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Abstract—The problem of control of chaos in a microeconomical model describing two competing
firms with asymmetrical investment strategies is studied. Cases when both firms try to perform the
control simultaneously or when noise is present are considered. For the first case the resulting control
efficiency depends on the system parameters and on the maximal values of perturbations of
investment parameters for each firm. Analytic calculations and numerical simulations show that
competition in the control leads to ‘parasitic’ oscillations around the periodic orbit that can destroy
the expected stabilization effect. The form of these oscillations is dependent on non-linear terms
describing the motion around periodic orbits. An analytic condition for stable behaviour of the
oscillation (i.e. the condition for control stability) is found. The values of the mean period of these
oscillations is a decreasing function of the amplitude of investment perturbation of the less effective
firm. On the other hand, amplitudes of market oscillations are increasing functions of this parameter.
In the presence of noise the control can be also successful provided the amplitude of allowed
investment changes is larger than some critical threshold which is proportional to the maximal possible
noise value. In the case of an unbounded noise, the time of laminar epochs is always finite but their
mean length increases with the amplitude of investment changes. Computer simulations are in very
good agreement with analytical results obtained for this model. © 1997 Elsevier Science Ltd

1. INTRODUCTION

It is generally accepted that dynamics of many economical systems should be described by
non-linear equations [7, 19, 20, 13, 11, 9] and it is well known that such systems can exhibit
a phenomenon of deterministic chaos (2, 12, 8, 16, 1, 5]. Recently a method of chaos
control has been proposed [14] and this method has been successfully applied to control
deterministic chaos in numerous physical [3, 17], chemical [15] and biological [6] experi-
ments. In the paper [10] we adopted this method for a generic economic model of two
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competing firms. In the present paper we extend our former results by assuming that the
control procedure is simultanously applied by both firms or that the noise is present in the
system. We will show that in such a situation a competition in control can again lead to
chaotic market behaviour, although both partners try to stabilize the system. Similarly the
presence of noise destabilizes the system if the amplitude of such a noise is above some
critical value.

In Section 2 we give a brief overview of the OGY [14] algorithm of controlling chaos as
well as of our previous results on the control of a chaotic economical model [10]. In Sections
3-7 the problems of control simultaneously performed by both firms in a fully deterministic
model are discussed while in the Section 8 the influence of noise is studied.

2. SINGLE-SIDE CONTROL OF CHAOS IN AN ECONOMICAL MODEL

Let us assume that there are two firms X,Y competing in the same market of goods and
that, due to their active investment strategies, their sales x,, y, at the time moments
n =123... evolve according to equations [1, 5]

a
+
l + exp [ - C(x” - yll)]
b
1+ exp[—c(x, —y)]

Xn-r] =F.r(xnayn;p)=(1—a)xn (1)

Yn+i1 :Fy(xn)yn;p):(l—ﬁ)yn*_ (2)

where the constants a and B (with 0 < «,B <1) are the time rates of the decay of sales of
both firms under zero investment while the second parts of equations (1) and (2) describe
the influence of investments at time 7 on the sales at time » + 1. Parameters a and b describe
the efficiencies of investments of both firms or scales of their investments while parameter ¢
is a measure of the ‘elasticity’ of the investment strategies. The symbol p on the right-hand
side of equations (1) and (2) stands for the dependence of the all parameters a, b, ¢, a, .
Equations (1) and (2) together form a two-dimensional map r,.,=F(r,;p), where
r, = [x,.y,] and F=[F*,F’], which fully defines the evolution of our discrete dynamical
system. Depending on the specific values of the parameters «, 8, a, b and c the solutions of
equations (1) and (2) can be regular or chaotic [1, 5]. It is interesting that equations (1) and
(2) can also be connected with a model of army races between two countries with
asymmetric armament policies [1, 5].

