
Vol. 127 (2015) ACTA PHYSICA POLONICA A No. 3-A

Proceedings of the 7th Symposium FENS, Lublin, May 14–17, 2014

Hierarchical Cont-Bouchaud Model
R. Palucha,∗, K. Sucheckia and J.A. Hołysta,b

aCenter of Excellence for Complex Systems Research, Faculty of Physics, Warsaw University of Technology,
Koszykowa 75, PL–00662 Warsaw, Poland

bITMO University, 19, Kronverkskiy av., 197101 Saint Petersburg, Russia
We extend the well-known Cont-Bouchaud model to include a hierarchical topology of agent’s interactions.

The influence of hierarchy on system dynamics is investigated by two models. The first one is based on a multi-
level, nested Erdős–Rényi random graph and individual decisions by agents according to Potts dynamics. This
approach does not lead to a broad return distribution outside a parameter regime close to the original Cont-
Bouchaud model. In the second model we introduce a limited hierarchical Erdős–Rényi graph, where merging of
clusters at a level h + 1 involves only clusters that have merged at the previous level h and we use the original
Cont-Bouchaud agent dynamics on resulting clusters. The second model leads to a heavy-tail distribution of cluster
sizes and relative price changes in a wide range of connection densities, not only close to the percolation threshold.
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1. Introduction

The paradigm of investor’s rationality and effective-
ness was ousted in the second half of the 20th century
by the behavioural economics. A milestone was the work
of Kahneman and Tversky written in 1979 [1]. Since
then, many studies were done and many models describ-
ing the stock market were developed [2–9]. One of the
first microscopic model was proposed by R. Cont and
J.P. Bouchaud [10]. It was suggested that the heavy tails
observed in distributions of stock returns, correspond-
ing to large fluctuations in prices, arise as a result of
collective phenomena such as herding behaviour. In the
Cont-Bouchaud (CB) model, the groups (clusters) of in-
vestors make a collective decision during each time pe-
riod and may choose either to buy the stock with the
probability P (φ = +1) = a, to sell it with the same
probability P (φ = −1) = a, or to stay inactive with the
probability P (φ = 0) = 1 − 2a. The clusters are formed
according to the theory of Erdős–Rényi (E–R) random
graphs: for any pair of nodes (agents), let p = c/N
be the probability that these nodes are linked together,
where N is total number of nodes and c is a positive
parameter, which represents the willingness of agents to
form groups. The demand/supply created by a cluster
of investors is proportional to its size. The price of an
asset changes from one time step to another and the rel-
ative price change is proportional to the total excess de-
mand. Since for parameter c close to and smaller than 1,
the cluster size distribution decreases asymptotically as
a power law with exponential cutoff, the model can be
solved analytically in the limit 2aN ≈ 1 according to
the percolation theory. Many modifications and exten-
sions of the original CB model were proposed in past
years: changing the topology from the random graph to
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a square (d = 2), cubic (d = 3) or hypercubic lattice
(d = 4÷7) [11], introducing moving agents [12] or funda-
mentalists [13], introducing the dependence between the
activity a and the cluster’s size [14] or between a and a
current price [15] and much more [16–22].

All above studies assume only one level of the inti-
macy between traders (they are connected or they are
not) and an infinitely strong interactions inside clusters.
These assumptions are hidden in oversimplified topolo-
gies like the random graph or the square lattice. Our aim
was to adapt the main idea of the CB model to hierar-
chical topologies. We expect that community of market
investors, like other social systems, exhibit hierarchical
structures. An investor can divide others into different
levels of “closeness” — small group of friends or colleagues
may influence their decisions in major way, including
agreeing on common strategy, while the direct influence
of the community as a whole may be small. There is rarely
collective behavior of a whole market, while this may hap-
pen much more often in close-knit groups. Our model is a
generalization of Cont-Bouchaud approach that consid-
ered only binary “deciding together” or “deciding sepa-
rately” interactions between agents. The nature of the in-
teractions may be also interpreted as access to a common
source of information, which translates into following the
same trading strategy in an attempt to exploit that in-
formation. Considering such interpretation one may ar-
gue that our models describe inefficient market, where
dynamics can be sometimes dominated by large groups
following single information sources, meaning it does not
follow the aggregate of all information or may be biased.
Topological features of hierarchical systems have been
observed in real networks [23], and these kind of systems
have been considered in several other studies, including
social dynamics [24] and information propagation [25].
We developed two models, which use concept of hierar-
chy for extending the original CB model in two different
ways.
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2. Hierarchical Erdős–Rényi graph

Consider a topology which consists of N nodes which
are grouped into many nested clusters (Fig. 1). The pro-
cedure of creating such a complex system is following:

1. Link together each pair of nodes with a probabil-
ity p1 = c/N . The result is W1 clusters with the
hierarchical degree h = 1. The nodes belonging to
the same cluster are nearest neighbours, so their
mutual degree of neighbourhood is one.

