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Abstract. Random Boolean Networks (RBNs) are frequently used for modeling complex systems driven
by information processing, e.g. for gene regulatory networks (GRNs). Here we propose a hierarchical
adaptive random Boolean Network (HARBN) as a system consisting of distinct adaptive RBNs (ARBNs) –
subnetworks – connected by a set of permanent interlinks. We investigate mean node information, mean
edge information as well as mean node degree. Information measures and internal subnetworks topology
of HARBN coevolve and reach steady-states that are specific for a given network structure. The main
natural feature of ARBNs, i.e. their adaptability, is preserved in HARBNs and they evolve towards critical
configurations which is documented by power law distributions of network attractor lengths. The mean
information processed by a single node or a single link increases with the number of interlinks added to the
system. The mean length of network attractors and the mean steady-state connectivity possess minima
for certain specific values of the quotient between the density of interlinks and the density of all links in
networks. It means that the modular network displays extremal values of its observables when subnetworks
are connected with a density a few times lower than a mean density of all links.

1 Introduction

Many complex systems consist of evolving, constantly
changing elements and complicated functional relations
between them. Simplified models have been created to
study and compare certain properties of these structures.
One example of such approaches is random Boolean net-
works (RBNs). RBNs are generic and that is why they
have been applied in many different fields [1–4] including
gene regulatory networks (GRNs).

GRNs are models describing the structure and behav-
ior of the transcriptional network responsible for regulat-
ing the gene expression in a cell [5]. Although gene ex-
pression levels corresponding to GRN can be described
as a continuous process, they are also studied using dis-
crete variables, like in the ensemble approach [6,7]. Nodes
of RBNs represent genes as on-off devices and directed
connections in RBNs represent physical or regulatory in-
teractions. GRNs are both robust and stochastic [8]. Ro-
bustness signifies the ability to reproduce identical traits
despite changing environment and stochasticity refers to
fluctuations in a population of similar cells. GRNs must
respond to diverse stimuli and they are highly modular,
e.g. hierarchical regulatory interactions in the transcrip-
tional networks of yeast [9]. The terms – hierarchy and
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modularity in GRNs – can be understood in many ways.
One of them is assigning particular biological processes
to some modules [5]. Specific groups of genes are then
responsible for responding to specific stimuli. In another
approach GRN elements can be divided into three lay-
ers which differ in the level of noise in their output [8].
Generally there exist genes, whose expression needs to
be precise in order to avoid some lethal mutations and
there exist genes whose expression can be more variable
and modulated (i.e. noisier) in response to environmental
cues. Essential genes display lower variability and a lower
level of noise. Variable genes are more sensitive to muta-
tions. The analysis of GRNs has demonstrated that diverse
stimuli may cause modifications of gene interactions and
network topology [10,11]. During GRN evolution edges are
created and destroyed, and in this way the gene expression
is altered.

Evolution is a process noticed and studied in differ-
ent branches of science [11–23], including biology, bio-
chemistry, social sciences and economics. In the constantly
changing environment individuals must adapt and evolve
to survive. In other words, evolution means searching
for the most optimal configuration [4]. However, in or-
der not to lose diversity and to explore the whole space
of states individuals stay only near the possible best
state [24]. Therefore, dynamics of evolutionary systems
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can be considered to be critical [24] since there are broad
spectra of system observables (e.g. power law distribu-
tions of attractor lengths). Models of macroevolution form
a specific class of models [13] and they exhibit certain
unique features and phenomena. Examples are punctu-
ated equilibria combined with self-organized criticality, as
well as cascades of changes producing power law distri-
bution [12,13,18–20,24]. It is often noticed that dynamics
of evolutionary systems consists of two parts: the local
and global rules [12,13,16,18,21–23]. In the former states
of system elements interact and change, in the latter – the
whole system evolves.