The chaotic dynamics of any model that can be described by a map of the form
r,.. = F(r,;p), can be easy controlled [14] if one makes use of the existence of unstable
periodic solutions that can occur in the close neighbourhood of any chaotic trajectory. The
simplest of such solutions is an unstable fixed point r’ that fulfills the equation

r/ =F(x/;p") (3

for some value of the parameter p = p°. Linearizing the map F(r,;p) around the solution
r=r/ and around the parameter value p =p° one can easy calculate a value 8p, of the
time-dependent change of the parameter p that is needed to shift the chaotic trajectory to a
so-called stable manifold of the fixed point r’ [14]. In the case of a two-dimensional map, 1.e.
in the case when r = [x,y], this change of parameter can be written as [4]

Az

f2'wp

517:: = fZ' 8[',, (4)
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Fig. 1. Time dependence of sales x,,. Results of the stabilization on the fixed point and on period two can be easily
seen. Dashed lines show the mean values of the sales at various time intervals (chaotic or period ones). The
meanings of the points A, B, C, D, E and F are explained in the text.

where the constant A, is the larger (in modulus) eigenvalue of the Jacobian J¥ of the map
F(r,;p) calculated at the unstable fixed point

aF*(x,y;p)  9F*(x,y;p)
N 3 ’ d
JE= X ! Y , (5)
aF(x,y;p)  F”(x,y;p)
ax ’ 3)’ (r=r/;p=p")

the vector f, is a contravariant vector connected to the Jacobian J¥ (see Appendix A) while
the vector w, is defined as
~(3)
w, = ap

It is important to stress that when the system is placed on the stable manifold, it is attracted
towards the fixed point in the course of time. In such a way one can switch from the chaotic
trajectory to the period one if only one changes appropriately the model parameter p. Below
we present how such a control of chaos has been performed for the Behrens—Feichtinger
model [equations (1) and (2)] [10]. In Fig. 1 the sales x, of firm X are depicted (the
behaviour of sales of firm Y looks very similar). During the first 100 steps the system was not
controlled at all and the chaotic evolution of the sales x,, can easily be seen. At time n = 100
(depicted by arrow A in Fig. 1) firm X decided to control the market, assuming the
maximum value of change of its investment parameter Aa =0.008, which is 5% of the
‘standard value’ of its investment parameter a° = 0.16. Firm X had to wait for the occasion to
activate this control strategy up to time # = 199 (arrow B) because up to this moment the
sales x,,, y, did not fulfill the condition |éa,| < 0.008 and the control procedure could not be
activated. At n =199 (arrow B) the control was switched on for the first time and, beginning
from this moment, control was permanently used up to the time n =250 (arrow C) when
‘firm X decided’ to switch the control off. It is worthwhile pointing out that if one excludes
the first few steps, then the next values of the perturbations of the control parameter a were
extremely small. Unfortunately the value of x” is smaller than the mean values of the sales of

(6)

(r=r/;p=p*)



1492 J. A. HOLYST et al

firm X in the chaotic region n =0,1,2...199

xf

~().65 (7)
Xchaotic

This means that for this kind of investment behaviour, an uncontrolled, chaotic evolution of
the market would be preferred (for this particular case) if firm X wants to maximize its sales.
However, switching from chaotic to non-chaotic behavior always brings the strong
advantage that the firm can perform market forecasting, in other words, it can be more sure
of the volume of its sales x, during the next time steps. Such knowledge is very limited for
chaotic trajectories because of its sensitivity to initial conditions.

On the other hand, if we consider equations (1) and (2) as a model of army races [1, 5],
then the control brings no doubt about the positive effects of both the stabilization and
decreasing (by around 35%) of the military potentials of both countries.

At time n = 250 (arrow C at Fig. 1) it is assumed that firm X had switched off its market
control. One can see, however, that the market remained stable for about 45 steps (up to the
arrow D) when it ‘forgot’ about the previous stabilization and again started to behave in a
chaotic fashion. Then at time ¢ = 350 (arrow E) firm X decided to switch the market control
on again. However, at this particular time, control was used to stabilize the market on period
two (r{, r5) such that F(r{;p°) =r and F(r{;p”) =r{. The control procedure for period two
was first activated at time »n = 397 (arrow F) and after a few further iterations the system was
stabilized. Now the sales of firm X oscillate between x| and x5. If one compares the mean
values of the ‘period two’ solutions with the ‘chaotic’ mean values

T,

NAY o7 (8)

2xchaolic .

one can see that the stabilization of the chaotic dynamics on ‘period two’ brought a 7.7%

increase in sales for firm X. It is interesting that although the control procedure is only

performed by firm X, one can also observe the stabilization of sales y, of firm Y and

similarly, the fixed point y, brings a decrease of sales y, while orbit two brings an increase
[10].