2. The existing clusters of hierarchical degree h = 1
are treated as primary-level nodes which are linked
together randomly with a probability p2 = c/W1

per pair. The result is W2 clusters with the hierar-
chical degree h = 2, containing sets of clusters of
degree h = 1. If nodes i and j belong to the same
cluster with the hierarchical degree h = 2, but to
different clusters of the hierarchical degree h = 1,
their mutual degree of neighbourhood is two.

3. Repeat step 2 for following hierarchy levels h, until
hierarchy level h = H is reached, where all the
nodes belong to only a few clusters. The number of
iterations H required is proportional to logarithm
of system size H ∼ lnN . Assume all the clusters of
level H form a single cluster of hierarchical degree
H + 1 that contains all nodes.

The resulting graph will be called a hierarchical Erdős–
Rényi graph (HERG).

Fig. 1. The structure of hierarchical Erdős–Rényi
graph (HERG). The nodes in red clusters are the near-
est neighbours. Green clusters represent the neighbour-
hood of the third degree. Clusters are formed through
connecting clusters of previous level at random, as in
E–R random graph.

3. Cont-Bouchaud model on hierarchical
Erdős–Rényi graph with Potts interactions

We define a hierarchical Cont-Bouchaud model (HCB)
in the following way. Let nodes of HERG represent the
stock traders. At each time step, each agent has to take a
decision about trading: buy (φ = 1), sell (φ = −1) or do
nothing (φ = 0), just as in the standard CB [10] model.

The agents are picked out at a random order and
take decisions individually, but not independently, with
probabilities corresponding to the probabilities of spin
directions in Potts model in the canonical ensemble.
The probabilities are

P (φi) = e−βE(φi)/Z, (1)
where Z = e−βE(−1)+ e−βE(0)+ e−βE(+1) is the partition
function and β = 1/kBT . E(φi) is the spin energy corre-
sponding to Potts Hamiltonian with interaction strengths
Jij dependent on mutual degree of neighborhood h(i, j)
of interacting spins:

E(φi) = −
∑
j 6=i

Jh(i,j)δ(φi, φj)−Bδ(φi, 0), (2)

where δ(φi, φj) is the Kronecker delta, and the sum is
over all agents j 6= i. The parameter B acts as an ex-
ternal field which restrains (or enhances if it is negative)
trading and therefore plays the same role as the parame-
ter a in CB model. In fact both parameters are related as
a = 1/(eβB + 2), so that when an agent is not influenced
by others, then P (+1) = P (−1) = a. The coupling fac-
tor Jh = Jαh−1 depends on degree of neighbourhood h
and J = J1 is the coupling constant which is equal to the
coupling factor of the nearest neighbours. The parame-
ter α < 1 controls how quickly the interactions weaken
with the degree of neighbourhood h. At the beginning of
each time step all agents are in a transient state null, and
do not influence other agent decisions. During each time
period the agents are appointed to make decisions in a
random order, interacting according to Eq. (1) but only
with agents in non-null state that already made their de-
cisions in this time step. Then the return is calculated in
a similar way as in CB model:

∆x ∝
N∑
i=1

φi(t). (3)

Let us note that there is no memory in agent states φi
that are reset to the state null after each time step.

We have investigated the model numerically for various
parameters α, J , β and B, starting from the parameter
set corresponding to the original CB model, where we
assumed α = 10−9, J = 1000, B ≈ 4.5 (which correspond
to a = 0.01) with β = 1.

When parameters are chosen so that the HCB model
is replicating the original CB model, the return distri-
bution is the same as resulting from the CB dynamics.
This behavior, along with results of changing parame-
ters can be seen on Fig. 2, where the data have been
aggregated over r = 100 realization with t = 1000 time
steps each. When the HCB model parameters deviate
from those reflecting the CB model, the system stops
working in the “percolation regime” where the return dis-
tribution reflects the cluster size distribution and instead
it works in the “Potts regime” where it follows the fluc-
tuations arising from Potts interactions between agents.
We have not observed fat tails in the return distribution
in the “Potts regime” for any analyzed parameter ranges
(not only varying a single parameter from the CB param-
eter set).