RBNs have already been used as a model of evolution,
e.g. [4,11,22,23]. In reference [22] Liu and Bassler propose
an RBN modification, where network topology is time de-
pendent and the observed coevolution encompasses some
effects noticed in the GRN. Here, we extend the original
Liu and Bassler’s model, most of all by incorporating the
concept of hierarchy [25–28] understood in terms of con-
nection density that is in general higher for links connect-
ing nodes belonging to the same subnetwork (module) and
lower for links connecting different subnetworks. In our ap-
proach there are no robust genes, but a part of network
edges are assumed to be robust, i.e. they stay unchanged
during the system evolution. In this sense constant inter-
links are similar to the described above essential genes and
in this way we are extending the meaning of the standard
RBN models when genes correspond to nodes only.

Selected features of possible modular structures of
RBNs have already been analysed in references [29,30].
In reference [29] the authors have investigated the modu-
lar structure of RBNs consisting of nodes that have been
identified as relevant nodes, i.e. the only nodes that in-
fluence the network’s dynamics. A different idea of RBN
modularity has been used in reference [30]. Poblanno-Balp
and Gershenson have connected separate RBNs with ad-
ditional links and analysed statistical properties of such
systems (average number of attractors, average attractor
lengths and average percentage of states in attractors)
and their sensitivity to initial conditions. The network
topology proposed in our paper is closer to [30], however
we assume different kind of system dynamics and other
observables are investigated.

The paper is organised as follows: in Section 2 we de-
scribe our model, among others presenting the algorithm
of network evolution (Sect. 2.2). Section 3 discusses the
applied information measures. Section 4 contains simula-
tions description, results and discussion. Section 5 gives a
summary and conclusions. Appendices contain additional
analysis (Appendix A) and error estimations for simula-
tion results (Appendix B).

2 Model of hierarchical adaptive random
Boolean network (HARBN)

Our study extends the idea of adaptive rewiring algorithm
that was for the first time introduced in random threshold
networks [21] and then it was applied to RBNs in refer-
ence [22]. However, the terminology used in this paper is

slightly different, following the paper [11]. Let us consider
a system of coupled nodes in a form of a directed network
that corresponds to a GRN. For simplicity we will assume
that internal nodes’ variables σn(t) are 0 or 1 and they
can evolve in time according to randomly chosen Boolean
functions fn. Arguments of the function fn are internal
variables σni(t) of all nodes ni such that there is a con-
nection from a node ni to the node n and i = 1, 2, . . . , m,
if the node n possesses m inputs.

σn(t + 1) = fn(σn1(t), σn2 (t), . . . , σnm(t)). (1)

Let us note that none of the nodes ni can be the node n
itself.

During evolution of adaptive RBN (ARBN) changes
of the network state and topology are measured. Simu-
lations consist of an a priori-defined number of epochs.
In each epoch the network’s attractor is found (i.e. a pe-
riodic orbit of all variables σn(t) that is reached by the
system after a transient time), one node is randomly cho-
sen and according to the activity-dependent rewiring rule
(ADRR) (described in Sect. 2.1) the number of incoming
connections to this node is changed.

We have extended Liu and Bassler’s model as follows.
We consider a small number of ARBNs that we shall call
subnetworks. Different subnetworks are connected by di-
rected edges called interlinks. Our model is built in such
a way that a density of interlinks is different than a corre-
sponding density of edges within the subnetworks, i.e. in-
tralinks. Therefore, when the density of interlinks is much
smaller than the density of intralinks, different subnet-
works are sparsely connected [31,32] and the created net-
work is hierarchical in terms of connection density. Here,
there are two hierarchy levels. But the introduced con-
cept can be easily extended to create subsequent levels.
During a single epoch, a network’s attractor is found and
for each subnetwork a node is chosen randomly. Connec-
tions of such a node are changed according to the ADRR.
New edges may arise only between nodes in the same
subnetwork. On the other hand, interlinks are permanent
edges: they are created at the beginning of each simu-
lation and they cannot be changed. There are two rea-
sons for this. Firstly, interlinks can be viewed as weak
links – connections, that are believed to stabilize the sys-
tem [30,33,34]. Moreover, interlinks are the only robust
network elements, thus in the sense of GRNs one can
identify them with essential genes. Secondly simple al-
lowing interlinks to rewire destroys the modular network
structure. To solve this problem, different probabilities of
wiring to the node from the same subnetwork and to the
node from the others should be implemented. This would,
however, complicate the model. Therefore, we decided the
interlinks should stay fixed in a single run of simulation al-
gorithm (Sect. 2.2). Different realizations lead to different
interlink structures.

