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Learning is a complex cognitive process that depends not only on an individual capability of knowledge absorp-
tion but it can be also influenced by various group interactions and by the structure of an academic curriculum. We
have applied methods of statistical analyses and data mining (principal component analysis and maximal spanning
tree) for anonymized students’ scores at Faculty of Physics, Warsaw University of Technology. A slight negative
linear correlation exists between mean and variance of course grades, i.e. courses with higher mean scores tend
to possess a lower scores variance. There are courses playing a central role, e.g. their scores are highly correlated
to other scores and they are in the centre of corresponding maximal spanning trees. Other courses contribute
significantly to students’ score variance as well to the first principal component and they are responsible for dif-
ferentiation of students’ scores. Correlations of the first principal component to courses’ mean scores and scores
variance suggest that this component can be used for assigning ECTS points to a given course. The analysis is
independent of declared curricula of considered courses. The proposed methodology is universal and can be applied
for analysis of students’ scores and academic curriculum at any faculty.
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1. Introduction

Teaching and learning play a pivotal role for develop-
ment of an individual as well as of the human civiliza-
tion [1]. In fact, we spend about 18 years for our edu-
cation and complexity of this process can be studied at
different levels, e.g. scores of an individual pupil/student,
scores of learning groups, scores related to different
courses, changes of scores during the study periods but
also early drop-out prediction [2] etc. [3]. Advancements
in various platforms for e-learning (such as massive open
on-line courses [4]) make some analyses obvious, but a
progress in digital tools related to educational processes
(such as USOS [5] — virtual deanery) and their growing
popularity make possible new kinds of analyses where
data mining methods can be applied. Results of such
analyses can lead to improvement of teaching curricula
and study plans at schools/universities.

In the present paper, we analyse grades at Faculty
of Physics, Warsaw University of Technology during the
first five semesters of the first level studies leading to
the engineering degree in applied physics. The core of
curriculum consists mostly of courses in physics, mathe-
matics, computer science and electrical engineering. Af-
ter the 5th semester a student selects one of specializa-
tions: optoelectronics, materials and nanostructures (for-
merly solid state physics), computer physics, or medical
physics. We are interested to learn dependences between
students’ scores at different courses. To uncover these
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dependences we shall use specific tools of data mining
methods which are widely known and applied in com-
plex systems analyses, namely correlation matrices [6, 7],
correlation-based networks [8], minimal (maximal) span-
ning trees [9–11], and principal component analysis [12–
15].

As far as we know, this is the first study of teach-
ing results at Polish universities using data mining tools.
A similar methodology was applied for learning data at
Singaporean primary schools [16] but it was focused on
dynamics of single lessons rather than on a whole teach-
ing curriculum. We hope that the framework proposed
in this paper can be applied to data from other faculties
and can be helpful to better understand and organize
teaching/learning process.

2. Data acquisition and filtering
The data set has been received from the deanery of

Faculty of Physics at Warsaw University of Technology
and it has contained information about students’ final
grades of particular courses as well as students’ group and
specialization. The data contains records of engineering
degree candidates since 2010 until 2015.

We have excluded from the analysis all students who
did not pass the first five semesters and we have chosen
three consecutive students’ classes: J, K and L. The class
J means all students that started their academic studies
in 2010, K in 2011 and L in 2012. Those classes have been
chosen because only for them there was a large number of
records of core courses that every student must complete
in order to get a degree. After removing general Univer-
sity courses like physical education or foreign languages
we have got 27 core courses (see Table I). Each student
(and course) in our analysis is represented as a vector of
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numbers — grades. The total number of students con-
sidered in the analyses is 217 (class J — 76 students, K
— 66, L — 75).

Since there have been still some missing records for
individual students, we have filled those gaps with an
average score at that course in all three classes. Amounts

of missing grades at each class are: class J — 5.46%, K
— 14.03%, L — 1.68%, and for all classes combined —
6.72%.

Abbreviations of courses names as well as their mean
grades and variances of grades (and other calculated pa-
rameters) are listed in Table I.

