution of (8) can be assumed as a series expansion

pðqÞ ¼
X1
n¼�1

Cnq
~ccn : ð9Þ

Inserting it back into (8) (and bearing in mind that expði2pnÞ ¼ 1) we get a spectrum of complex scaling exponents

~ccn ¼
1

2
þ log g

log a
þ i

2pn
log a

; n ¼ 0;�1;�2 . . . ð10Þ

Keeping only terms with n ¼ 0;�1 in the expansion (9), and assuming C1 ¼ C�
�1 because pðqÞ is real we obtain [20]

pðqÞ � Cqc½1þ B cosðX log qþ /Þ�; ð11Þ

where c ¼ Re~ccn ¼ 1=2þ log g= log a and X ¼ 2p= log a. It is an expansion of the general function pðqÞ obeying Eq. (8) in

the Fourier series with respect to log q up to the first-order terms. Eq. (11) describes a function with a general power-law

trend with exponent c and log-periodic oscillations with period log a superimposed on it, typically found in description

of systems with discrete-scale invariance [20–24]. This function can be treated as a simple, closed-form approximation of

the curve pðqÞ given in Eq. (4). It can be fitted to numerical data treating B, C and / as fitting parameters.

If both the chaotic saddle and the basin of escape are fractal sets and their structures are incommensurate, no one

discrete scaling transformation similar to Eq. (8) can be written. However, in many cases the anomalous oscillations

turn out to dominate over the normal ones. Then, in the first approximation, the fractal structure of the saddle can be

neglected, and only that of the basin of escape taken into account. Neglecting the fractal structure of the chaotic saddle

is equivalent to assuming the plain power scaling law (1) for the escape probability, with c ¼ 1=2þ log g= log a. In this

approximation the equation corresponding to Eq. (8) becomes b�cpðbqÞ ¼ pðqÞ, which yields again the solution of the
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form (11) with X ¼ 2p= logb. The escape probability becomes then log-periodic with period log b. However, this ap-

proximation of pðqÞ is usually much worse than in the case of the non-fractal basin of escape. Better analysis of this case

would require considering the effect of two competing incommensurate log-periodicities hidden in the system, that of

the fractal chaotic saddle and of the fractal basin of escape. Unfortunately, to our knowledge, a general theory of

discrete-scale invariance with multiple log-periodicities is not yet known [20]: so far, extension of Eq. (11) to include

higher harmonics was only proposed [29]. Thus we constraint ourselves to the above-mentioned approximation.

In the case of time-dependent control parameter qðnÞ ¼ q0 þ q1 cosðx0nÞ, assuming small q1, one can expand pðnÞ in the

Taylor series pðnÞ � pðq0Þ þ ðdp=dqÞq0q1 cosðx0nÞ. The Fourier component P1 of pðnÞ at the frequency x0 in this ap-

proximation is P1 ¼ ðq1=2Þðdp=dqÞq0 . Assuming pðqÞ as in Eq. (11) and using the first equation in (7) we obtain for the SPA

r ¼ 1

4

dp
dq

	 

q0

�����
�����
2

¼ 1

4
Ccqc�1 1

8<:
������ þ B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ X

c

	 
2
s

cos X log q

"
þ / þ arccos

cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ c2

p #9=;
������
2

: ð12Þ

From this formula it follows that if pðqÞ shows log-periodic oscillations around the power-law trend the SPA should

posses many maxima which are connected with the subsequent oscillations of the escape probability, and that these

maxima should also show log-periodicity with the same period. It should be mentioned that the expansion of pðnÞ in the

Taylor series is possible only for q0 P q1; otherwise for q0 þ q1 cosðx0nÞ < 0 there is pðnÞ � 0, and the function pðnÞ is not
differentiable for all n. It is known [11] that the distinct maxima of the curve SPA vs. q0 connected with the oscillations of

the escape probability appear for q0 > q1, at q0 � q1 there is a maximum resulting from the main power-law trend of the

curve pðqÞ, while for�q1 < q0 < q1 there are small, almost invisible maxima or inflexion points located at the rising slope

of the latter maximum, connected again with the oscillations of the escape probability. Thus Eq. (12) approximates the

SPA in the important region of the control parameter where SMR with distinct maxima can be observed.