2.1 Activity-dependent rewiring rule

Equation (2) defines node’s mean state 〈σn〉 during the
attractor. T is the attractor length and t0 is the number
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of iterations sufficient to reach the attractor.

〈σn〉 =
1
T

t0+T∑

t=t0+1

σn(t). (2)

If the node’s mean state 〈σn〉 is 0 or 1, then this node
is considered to be frozen and one new incoming edge is
added to this node. The new edge starts in a random node
chosen from the group of nodes from the same subnetwork
that does not already have a link to the considered node.
Otherwise, this node is considered to be active and one of
its incoming edges is randomly chosen and deleted.

Although the presence of the ADRR in biological sys-
tems has not been scientifically proven, it includes a very
natural idea that invokes both the system stability and
flexibility [11]. There exist also models assuming other
rules of evolution that can be based, for instance, on cen-
trality [19] or local information transfer [23]. However, de-
pendence on node’s mean state seems to be simple and
natural. A frozen node in GRN is useless because it does
not serve any purpose. This can be changed by adding to
this node a new incoming link. On the other hand, also an
overactive node that exhibits permanent switching ineffi-
ciently responds to received stimuli. Removing one of its
connections may stabilize its output.

2.2 Adaptive algorithm for hierarchical RBNs

We make use of the algorithm proposed in refer-
ence [22]. Let N denote the total number of nodes.
Then let S(t) define a state of the whole network:
S(t) = {σ1(t), σ2(t), . . . , σN (t)}. Our algorithm for the
coevolution of hierarchical RBNs is as follows:

1. Generate M uniform Boolean networks (subnetworks)
containing NM nodes each with Kini directed incoming
edges starting in a randomly chosen group of nodes
belonging to the same subnetwork. Then generate KM

edges between subnetworks (interlinks) and for each
node n randomly select a Boolean function fn giving 0
and 1. The function fn generates the output signal of
the node n that reaches all other nodes m that are
dependent on the node n (i.e. there is a directed link
from n to m). We assume that the distribution of these
functions is symmetrical, i.e. on average there is the
same number of 0 and 1 as output values.

2. Generate a random initial state S(0) of all internal
node variables σn(0) and find the network’s attractor
length using the algorithm introduced in reference [22].
Its idea is to memorize a network state S(Tk), then to
update the states of all the nodes of the network and to
compare new network states S(t) with S(Tk). Equality
means a system attractor has been reached. In order
to skip transient parts of trajectories a new network
state is memorized after a certain number of initial
iterations.

3. Choose a node from each subnetwork and calculate its
mean state during one attractor cycle.

4. According to the ADRR, change the topology of each
subnetwork. Do not delete interlinks. In case there
are no connections to delete, randomly choose another
node and repeat this step.

5. Generate new Boolean functions for each node.
6. If the predefined maximum number of epochs is not

reached, go back to step 2 [22].

Remarks:

– The number of interlinks is settled. The interlinks are
generated as follows: first the highest possible num-
ber of interlinks is equally distributed between ordered
pairs of subnetworks (due to directed edges each pair
of subnetworks appears twice); secondly, the remain-
ing interlinks are assigned between random pairs. For
example, if the network structure consists of 3 subnet-
works and 20 interlinks, then there are 6 ordered pairs
of subnetworks and each pair is given 3 interlinks. The
remaining 2 interlinks are assigned between randomly
chosen pairs.