TABLE I

Core courses chosen for analysis — names, abbreviations used in figures, semester at which they
take place, various parameters calculated in the paper. Two highest values in columns 4–8 are bold,
and the two lowest are underlined. In the last column, only the highest value has been highlighted.
1st PCC stands for “1st Principal Component contribution”.
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Algebra and Geometry AG 1 3.72 0.45 10.93 0.033 0.21 2
Analysis of Experimental Data AED 1 4.12 0.25 8.93 0.018 0.12 1

Fundamentals of Information Technology FIT 1 4.58 0.18 7.45 0.013 0.090 1
Fundamentals of Physics 1 FP1 1 3.51 0.48 12.29 0.035 0.24 9
Mathematical Analysis 1 MA1 1 3.49 0.64 10.18 0.046 0.25 1
Basics of Programming BP 2 4.18 0.53 8.06 0.038 0.18 1

Fundamentals of Physics 2 FP2 2 3.62 0.51 11.52 0.037 0.24 3
Mathematical Analysis 2 MA2 2 3.45 0.73 11.2 0.053 0.29 3
Physics Laboratory 1 PL1 2 4.07 0.3 7.92 0.021 0.12 1

Fundamentals of Electronics FE 3 3.56 0.67 10.1 0.048 0.24 1
Mathematical Analysis 3 MA3 3 3.43 0.79 10.03 0.057 0.27 1

Mechanics M 3 3.85 0.49 10.18 0.035 0.21 3
Programming Languages PL 3 4.03 0.89 8.31 0.064 0.24 3

Electrodynamics E 4 4.37 0.35 8.03 0.025 0.14 1
Electronics in Physical Experiment EPE 4 4.55 0.19 7.09 0.014 0.077 2
Mathematical Methods of Physics MMP 4 4.16 0.54 8.68 0.039 0.18 1
Object-Oriented Programming OOP 4 4.21 0.47 8.06 0.034 0.15 1

Probability P 4 3.56 0.63 9.25 0.046 0.23 1
Quantum Physics QP 4 3.70 0.97 9.64 0.070 0.29 2

Chemistry C 5 4.02 0.38 9.55 0.027 0.16 2
Engineering Graphics EG 5 3.72 0.51 5.97 0.036 0.11 1
Fundamentals of Optics FO 5 3.62 0.5 5.01 0.036 0.091 1

Fundamentals of Virtual Devices Design VDD 5 3.48 0.6 8.58 0.044 0.20 2
Introduction to Solid State Physics ISSP 5 3.97 0.6 7.18 0.044 0.18 1
Introduction to Nuclear Physics INP 5 3.92 0.28 8.03 0.020 0.11 2

Physics Laboratory 2 PL2 5 4.24 0.27 7.54 0.020 0.11 2
Statistical Physics and Thermodynamics SPT 5 4.09 0.67 8.21 0.048 0.19 3

3. Methodology

As a number of core courses is the same for each stu-
dent, the dataset can be presented as NS × NC matrix
of grades Gs,c (where NS — number of students, NC —
number of courses, s — student index, Central — course
index). Positions of columns and rows are arbitrary but
set.

Such a representation allows us to easily define a mea-
sure of a coincidental deviations from the means between

courses as a Pearson product-moment correlation coeffi-
cient [17]:

CX,Y =
cov(X,Y )

σXσY
, (1)

where in our case X = G∗,X and Y = G∗,Y are vectors of
grades for given courses X and Y obtained by students
which can be perceived as series of observations of ran-
dom variables, cov(X,Y ) is a covariance between these
grades X and Y , and σα is a standard deviation from the
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mean of the variable α. A positive (negative) correlation
CX,Y between two courses is when variations from cor-
responding means tend to have the same (opposite) sign
for a given student.

A courses’ network can be built using calculated values
CX,Y as links’ weights. Such a network is unfortunately a
hardly readable weighted complete graph. To overcome
this problem we have applied the inverted Kruskal al-
gorithm [18] and we have reduced the complete graph to
the related maximal spanning tree (MST). Let us remind
that the MST possesses the same number of nodes as the
original network and the inverted Kruskal algorithm sorts
a list of edges from the original network by correlations
CX,Y descending and iterates through the list adding an
edge if it does not cause a cycle to occur.