3. SIMULTANEOUS CONTROL OF CHAOTIC MARKET BY BOTH FIRMS

Let us assume now that both firms simultaneously try to change market behaviour from
chaotic to periodic and they attempt to shift a chaotic trajectory towards an unstable fixed
point r/. Corresponding values of changes of the investment parameters 8a, and &b, needed
for such a control follow from equation (4) and can be written as

A

da, = — f,-or, = Af,-ér,,, (9)

f,w,

Az

8b, = — f,-or, = Bf,-ér,,, (10)

f>-w,

where the vectors w,, w,, are
1
= — 0] 11

W [1 + exp [~ c(x" —y")] (b

wy, = [O ! ] (12)

"1+ exp[— (" —y)]
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We will assume that the firms can start the control provided that |8a,| < Aa or |8b,| < Ab.
Thus it follows that there are parameters of control efficiency for each firm s, = Aalf,-w,|,
s, = Ab|f,-w,,| and the larger value of these parameters decides which of the firms X.,Y is
more effective in its control strategy and can start the control first. Let us assume that s, <s,.
Then firm Y starts to control the market first in the time point ¢ = n,, i.e. there is |6, | = Ab.
We assume that (6a,|> Aa, otherwise the discussion can be reduced to the situation
occurring at a certain moment t = n, + 7, (see below). In the case where the control policy is
successful, i.e. non-linear terms represented by corrections of the type K,,‘S“.fzmn (see
Appendix B) do not destroy the control, the distance between the market trajectory r, and
the fixed point r/ decreases with time. After one or several steps of time, this distance
becomes so small that firm X can also start its control procedure at a time moment »n,+ T,
(7, >0) when |da, ,.|= Aa. Because the firms act independently there is no coordination
between their control strategies and we shall show that, in the case when they both try to
stabilize the market, their combined influence on the market does not always lead to system
stabilization. The dynamics of the market is then described by the following equation

or, ., ~J¥ ér, +w, da, +w, 8b,. (13)
for n =n,+ 1,. Putting the values of éa, and &b, given by equations (9) and (10) into

equation (13) and projecting the resulting equation onto the stable and unstable directions of
the Jacobian matrix J¥ one gets, after some algebra,

gs,n+1 = gs.n’\! - §u‘n'\2d| (14)
gu.n+] = - Azgzmu (15)
5an+l = - AZan! (16)
8b,s1= — Asb,. (17)
where
gs.n = Srn‘fl L (18)
§u.n = (Sl',,'fz
and

_ fl‘w, f|'wb

d (19)

B f;'w,, fz'wb '

However because there is |A]>1, the above results mean that in the case of the
simultaneous control of both firms, the absolute value of the unstable component &, ,, of the
vector 8r, and the absolute values of the perturbations of the investment parameters éa, and
8b,, increase in time. In other words, the system is farther and farther from the fixed point r’
(more precisely from the stable manifold leading to this point) and larger and larger values
of perturbations of the investment parameters are needed to fulfill the control strategies.
This is the opposite situation to the case when only a single firm controls the market and the
distance r, decreases in time. It follows that there must be a moment »n, + 7; + 7, when there
iS [8ay,+ ¢+ >Aa and firm X, which is less effective in its control action than firm Y
(because s, <s,), has to break its stabilization efforts and put da,,,. +.,=0.




1494 J. A. HOLYST et al.

4. THE CONDITION FOR THE PERMANENT CONTROL

Following the last section we need to distinguish two cases:

(a) If |8b,,+ ¢+l = Ab, firm Y will continue its stabilization policy for several time steps
alone until firm X switches on its control again.

(b) If |6b,,,,+ ¢,+ -, > Ab, firm Y must switch the control off at the same moment as firm X,
In such a case, the market will evolve for some time along an uncontrolled chaotic
trajectory until it returns to the neighbourhood of the fixed point r/ and at least firm Y
will be able to start its control procedure again.

Obviously if only case (a) appears, then the market oscillates in the neighbourhood of
the fixed point r/ whereas if case (b) is possible, then such oscillations are interrupted by
chaotic intervals. The condition for the absence of case (b), i.e. the condition for the
stability of oscillations around the fixed point 1/, can easily be deduced if one takes into
account that from equations (9) and (10) we have

6bn fZ'W,

— = 20

da, frrw, (20)
However, the maximum possible value of |da,, . +.| is equal to |A,Aa| (because
|8, ¢, + ,-1| = Aa) and calculating the maximum possible value of |6b,, . . +.,| we get the
following condition for permanent control

fZ‘wa

Ab = |\Aa = Ab,. 21)
f-w,
The above relation can be rewritten in the form
s\r’
==Ay (22)
s