– The described method allows to find the attractor
length equal to 90 000 at most. If the attractor is not
found then it is assumed to be equal to 90 000.

– A single run of the adaptive algorithm is called a real-
ization. Advancing through the steps 2–6 is called an
epoch (after [22]). Updating the states of all nodes in
step 2 is called an iteration.

3 Information measures of RBNs

Measuring information amount transmitted by a network
is an important tool that facilitates exploring the features
of a system. There are many approaches to do it, see for
instance [35–40]. In reference [35] self-overlap past-future
mutual information and in reference [38] average pairwise
mutual information are investigated. In the former the
states of the same node in consecutive iterations are com-
pared and in the latter the states of all pairs of nodes are
compared. It has been proven that both of these measures
are maximal for critical RBNs. The authors of [36] propose
entropy of the avalanche size distribution as a measure for
information propagation and show that is is maximized
for critical RBNs. Krawitz and Shmulevich [37] view the
network as a classifier and introduce basin entropy to mea-
sure the uncertainty of network’s dynamical behavior. In
reference [39] information storage and information trans-
fer have been used to study RBNs. Information storage
is similar to previously mentioned self-overlap mutual in-
formation as it is the amount of information of a node
from its past that is needed to predict its future. The au-
thors have found that information storage is dominating
in RBNs in ordered phase, information transfer is dom-
inating in chaotic phase and both of these measures are
balanced for small-world RBNs. Snyder et al. [40] have
focused on a particular computational task and used mu-
tual information between the network input and output
to estimate necessary number of connections coming from
input.
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Here, we define network activity information I as a
sum of transformed activities of each node. Activity An of
a node n is the number of changes of the node’s state dur-
ing the network attractor divided by the attractor length.
There is no information stored in frozen nodes (nodes with
An = 0) and in nodes whose state changes in every it-
eration (An = 1). Such nodes should not contribute to
the network information. On the other hand, nodes which
change their state the same number of times as they keep
the old state (An = 0.5) contribute mostly because of their
unexpected behavior. Node activity can be identified with
probability of changing the node’s state. Then the activity
An links with the parameter an described in reference [35]
as the system’s “self-overlap”: An = 1−an. Here, we intro-
duce a natural definition of node activity information as:

In = −An log(An) − (1 − An) log(1 − An). (3)

This definition is similar to the definition of mutual in-
formation used in reference [35] with equal probabilities
of generating zeros and ones in Boolean functions. Equa-
tion (3) means that In = 0 for periods 1 or 2, when An = 0
or An = 1, respectively. It also means that we can com-
pletely predict the evolution of the node state in next time
steps when In = 0 and we know the first two steps of the
evolution, that specify whether the orbit is of period 1
or 2. Let us emphasize that An = 0 only for orbits of pe-
riod 1 and An = 1 only for orbits of period 2. For orbits of
longer periods there is no such explicitness. For instance

for period 3, An =
2
3

. However, this value can be received
for plenty of other orbits, e.g. of period 6. Therefore, for
longer orbits the value of An is not specific for the orbit
type. Moreover, the largest number of possible different
orbits is for An = 0.5.

The total network activity information is given as I =∑
n In. For brevity, further in this paper network activity

information will be replaced by network information.

4 Simulations

Simulations of different structures of HARBN model
consisted of 1000 epochs (maximum number) repeated
100 times (100 realizations having different structures of
interlinks). Let (M, NM , KM ) denote a network consist-
ing of M subnetworks each of NM nodes and linked by
KM interlinks. Here we show results for networks that
contain 60 or 80 nodes. Our simulations were performed
in two parts. In the beginning we reproduced results for
ARBNs achieved in reference [22] (M = 1). Then, we
divided networks into two, three, four subnetworks and
linked them by 0 − 80 interlinks, that formed HARBN.
We compared results for ARBNs and HARBNs. An ex-
ample structure of a simulated network after 1000 epochs
is shown in Figure 1.