The principal component analysis [19] is a method of
variables transformation equivalent to a special rotation
of coordination axes. Let us write scores of a given stu-
dent as a vector variable x where the dimension of this
vector equals to the number of all courses the student
attended. One should start with centring the analysed
variable x:
x̃ = x−E(x). (2)

Here E(. . .) stands for the vector of expected values, that
is calculated as a vector of means over all students for
each course’s score. The first principal component is a
direction γ(1) in the new framework where the variance
of all observed data points projected onto this direction
is maximal

var
(
γT(1)x̃

)
= max

a∈Rp,‖a‖=1

{
var
(
aT x̃

)}
, (3)

where γT(1) — the transverse vector defining the first axis
of transformed data, var(. . .) — variance of a given vari-
able. The axis of the second principal component γ(2) is
orthogonal to the first one
γT(1)γ(2) = 0 (4)

and it maximises the remaining part of variance

var
(
γT(2)x̃

)
= max

a∈Rp,‖a‖=1

{
var
(
aT x̃

)}
(5)

and so on. In fact the transformation is equivalent to
finding eigenvectors of covariance matrix corresponding
to maximal eigenvalues (they are real because the matrix
is real and symmetric). In such a way one can reduce an
original highly dimensional space to a few directions cor-
responding to largest variances [20].

For the sake of comparison, two types of shuffling
have been performed. The first type (S — “by students’
grades”) is to replace each row of a matrix of grades Gs∗
with its random permutation. Similarly the second type
(C — “by courses’ grades”) is to replace each column of
the matrix G∗c with its random permutation. While the
type S shuffling keeps the mean grade of a student the
same, one can expect it destroys possible relations be-
tween courses. Exact opposite is for the type C shuffling
(keeping courses’ means and destroying possible relations
between students).

4. Results and discussion

Correlation coefficients given by Eq. (1) have been cal-
culated for each pair of courses and are presented as a
heat map in Fig. 1a. The courses’ grades are quite well
correlated, the mean correlation (excluding diagonal ele-
ments) and its standard error is 0.326±0.006. There is a
triple of courses FP1, FP2 and AG that are strongly cor-
related one to another, i.e. CFP1,FP2 = 0.73, CFP1,AG =
0.7 and CFP2,AG = 0.62. Furthermore, courses from this
group are the most correlated with other courses (sum of
correlation coefficients CX =

∑
i 6=X

CX,i): CFP1 = 12.29,

CFP2 = 11.52 and CAG = 10.93. On the other hand,
courses FO and EG are least correlated with others;
CFO = 5.01 and CEG = 5.97 (for all CX – see Table I).
FO is the only course that tends to negatively correlate
with some other courses: PL (-0.12), VDD(-0.10) and
SSP (-0.06), (for all CX – see Table I).

In Fig. 1b and c correlation matrices are shown for
shuffled data. The effect of C-shuffling is a complete de-
struction of correlation matrix. New correlations values
are close to zero and the mean correlation is 0.0001 ±
0.007.

The S-shuffling diminishes the original correlations by
20%, and their mean value is equal to 0.258 ± 0.005. It
can suggest that a given student gets similar grades for
several courses and interchanging his own grades does
not change dramatically correlations between grades of
different courses. The S-shuffling destroys, however, high
positive correlations of the triple FP1, FP2 and AG as
well negative correlations for the course FO.

Fig. 1. The course-course Pearson correlation coeffi-
cients in a form of heatmap. In the C-type shuffling all
grades for a given course are randomly exchanged be-
tween students and in the S-type shuffling all grades of a
given student are randomly exchanged between courses.
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In order to further investigate the correlations we have
constructed a complete graph of courses where weights
of links between nodes are defined by Eq. (1). Corre-
sponding maximal spanning trees (MST) for this graph
are presented in Fig. 2 (merged data from classes J, K,
L) and Fig. 3 (only students of L-class).