X

which can be interpreted in such a way that the oscillations are stable, i.e the control is
successful provided the control efficiency parameter of the more efficient firm Y is larger
than the control efficiency parameter of the less efficient firm X by at least a factor equal to
the absolute value of the larger eigenvalue of the Jacobian matrix J%. The validity of the
condition (21) was checked numerically and a very good agreement between the analytical
and numerical values of the critical parameter Ab, has been observed. In Fig. 2(a) and (b)
one can see that if the maximal value of the changes of the investment parameter Ab for the
more efficient firm Y is less than the corresponding critical value Ab,, then the market is
controlled only during some time intervals. On the other hand, we have used Ab = Ab, for
Fig. 2(c) and one can see that in this case the control is permanent. Corresponding results
describing the evolution of the sales y, of the second firm Y are quite similar to the results
presented in Fig. 2(a)—(c) for the sales x,, of firm X.

5. FORM OF OSCILLATIONS

To get the analytic form of the stable oscillations presented at Fig. 2(c) we followed our
analysis from the previous section and divided the whole period of oscillation into two time
intervals. During the first time interval, ny <n <n,+ 7, only firm Y is active with its control
efforts. However, during the second interval, ny+ 7, =n <ny7, + 7., both firms are active.
Without losing the generality we will assume that n, = 0.
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Fig. 2. Evolution of the sales of firm X for various values of maximal perturbations Ab of the investment
parameters of firm Y and the constant value Aa = 0.016 of the maximal perturbations of the investment parameter
of firm X. (a) Ab =0.97Ab,_, (b) Ab = 0.995Ab,. and (c) Ab = Ab,.



1496 J. A. HOLYST ez al

The market evolution during the first period can be obtained by combining equations (13)
and (10) and putting da, = 0 instead of equation (9). One gets, as a result

s A
8t ~JEr, — wbﬁv—bfz-ar,, (23)

From equation (23) we determine, after some algebra, that stable and unstable components
of the vector r, evolve as follows

§€,n+l = AI gs,n - AZdbg:u,n (24)
gu.n+l = 0~ (25)
where the constant d, is equal to
fl 'wb
dy=7"—
o (26)

Equation (25) indicates that if the standard OGY control is used [14], then the unstable
component ¢, vanishes. To obtain a more precise value of this component we need to extend
the standard OGY analysis by investigations of non-linear contributions to system equations.
Taking only the quadratic terms in the corresponding Taylor series (see Appendix B for
details), instead of equation (25) we obtained the following result

é‘u.n+l = Ku,s,\'é‘z.s‘n + Ku.uufzu.n + Kl!.bb(abn)z + Ku..s‘ug\xngmll + Ku..\hé:s‘.nabn + Klt.ubé‘mn 6bn
Eg(gu,n’fx.nsabn) (27)

where the coefficients &, ., Kuuws Kusur Kushs Kuups Kupp are defined in Appendix B.

To get a description of the market evolution during the second time period we iterated
equations (14) and (15) and as a result we obtained the following solutions for the stable and
unstable components of the market vector during the time interval corresponding to control
of both firms

¢ (- Az)k - /\f
V. + = 5. T i + u, T 2
g‘-fl k g |Al ga‘ .AZ /\2+)‘1 d ( 8)
§u.t,+k = gu.r,( - /\Z)k (29)

where 0 <k = 7,. The combined results representing irregular oscillations of sales x,, and y,
of both firms X and Y as well as the perturbations of their investment parameters a,, and b,,
are presented in Fig. 3. One can see that the agreement between the analytical and
numerical results is quite good.

In Fig. 4 the time evolution of the sales x, of firm X is presented for various values of
parameter Aa. Although the evolution is not completely periodic, one can observe that an
increase of parameter Aa leads to a decrease of the mean period of these oscillations and to
an increase of their mean amplitudes. The quantitative analysis of these phenomena will be
the aim of the next sections.

6. MEAN PERIOD OF MARKET OSCILLATIONS

We will try to estimate the mean value of the period t of market oscillations seen in Figs
2-4. According to the discussion from the previous section, this period can be expressed as
T =1, + 7, where the period 7, corresponds to the time length when the control is performed
by firm Y alone while the period 7, describes the time length when the control is performed
by firms X and Y simultaneously.
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Fig. 3. Analytical and numerical results representing an irregular oscillatory evolution of firms sales x,,, y, and
perturbations of investment parameters 8a,,, 8b,, as described by equations (27)-(29).