Each realization of ARBN and HARBN demonstrates
different structure and information parameters. Let the
mean steady-state (m.s.s.) of the parameter denote a mean

Fig. 1. An example structure after 1000 epochs of a HARBN
system (4, 15, 10), i.e. consisting of 4 subnetworks of 15 nodes
each connected altogether by 10 interlinks.

value of asymptotic states reached by a system. The aver-
age is performed over initial conditions of network topol-
ogy and internal nodes variables. Identical networks tend
to fluctuate (after the initial transient period) near the
same mean steady-state (m.s.s.) levels regardless the ini-
tial incoming connectivity (see Fig. A.1 in Appendix). On
the other hand, networks of a different number of nodes,
subnetworks or interlinks tend to reach different m.s.s. val-
ues (see Fig. A.2 in Appendix). Therefore, for each net-
work type we define: a m.s.s. incoming connectivity Kss,
a m.s.s. network information I, a m.s.s. node information
IPN (calculated as information I per node), a m.s.s. edge
information IPE (calculated as information I per edge)
and a geometric m.s.s. attractor length T . If not stated
otherwise, the arithmetic mean is assumed. In order to
determine all above parameters 200 beginning epochs of
each realization have been discarded as transient periods.
Kss includes both intra – and interlinks and is calculated
as follows:

– Calculate mean incoming connectivity in an epoch →
Kinc.

– Calculate mean Kinc starting from the 201th epoch in
a realization → 〈Kinc〉.

– Calculate mean 〈Kinc〉 over all realizations → Kss.

The information parameters I and IPN are calculated
likewise. IPE is computed by dividing IPN by Kss.

The last parameter is a geometric mean attractor
length T . The geometric mean has been used because of
a broad distribution of attractor lengths.

Additional analyses can be found in Appendix A. Let
us stress that observed networks adapt their configuration
in such a way that they evolve towards a critical point [11]
what can be seen by observing power law distributions of
attractor lengths (Fig. A.4).

Along with the computation of m.s.s. data, deviations
have been calculated. See Appendix B for details.

Now let us discuss the influence of network topology on
system properties. We are aware of the fact that because of
a small number of investigated networks additional large-
scale simulations will be necessary to confirm our findings.
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Fig. 2. The mean steady-state connectivity Kss as a function
of the quotient between the density of interlinks and the density
of all links in the network for various structures.

4.1 Mean steady-state connectivity

Let Z denote the quotient between the density of interlinks
(defined as a quotient of the number of existing interlinks
by the number of all possible interlinks) and the density
of all links in the network.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Z =
KM

M(M − 1)N2
M

/
Kss

N − 1
≈

≈ KM

NM (M − 1)Kss

, if M �= 1

Z = 0, if M = 1.

(4)

This parameter is considered here as an indicator of the
network modularity. Z = 0.25 signifies that the density of
interlinks is four times smaller compared to the density
of all links and when Z = 1 then different subnetworks
are connected as if there were no modular structure. In all
of the following figures the standard deviations of Z are
not shown because error bars are smaller than the marker
size. The quotient

ΔZ

Z
is approximately 2%, at most.

For small Z values different network types differenti-
ate themselves in terms of Kss by the size of a subnet-
work (Fig. 2) and Kss decreases with the growth of the
subnetwork size. With the increase of Z, the subnetworks
become more and more linked. From Z ≈ 0.4 different
network types start to differentiate themselves by the size
of the whole network, i.e. subnetworks are strongly mutu-
ally dependent. The resulting Kss values are independent
from the subnetwork size. Kss reaches a minimal value ap-
proximately in the range 0.5 < Z < 0.7. Afterwards Kss

increases slightly.