4. Comparison with numerical results and discussion

Choosing properly the model parameters and using Eq. (4) one can reproduce the complicated dependence of

the escape probability on the control parameter with high accuracy (Figs. 1(a) and 2(a)). The agreement between the

numerical and theoretical results is very good in the case of the H�eenon map, while in the case of the kicked spin map the

overlap of two fractal sets produces a complicated curve pðqÞ whose fine details cannot be very well captured by a

simple model of Section 3.1. Fitting the curves pðqÞ with Eq. (11) reveals the basic log-periodicity of the escape

probability as a function of the control parameter: in the case of the H�eenon map it results from the self-similarity of the

fractal chaotic saddle, while in the case of the spin map––from the self-similarity of the fractal basin of escape. The

curve pðqÞ for the H�eenon map is in fact well approximated by Eq. (11) apart from the region far from the crisis; it is

obvious since in this case there is only one fractal set, so the model and Eq. (8) are quite accurate. On the other hand,

deviations from the log-periodicity of the escape probability for the kicked spin map are more pronounced.

Choosing the same model parameters as when fitting the escape probability, using Eq. (7) one can also reproduce the

complicated multipeaked dependence of the SPA on the control parameter at least qualitatively (Figs. 1(b) and 2(b)). In

turn, Eq. (12) yields curves rðq0Þ which only roughly resemble the numerical ones (it should be remembered that Eq.

(12) is valid only for q0 > q1). The predicted basic log-periodicity of the sequence of the maxima of the SPA is present,

although difficult to observe in numerical curves rðq0Þ. This is since it can be best seen only close to crisis and for small

q1, which requires prohibitively long simulation time to obtain the SPA. In the case of the H�eenon map an interesting

point is that the full analytic theory, Eq. (7), predicts the increase of the height of the maxima of the SPA far from crisis,

while the approximate formula (12) predicts their decrease. The latter conclusion seems to be confirmed by the height of

the rightmost numerical maximum of the SPA in Fig. 1(b); this is, however, misleading, since far from the crisis the

curve pðqÞ in Fig. 1(a) deviates from both model curves given by Eqs. (4) and (11), hence the height of the above-

mentioned maximum cannot be used as a test of validity of the models. In the case of the kicked spin map large de-

viations from the predictions of Eq. (12) can be seen, and the curve rðq0Þ is much more complicated than expected from

the simple analysis based on discrete-scale invariance. The presence of the fractal structure of the chaotic saddle, i.e., of

the second competing log-periodicity, splits and shifts the maxima of the SPA with respect to what can be supposed if

only the basic fractal structure of the basin of escape is taken into account.

5. Summary and conclusions

In this paper two exemplary systems with crises were investigated, exhibiting noise-free SMR resulting from the

normal and anomalous oscillations superimposed on the power-law trend of the escape probability from the precritical
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attractor as a function of the control parameter. Both the oscillations and the multiple maxima of the SPA appear as a

result of collision of the fractal chaotic saddle with the, possibly fractal, basin of escape above the crisis point. Nu-

merical results were compared to theoretical ones, based on a geometric model of the colliding fractal sets. The full

analytic theory yields qualitative agreement with numerical results and reproduces irregular oscillations of the escape

probability and a complicated structure of the maxima of the SPA. The approximate theory based on the concept of

fractal self-similarity, or discrete-scale invariance, captures the basic log-periodicity of the oscillations of the escape

probability and of the maxima of the SPA, but fails in reproducing details of these curves. This is particularly visible in

the case of fractal basin of escape, in which the SMR results from a collision of two sets with incommensurate fractal

structures, and the deviations from log-periodicity are significant.

The results of this paper reveal similarities between systems close to crisis exhibiting noise-free SMR introduced in

Refs. [10,11] and a class of systems with external noise exhibiting SMR [13,14]. In both cases the origin of SMR can be

associated with the underlying invariance of the important features of the system (the escape probability from the

precritical attractor or the potential forces) with respect to a discrete scaling transformation, which leads to basic log-

periodicity of the maxima of the SPA. This indicates that log-periodicity can be an universal property of SMR in

different kinds of systems. Note, however, that in the chaotic systems near crises the SMR and log-periodicity of

maxima appears naturally as a consequence of self-similarity of fractals, and not due to an arbitrarily introduced

particular form of a potential. Thus such systems fall naturally into a rich class of systems with discrete-scale invariance

[20–24]. On the other hand, chaotic maps close to crisis in the case of fractal basin of escape are exemplary systems with

SMR in which the structure of the maxima of the SPA can be more complicated than expected from considerations

based on the simplest concept of discrete-scale invariance. Similar complicated structures can be probably also found in

stochastic systems more general than the models for SMR considered so far in Refs. [13,14].
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