1498 J. A. HOLYST er al.

0.04 T T T L T T T T T
Aa=0.08 —=—
Aa=0.04 — |
Aa=0.02 ——

0.035 (
0.03

0.025

0.015

0.01

5 10 15 20 25 30 35 40 45 50
n

Fig. 4. Oscillations of the sales x,, of firm X for Ab = 0.2 and for various values of the parameter Aa.

For simplicity we will restrict our investigations to the case 7, = 1 when after one step of
the control performed by firm Y the market is so close to the unstable fixed point r’ that
firm X can also start its control procedure. The condition for such a situation can be
obtained as follows. If firm X can start the control at the moment n = 7, + 7, + 1 then it must
be

f,-w,Aa
e Tl v (30)
2
However
§u,rx+ +1 = 8(§u,r.+ T3 gs,tﬁ-rz, 8br,+ tz) (31)

where the function g on the right-hand side of the above equation is defined by equation
(27). The values of arguments of this function can be expressed with the help of equation
(29) and the asymptotic form of equation (28) that is valid for 7,> >1

Eurien = (A (32)
and from equation (10) we have
by, r, = Bl zyar, (33)
Putting equations (29), (32) and (33) into equation (31) we get, after some algebra,
burirer1 = EASEL o ~ E& o 1o, (34)
where the coefficient E is defined as
2
E = Ky T Kusu A]Aj_d/\z K"‘”()«,Aj-d)tz) LR A?fi + KB + Ku.th2 (35)
Taking into account that
EalAol Z €y ey 1ol > E4° (36)
we finally get from equations (30) and (34) the following condition for the case 1, =1
|EAfyw,Aa| =1 €))

Now we can estimate the value of the period 7,. Putting in equation (34) &, ¢+ r,+1 = &. 1,
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Fig. 5. Mean values of the market oscillation periods as a function of the parameter Aa and the parameter
Ab =4Aa > > Ab,. The line represents the theoretical dependence equation (40).

we get 1= EA37, .. Combining it with equation (29) we can write the inequalities equation
(36) as

Ea“ho = EAZ T > €3¢ (38)
Taking from equation (30) the definition of £¢3%, from the inequalities equation (38) we get
the following inequalities for the period 1,

_log |EE, w,Aa| —re log |Ef,-w,Aal|

= 39
’ log [A,| (39)

log |A,]

Assuming for the mean value of the period 7, the mean value of its lower and upper limits
and putting 7, = 1 we finally get the mean value of the total oscillation period as

B log |Ef,-w,Aal| N 3

O = e 2

(40)

The last relation is in a very good agreement with the numerical simulations which can be
seen in Fig. 5 and which show that this period is a decreasing function of the parameter Aa,
Ab. The small differences between analytical and numerical results can only be seen for low
values of (7) where the approximation equation (32) is no longer valid.

7. AMPLITUDE OF MARKET OSCILLATIONS

To obtain the values of the amplitudes of market oscillations we use relations between
‘x'l’y'l and fs,ﬂ? gl(,rl

0x, = &sn€s + Eune (41)

ayn = §Tl‘lev¥ + gll."e‘lyl (42)

After a tedious algebra, similar to that presented in Section 6, we found that a mean value of
one extreme of 8x,, can be written as

6fextrl = A?/\Yl + A;( - AZ)Y (43)
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Fig. 6. Mean values of the market oscillation amplitudes as a function of the parameter Aa and the parameter
Ab = 4Aa > > Ab,.. The lines represent the theoretical values equations (43), (47) and (48).

where
. 1 - AZ Ald AzEd A
Aj=¢e' E ﬁ“( )/\( —d)— = (1 + AD(£A)? 44
1 €, Slgn( )§ 2 2 /\] +/\2 b €, 2(A1 +/\2)( 2)(§u ( )
E Aad
A== Aa21+/\2(,§ 2 +x) 45
2 2 (gu ) ( 2) € )\] + Az €y, ( )
1 ( - FzAE)
og [ —222
2\ har) (46)
L N
and I') = logA |, I'; = log( — A,). The second extreme of x,, is either
a-fexrrZa = AJ; + A; (47)
or
_ ) 1+ Ay Axd
e = sigm(E)E( 52 (e 2+ o) 4
Xoxirap = SIgN(E)E; > e A e (48)

One can get the corresponding extreme values of y, by changing e; — e} and e;,— ¢}, in the
above equations. To get above results we used relations AJA3>0, 1> A, >0, A,< -1 and
we assumed 7, =1, 1,> > 1.