4.2 Information per node and information per edge

Calculated information per node IPN exhibits ordering
by number of the subnetworks for large Z values (Fig. 3).
When Z > 0.2 then the information IPN grows steeper
for the networks with higher number of subnetworks.
Moreover, IPN is larger in smaller networks. In the inter-
val 0 < Z < 0.2, especially for 80-node networks, am-
biguous behaviour is observed. However, the statistical

Fig. 3. The mean node information IPN as a function of the
quotient between the density of interlinks and the density of
all links in the network for various structures.

Fig. 4. The mean edge information IPE as a function of the
quotient between the density of interlinks and the density of
all links in the network for various structures. IPE has been
calculated by dividing the mean node information IPN by the
mean steady-state in-degree connectivity Kss.

fluctuations do not allow detailed analysis. Afterwards,
for Z > 0.2 a stable increase is visible.

The behavior of the third network parameter – IPE
(Fig. 4) includes some features of the previous two ob-
servables. For Z ≈ 0, networks differentiate themselves
by the number of distinct subnetworks (the less subnet-
works, the higher IPE). Neglecting the first two points for
(2, 40) the parameter IPE grows with the increase of Z.
Around Z ≈ 0.3 information per edge is equal for all net-
work structures. It does not depend on the total network
size or the number of subnetworks or the size of the single
subnetwork. For higher Z values, strong ordering by the
number of subnetworks is observed. That is there is no dif-
ference in IPE values for the network structures having
the same number of subnetworks.

4.3 Geometric mean attractor length

Figure 5 shows the relationship between the geometric
mean attractor length T and the quotient Z. The lengths
of the attractors grow with the increase of the total
number of nodes. Moreover, structures of the same size
with more subnetworks tend to possess longer attractors.
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Fig. 5. The geometric mean attractor length T as a function of
the quotient between the density of interlinks and the density
of all links in the network for various structures.

Dividing a network into subnetworks creates separate un-
connected parts (Z ≈ 0). Such structures reach the high-
est T values. It is related to the attractor search sub-
algorithm: the attractor is found for the whole network
and its separate parts multiply and elongate the attrac-
tor length. Interlinks connect the subnetworks, but inter-
links are not flexible. Interlinks significantly decrease the
attractor length leading to higher flexibility, because the
system can quickly explore one short orbit and then switch
to another one due to stochastic perturbations [41]. The
shortest attractors are achieved for Z ranging from around
0.2 to around 0.4. Further increase of the quotient leads
to longer lengths T , as interlinks stiffen the network.

4.4 Discussion

Edge rewiring is the basis of the considered model of net-
work evolution. At first there are separate subnetworks
which evolve independently. Adding constant interlinks
interferes with this process. When the quotient Z of the
density of interlinks to the density of all links is approx-
imately 0.4 the connection between modules is so strong
that the mean steady-state connectivity Kss is similar
as in nonmodular systems. However, before reaching this
point, for Z ∈ (0; 0.4), the impact of linkage between dis-
tinct subnetworks is noticeable but it is not so effective
(see Fig. 2).

In the above range of the parameter Z two interest-
ing effects have been observed. More and more interlinks
lead to smaller geometric mean attractor lengths and for
Z ∈ (0.2; 0.4) the minimum of the observable T is noticed.
Smaller values of geometric mean attractor length T mean
that the network more often falls into shorter attractors
and less frequently exhibits chaotic behavior. This makes
the whole system more stable [4]. The second important
feature is the behavior of the information per edge IPE.
The number of links evolves due to the process of edge
rewiring. The mean information processed by a single link
may depend on the network structure, but is almost not
influenced by the number of nodes in the network. In other
words, adding new nodes to the network will change the
total number of links, and this number will evolve in such

a way that the mean edge information will stay constant.
Moreover for Z ≈ 0.3, the observable IPE does not de-
pend on the subnetwork size and the number of subnet-
works. It means that the information processed by a single
link does not depend on the network structure for Z ≈ 0.3.
Such an effect could be a sign of the critical point, as in
reference [42], however we have not observed any phase
transition in our system.