For better readability labels above links are CX,Y and
thickness of a given link is proportional to that value.
One can clearly see that the course FP1 is a central hub
of the network. Its degree in Fig. 2 is kMST

JKL = 9 and in
Fig. 3 kMST

L = 6. One can see also that courses FP2 and
AG from the highly correlated triple FP1, FP2, AG are
in the centres of MST in Figs. 2 and 3. At the second
figure these two courses are local hubs of degrees 4 and
5, respectively. We need to stress that observed MSTs of
different classes are different and certain courses can ap-
pear in different neighbourhood depending on what class
we consider. In all cases, however, the course FP1 re-
mains a central node of MST and the courses FP2 and
AG are close to it. It suggests that this triple of courses
lays a foundation of knowledge for the students and per-
haps in some way it verifies students’ knowledge acquired
in secondary schools since it is on the first two semesters.
We shall call these three courses Central (C).

Fig. 2. Maximal spanning tree for the network of
courses where links are defined via correlations between
the nodes. Symbols correspond to different courses (see
Table I), numbers indicate correlations coefficients be-
tween courses and colours are indicators of a correspond-
ing semester for that course (i.e. red - semester 1, blue
- semester 5 etc., see Table I). The network has been
constructed for all three classes (J,K,L) combined. Size
of a node is proportional to its degree, i.e. to a number
of its nearest neighbours in the MST.

Up to now we have focused on correlations between
scores of various courses. Important information is con-
tained also in scores’ variances and in spectral proper-
ties of entire covariance matrix. Variances of each course
have been collected in Table I and principal component
analysis (PCA) has been applied to get insight about a
possible dimensionality reduction, i.e. what variables are
needed to describe student’s scores accurately enough.
We have taken grades of students as observations and
courses as features (observables). A comparison of vari-
ances explained by variables (sorted by its variance de-
scending) for the original data, PCA-transformed origi-
nal and shuffled data is shown in Fig. 4. Matrix in Fig. 5
presents contributions of each course to principal com-
ponents (PC). The first PC explains almost 40% of total

Fig. 3. Maximal spanning tree for one class (L) only.
Meaning of symbols, labels and colours is the same as
for Fig. 2.

Fig. 4. Plot of explained cumulative variance. We ac-
cumulate variances of each course (labelled real-before
PCA) in descending order, normalized in such a way
that the total sum is 1.0. After PCA decomposition we
do similarly with principal components (points labelled
real-after PCA). Points labelled shuffled-S/C/SC are re-
sults of PCA decomposition after a particular shuffling.
S is for S-type shuffling, Central for C-type shuffling and
SC for both shuffles together.

Fig. 5. Transformation matrix from original variables
to principal components. It shows what contribution
each original variable (a course) has in a particular prin-
cipal component.
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variance (Fig. 4) and all courses contributions to it have
the same sign (Fig. 5). It suggests that PC is connected
to a student’s mean grade and can be used as a sim-
ple discrimination between students. Further principle
components explain slightly higher amount of variance
than most variate courses (namely QP — 7%). The sec-
ond principal component has unlike contributions of PL
and FO which was visible in the correlations analysis as
well. The highest contribution to the third PC has been
made by EG, to the fourth — QP and so on. The S-
shuffling of students grades diminishes the role of the
first PC that explains 30% of the total variance (Fig. 4)
and the first PC after C-shuffling explains only 10% of
the total variance. These facts are in agreement with ob-
servations of shuffling influence on Pearson’s correlation
coefficients (Fig. 1a–c) where the S-shuffling was less de-
structive than the C-shuffling. Let us remind also that
after combining S- and C-shuffling the plot of cumulative
variance is indistinguishable from the corresponding plot
using variances of original study courses (Fig. 4).

The aim of Fig. 6 is to present relations between
various measures describing considered courses scores.

A slight negative linear correlation (R2 = 0.37) has
been found between mean and variance of course grades
(Fig. 6a), i.e. courses with higher mean scores tend to
display lower scores variances. Three courses from the
Central group lie below the trend line at this plot. On
the other hand, there is group of four courses: QP, MA2,
MA3 and PL that possess highest variances and are far
above the trend line. We shall call this group differenti-
ating (Diff) since the high variance of scores differences
students group.