The comparison of equations (43), (47) and (48) with numerical simulations is presented in
Fig. 6. We see that the agreement is very good. The fact that the amplitudes of (stable)
oscillations of x, and y, increase with the values of the amplitudes of investment changes Aa,
Ab, can be intuitively understood: if Aa, Ab increase then the market can go further from the
fixed point 1’ and the oscillations should be larger.

8. INFLUENCE OF NOISE

It is clear that no economic model includes all features of mechanisms governing the
economic processes nor is the information on the market situation that is available to
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decision makers complete. Such an approximation or a lack of knowledge can be modelled
by additional degrees of freedom that influence the system as a noise. To do this, to the
right-hand side of equations (1) and (2) we add an additional term g, = [g},g.] representing
a pair of random variables
l'n+] = F(xmyn;p) + gn (49)
We consider two kinds of noisy perturbations: white noise (WN) and gaussian noise (GN).
In the first case we assume that the variables g* and g” can take, with a constant probability
Prun(g5g”) = (downoin) ', any value from intervals [—oiynioin] and [—a¥vnioinl,
respectively, where the constants oy, 0y =0. In the second case there are no limits for
possible noise values but the noise with a small modulus is more likely than the noise with a
large modulus, i.e.

_ 1 &)y (@) ]
ProM®) = Vo tnotm e"p[ 2oty 2o
where a&n, 068 =0.

Let us assume that the noise is present during the single-side control performed by the
firm x. The first question we can ask is: when does the presence of noise destroy the control
algorithm? The answer to this question follows directly from the combination of equations
for the noisy dynamics equation (49) with the expression equation (4) for the control
parameter 8a,. In fact, if the system is stabilized on the periodic orbit then ér,~g,_, and
the value of the control parameter is

(50)

Az
f2'wa

6(1,, = fz‘g,,_| (51)

However we have assumed that |8a,| < Aa and it follows that in the presence of the white
noise the control is permanent if

A
Aa> | 2| (6] oy + 6] oyn) = Ady (52)

2"Wy
while for the gaussian noise the permanent control is possible only in the limit Ag — . The
validity of the condition (52) has been checked numerically. In Fig. 7(a) and (b) the values of
the maximal control parameter Aa are slightly below the critical value Aa,,,, and one can see
that ‘laminar’ time periods when the system is under control and the values of sales x,
oscillate around the fixed point value x; are interwoven with periods of chaotic behaviour.
On the other hand, for Fig. 7(c) the maximal control parameter Aa is slightly above the
critical value Aa,,; and one observes that the system stays permanently under control. For all
these figures we have used o¥;y > a¥;» because the control is performed by firm X which is
well informed about its own market situation but has a limited information about the
competing firm Y.

The second question we can ask is: what is the mean length {(n), of observed ‘laminar’
intervals? To calculate this value we first need to calculate the probability p,, that for a
given value of the maximum control parameter Ag the system will stay under control for one
time step. Taking into account equation (51), this probability can be expressed as the
following integral

+x Sg*+R
pa=| ag |  pilggr)ap (53
- Se—R
where S =—F3/f5, R=Aalf,w, | A,f3"" and Pr(g*,g”) represents either the white noise

distribution Pry,(g) or the gaussian noise distribution Prsy(g). In the first case, the integral
can be performed analytically and the result is a piecemeal linear function of the parameter
Aa. In the second case, the integration can be done numerically. Now the probability that
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Fig. 7. lnﬂuence of white noise on the sales of firm X. Maximal amplitudes of the noise are o, =4x 107",
8, =20x 107° thus Aa,,, =0.0174744. For all figures there is Ab =0. Aa = 0.017 for (a), Aa = 0.0172 for (b) and
Aa = 0.0175 for (c).
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Fig. 8. Influence of the control amplitude Aa on the mean length of the laminar market periods for white noise and
for gaussian noise.

the system is controlled during n steps but the (n + 1) step breaks the control can be written
as P, = (pa,)"(1 — pas)- The mean value of controlled periods can then be written as

(n), = 3 np, = £ (54)
n=0 1—pas

The result of equation (54) is presented in Fig. 8 as the function of the parameter Aa for the
white and gaussian noise together with corresponding statistics of numerical simulations. We
used the same values of the parameters ofn,0%n as for Fig. 7 and we put ojn =
Vgaé;Ar,a-‘;V,vz\/go%-N to insure that mean square values of the noise components g,, g,
have the same values for the cases of white and gaussian noise. The fact that for white noise
in the limit Aa — Aa,,;, we have (n); — = follows from the fact that for Az = Aa,,, the control
is permanent {[cf. Fig. 7(c)].