The model introduced in this paper is generic and con-
clusions can also be applied in other fields where RBNs
are used. We have shown and described the main applica-
tion – GRNs. Modular structures are often noticed in real
networks. If one is modeling such systems, the decision is
necessary which values of the density ratio (that is param-
eter Z) should be applied. We do not strongly claim that
certain Z values (e.g. Z = 0.8) should not be used. But
we point out why certain ranges (Z ∈ (0.2; 0.4)) may be a
better choice. The above range leads to the minimal mean
attractor length for HARBNs and we suppose this prop-
erty can be also valid for other modular systems, not just
GRN models. Additional studies are needed to confirm or
reject this hypothesis.

5 Conclusions

The model of a hierarchical adaptive random Boolean net-
work (HARBN) has been introduced and numerically ex-
plored. The system consists of subnetworks connected by
fixed interlinks, where the internal topology of the sub-
networks can evolve depending on individual node activ-
ity. We have observed that the main natural feature of
ARBNs, i.e. their adaptability, is preserved in HARBNs
and they can evolve towards critical configurations. This
feature has been documented by power law distributions
of network attractor lengths. Adding just a few interlinks
to separated subnetworks changes the values of all ob-
servables and the effect is especially striking for geometric
mean attractor lengths. When the quotient Z of the den-
sity of interlinks to the density of all links in the network
is of the order of Z ≈ 1.0, then the interlinks efficiently
re-connect the whole network (as if separate modules did
not exist). However such a large system is less flexible
and displays longer attractors. The shortest attractors are
observed for intermediate values of Z ranging from 0.2
to 0.4 depending on the network structure. On the other
hand, minimum values of mean steady-state connectiv-
ity Kss are for Z ranging from 0.5 to 0.7. It means that
the modular network displays extremal values of its ob-
servables when subnetworks are connected with a density
a few times smaller than a mean density of all links.

The mean node information (IPN) and the mean edge
information (IPE) grow in HARBN with the increase of
the quotient Z and IPE tends to achieve the same value
for all network types for Z ≈ 0.3. Adding a new node to
the network decreases IPN and, moreover, leads to fewer
incoming connections per node. Adding a new interlink
increases IPE values. We suggest that the introduced
HARBNs can be a step forward towards modeling sys-
tems, such as GRNs, where a modular structure is present.
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Fig. A.1. Evolution of incoming connectivity Kinc of a net-
work (2, 30, 10) for different initial incoming connectivities in-
side each subnetwork Kini. Simulations have been averaged
over 100 realizations. Let us note that Kinc(0) is not equal
to Kini(0) because Kinc includes interlinks, whereas Kini

does not.
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Appendix A: HARBN dynamics

The goal of this section is to show details related to time
evolution and criticality of HARBN. A similar network
analysis for ARBN can be found in reference [22].

In the beginning of the network construction each node
is given an equal number of incoming connections com-
ing from other nodes from the same subnetwork (internal
connectivity, Kini). Then during network evolution due
to the rewiring process, m.s.s. values of connectivity are
reached (Kss). Figure A.1 shows that the initial value of
internal connectivity does not influence the Kss values. Af-
ter approximately 200 epochs all starting points converge
to the same value of Kinc.

On the other hand, different structure types (i.e. those
that are characterised by different symbol (M, NM , KM ))
achieve, in general, different m.s.s. levels. Figure A.2
demonstrates that the m.s.s. level of Kinc is dependent
on the number of interlinks KM .

In reference [22] it has been noticed that for ARBN in
the limit N → ∞, the steady state value of mean number
of incoming connections Kss decreases to 2 as a power law

Fig. A.2. Evolution of incoming connectivity Kinc of a net-
work (2, 30) for different numbers of interlinks. The initial in-
coming intralink connectivity in each subnetwork is 2.