A negative linear correlation (R2 = 0.5) exists also be-
tween the course’s contribution to 1st PC and the course
mean (Fig. 6a). The largest outlier from the trend is
the course FO that was negatively correlated to other
courses in Fig. 1. Stronger positive correlations are be-
tween contributions to 1st PC and variance and sum of
correlation coefficients (Fig. 6c,d). In Fig. 6c the Central
group of courses lies below and the Diff group lies mostly
above the trend line. The opposite situation is in Fig. 6d.
Courses from Diff group possess the largest contributions
to 1st PC and contributions of Central courses are higher
than average.

Fig. 6. (a) variances and means of courses’ grades, (b): courses’ mean grades and a courses’ contribution to the first
PC, (c): courses’ variances and a courses’ contribution to first PC, (d): sum of Pearson’s r correlations and courses’
contribution to the first PC. Green lines are linear fits (y = ax+ b), R2 — coefficient of determination.

5. Concluding remarks
Statistical analysis combined with data mining meth-

ods applied for students’ grades make possible to disclose
several dependences between different courses forming
academic curriculum at Faculty of Physics, Warsaw Uni-
versity of Technology. A slight negative correlation exists
between mean and variance of course grades (Fig. 6a) and
between course’s contribution to 1st PC and mean scores

(Fig. 6b). Stronger positive correlations are found be-
tween the course’s contribution to 1st PC and variance
as well as sum of correlation coefficients (Fig. 6c,d).

The above correlations together with observations of
maximal spanning trees (Figs. 2, 3) suggest the existence
of at least two specific groups of courses in the considered
curriculum.
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The first group can be called Central and it consists of
two courses Fundamental of Physics I (FP1), Fundamen-
tal of Physics II (FP2) from semesters 1 and 2, and the
course Algebra with Geometry (AG) from the semester 1.
The Central group is represented by nodes in centres of
maximal spanning trees (Figs. 2 and 3) since these three
courses possess large correlations coefficients with other
ones (Table I and Fig. 1a). The Central group possesses
higher than average contributions to 1st PC (Fig. 6) and
in Fig. 6d it is far above the trend line. It means sum of
correlations coefficients for these courses is much larger
than it can be expected from contributions to 1st PC.
However the Central group lies below the trend line in
Fig. 6c,d, i.e. the courses possess smaller variances of
students’ scores than it can be expected from their mean
grades or their contributions to 1st PC. In other words
the courses from the Central group reduce differences in
initial students’ knowledge. One can understand this re-
sult as a proof of the proper organization of the consid-
ered academic curriculum since lecture topics presented
at above courses should make possible a smooth launch
of studies.

The second group that can be called Diff consists of
courses Quantum Physics (QP; semester 5), Mathemat-
ical Analysis II (MA2; semester 2), Mathematical Anal-
ysis III (MA3; semester 3) and Programming Languages
(PL; semester 3). This group contributes significantly to
students’ score variance and to the first principal com-
ponent (Table I and Fig. 6). It follows the above courses
highly differentiate the teaching process and their scores
separate less skilled students from better ones. This in-
terpretation is confirmed by the fact that above courses
possess rather low mean scores (Table I, Fig. 6a,b) i.e.
corresponding exams are difficult to pass for a large part
of students. The Diff group lies above the trend line in
Fig. 6a and below the trend line in Fig. 6d. The last
results mean that this group is less correlated to other
courses as one could expect from its contribution to 1st
PC.

Correlations of the first principal component to other
courses’ parameters seen in Fig. 6b–d suggest that the
contribution to the first principal component measures a
course significance and can be used for assigning ECTS
points to a given course. Let us stress that our analysis
has been based entirely on student grades and is inde-
pendent of declared curricula of considered courses.

In conclusion, we have shown that data mining meth-
ods when applied for students scores can be useful tools
for uncovering key courses in academic curricula. The
framework consists of comparing results from the follow-
ing methods: (a) observations of positions of courses in
the maximal spanning tree corresponding to a correla-
tions matrix, (b) calculations of courses’ mean scores and
corresponding variances, (c) calculations of courses’ con-
tributions to the 1st principal component. We suggest
that when outcomes from above methods are similar then
such a combined framework can be used at Universities
and at other schools as as an additional tool to optimize

teaching strategies since it does not need a priori knowl-
edge of assumed curriculum aims.
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