9. CONCLUSIONS

We observed that a competition of control between two firms that have the same aim to
stabilize the chaotic market again makes the system chaotic. This phenomenon occurs
especially when the ‘control efficiencies’ of both firms are comparable. On the other hand,
when there is a large difference in the control potentials of both firms then the market can be
easily controlled by the ‘more efficient firm’. The result of competitive control is the
occurrence of ‘parasitic’ oscillations around the stabilized fixed point of the market
evolution. The amplitude of these oscillations increases with the increase of the amplitude of
the ‘less efficient firm’ and above some critical value these oscillations destabilize the
temporary state of control. In order to get a qualitative description of this behaviour one has
to extend the standard linear analysis of the controlled system by higher order contributions.
Such an approach has proved to be successful and we obtained very good agreement
between numerical simulations and analytical estimations of the mean values of market
oscillation periods and oscillation amplitudes. The noise can also destroy the control, for the
unbounded noise the market evolution is always divided into epochs of laminar (controlled)
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and chaotic behaviour. For the bounded noise, the system can stay permanently under
control provided that the control efficiency is enough large compared to the maximal noise
value.
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APPENDIX A

The Jacobian jf, possesses the eigenvalues A,. A, and eigenvectors e, e, defined by the equations
jf,el(z) = A2 (A1)

The unstable fixed point r in the neighborhood of the chaotic attractor must have a character of a so-called saddle
fixed point [18]. This is equivalent to the fact that one eigenvalue fulfills [A,| <1 while for the other eigenvalue there
is |A,} > 1. The corresponding eigenvectors e, and e, define the stable and unstable directions of the fixed point r/,
respectively. Assuming that the eigenvectors e,,, are normalized, i.e. |e;»)| = 1 one can now find a pair of vectors f|,
f, that are perpendicular to the unstable and stable axis, respectively
fe,=fre =0, (A2)
fre,=fre, =1 (A3)

The vectors f, and f, together form a so-called contravariant basis.
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APPENDIX B

Taking into account equations (1), (2) and (18) we can expand the unstable component of the vector r,,; as
follows

oF dF oF 18°F 18F 14°F , &F
+ = v "1+.—; ll}l+>‘—8bﬂ-r_-_7_ _\'N+‘~F_ AH"+*»—" 5 ”n h+- - SHaDun
Eont [ag\ & ag,,§~ b 2d§1§" 2a§2,,§ . 2d[r( b,,) dé”&‘&. &,
o°F &°F
+ b, + ——— éb,, |f, Bl
€00, + 6,50, | 1 (B1)

where we have assumed that there are no changes of the parameter a,. However, due to relation (4), the linear
terms in above equation disappear. The remaining quadratic coefficients can be expressed with the help of the
following relations

ag* @ ] ag* 9

—=> ., =23 (B2)
P 9, K 9&. 0q

a4 k o &
ooetmel, oot =eh (B3)
a&,s dgu
As result we get
2 2 2 . ~
éu./H-I = Ky f,ul + Kll,ll“éll.ll + Ku,b/)(Bbu) + Ku“«lté.\gu - Ku“\hgv,uabn + Ku.uhgzulabn (84)
where
2
d
) k1 e
Kuss = 2 e )2 %
o kim 9q"0q
.2 o
_1 k1 om OF
K = 2 E eserfy
kot aq"aq

-2
aF
k 1 rmr
K‘.ZZ%‘-’I 2 k.7
By aq"oq (B3)

62 2

= k pm
Kiub = 2 elf

2 . k-
e aq"ob
-2

— k
Kysh = E €, '2" (')qkffb

ko

2
a_FIH
=1
Kubp = 2 Eflzn abab

m

A further simplification of results follows from the fact that due to the relation equation (4). the ‘variable’ 8b, is
proportional to the ‘variable’ £, ,, and due 1o equations (1) and (2), the coefficient «,, ,, vanishes for the considered
model.