Fig. A.3. Finite size scaling for mean steady-state connectiv-
ity Kss for networks without interlinks (KM = 0) as a function
of the subnetwork size NM . The straight line possesses a slope
−0.21 and it has been fitted from the linear regression analysis.

function of the system size. For HARBN without interlinks
this feature can be also observed (see Fig. A.3). As it has
been indicated before, separate subnetworks behave sim-
ilarly as multiple realizations of a single smaller network.
Using the linear regression with the least squares method
the following scaling has been observed (R2 = 0.993)

(Kss − 2) = AN−γ
M (A.1)

where with 95% confidence level: A = 1.61 ± 0.11 and
γ = 0.208 ± 0.020. The scaling exponent γ is close to the
value γ = 0.26 reported in reference [22].

Figure A.4 shows distributions of attractor lengths of
the network (2, 40) in a steady-state with 0, 10, 40 and
80 interlinks. The distributions are very similar to each
other and the only difference is seen for very short at-
tractors. The probability of such attractors increases with
the number of interlinks growing. In all cases the power
law distribution is observed for attractor lengths T > 5
which indicates that analysed networks are critical in
corresponding steady-states.

P (T ) = BT−β. (A.2)

The absence of interlinks structure prolongs the attrac-
tor lengths (see Sect. 4.3) leading to smaller probabilities

http://www.epj.org
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Fig. A.4. The distribution of attractor lengths of a network
(2, 40) in a steady-state for different numbers of interlinks. The
power law distribution is observed for attractor lengths T > 5.
The increase at the last data point is caused by the time limit
of 90 000 in the attractor search subalgorithm. The straight
lines are calculated from the linear regression analysis with
the exclusion of the first data point at each subfigure.

of very short attractors. With more and more interlinks
added this probability slightly rises. Using the linear re-
gression with the least squares method the scaling has
been found. For 0, 10, 40 and 80 interlinks, the coeffi-
cient of determination R2 is 0.99, 0.98, 0.98 and 0.98,
respectively. With 95% confidence level the scaling pa-
rameters are: {B0 = exp(−2.09 ± 0.62), β0 = 1.038 ±
0.089}, {B10 = exp(−1.5 ± 1.0), β10 = 1.16 ± 0.14},
{B40 = exp(−1.64± 0.84), β40 = 1.13± 0.12} and {B80 =
exp(−1.82 ± 0.85), β80 = 1.10 ± 0.12}. Let us note that
the observed scaling exponents β are close to the slope 1
observed in reference [22]. We have also used the test in-
troduced by Clauset et al. [43]. Unfortunately the test is
not confirming the power law fitting.

Appendix B: Data error analysis

Let all errors (standard deviations) be denoted by a
proper observable name preceded by Δ. Since an average
over 〈Kinc〉 from different realizations will result in Kss,
thus ΔKss is estimated as a standard deviation of Kss

for 100 realizations of network structures having different
structures of interlinks.

A similar method has been applied to m.s.s. node in-
formation IPN and geometric m.s.s. attractor length T .
For some observables (e.g. Kss) it is possible to calculate
standard deviations of observable in a single realization
when deviations are observed over time trajectories and
over individual nodes in a network. In the case of observ-
ables Kss and T [44] this approach would decrease the
deviations, approximately by half and 10 times, respec-
tively. Such a method cannot be applied however to the
variable IPN , because node information values averaged
over all nodes in consecutive epochs are not Gaussian and
they can drastically change from 0 (e.g. for epoch with
attractor length T = 1) to some larger values. Therefore,

to avoid the above ambiguity an identical procedure has
been applied to all directly measured observables.

The observable IPE is not measured directly. Its stan-
dard deviation ΔIPE is given by the following equation:

ΔIPE =

√(
ΔIPN

Kss

)2

+
(

IPN

K2
ss

ΔKss

)2

. (B.1)

The parameter Z defined in Section 4.1 (Eq. (4)) is a
function of Kss. Thus the standard deviation ΔZ can be
calculated as:

ΔZ = Z
ΔKss

Kss
. (B.2)
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