4. Limited hierarchical Erdős–Rényi graph

In the Sect. 2 we introduced a hierarchical Erdős–Rényi
graph where all clusters of a hierarchical degree h were
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Fig. 2. Tails of return distribution densities for
HCB model for N = 5000, c = 0.99, α = 10−9, β = 1,
J = 1000 and B ≈ 4.5 (corresponding to a = 0.01 in
CB model). Distributions in HCB model for this pa-
rameter set are the same as for the CB model however
deviations from that parameters result in fat tails dis-
appearing. Top left: comparison of HCB (black cross)
with the original CB model (orange X) with the same
parameters (a = 0.01). Top right: for decreasing fieldB:
≈4.5 (black cross), 3.0 (blue square), 1.5 (red circle)
and 0.0 (green triangle). Bottom left: for increasing α:
10−9 (black cross), 0.1 (blue square), 0.5 (red circle) and
0.7 (green triangle). Bottom right: for decreasing J :
1000 (black cross), 3.0 (blue square), 2.0 (red circle),
1.0 (green triangle). The grey line is for the visual guid-
ance only and it correspond to a power law with the
exponent −2.5.

considered as nodes at the next hierarchy level h+ 1 and
they could be randomly linked to form clusters of that
hierarchical degree. Here we introduce a limited hierarchi-
cal Erdős–Rényi graph (LHERG). The difference as com-
pared to HERG model is that the merging of clusters at
the level h+ 1 involves only clusters that have merged at
the previous level h (Fig. 3). In effect the cluster growth
is limited only to clusters that succeed in finding partners
at previous hierarchy level.

Fig. 3. Multilevel growth of clusters in LHERG model.
Random E–R connections between single nodes (black)
form clusters of level h = 1 (orange, violet, green). Ran-
dom connections between those clusters (single nodes do
not participate, since they failed to connect) form clus-
ters of level h = 2 (red). Note that after the second step,
single nodes and the orange cluster are excluded from
the further merging. We forget about the internal struc-
ture of clusters when we use the resulting disconnected
clusters (orange, red and single nodes) for CB model
in Sect. 5.

At the beginning, we consider the system of N inde-
pendent nodes that we treat as “level zero” clusters of
size 1. The procedure is following:

1. Link together each pair of nodes with the probabil-
ity p1 = c/N . The result is W1 clusters which ad-
vance to the next step. Not linked nodes are clusters
of size one and they do not participate in further
steps (and they are not included in W1).

2. Merge together each pair of clusters with the prob-
ability p2 = c/W1. The result of two clusters merg-
ing is a new cluster whose size is the sum of sizes
of the merged clusters. New clusters (W2) advance
to the next step. The clusters which did not merge
during this step do not advance and stop growing
(and they are not included in W2).

3. Repeat the step 2 for clusters of successive levels
until all clusters stop growing.

Denote the average number of steps of the procedure
of cluster growth by H(c,N), which can be interpreted as
the highest level of hierarchy of LHERG. H(c,N) is pro-
portional to the logarithm on N and has a maximum
as a function of c (this can be seen in Fig. 4). Note
that LHERG model results in many disconnected clus-
ters (resulting from not connecting clusters that have
been dropped out of the merging procedure), unlike in
HERG model where all agents belong to a single top-
level cluster.

Fig. 4. The relations between the highest level of hi-
erarchy H and the size of the system N (left part) and
between H and the parameter c (right part) for LHERG
model.

5. Cont-Bouchaud model on the limited
hierarchical Erdős–Rényi graph

Now we apply the dynamical rules of the standard
CB model to the clusters obtained in the LHERG model.
This model is significantly different from the model pre-
sented in Sect. 3, and the differences can be expressed in
2 points:

1. The first model retains the hierarchical structure
of the HERG clusters, while in the second it is for-
gotten after the clusters are determined through
LHERG growth procedure. Note that LHERG re-
sults in multiple disconnected clusters.

2. The first model uses individual agent decisions and
Potts interactions, while the second one uses col-
lective random decisions by whole clusters as in the
original CB model.
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Numerical simulations show that our second model dis-
plays distributions of price changes (returns) with heavy
tails for a wide range of parameter c, as seen in Fig. 5.
This means that assuming a hierarchical organization ac-
cording to LHERG model, it is possible for CB model to
explain fat tails of return distributions without making
strict assumptions about the connection mechanisms be-
tween agents, such as operating at the percolation thresh-
old. We would like to note that while the distibution
shape becomes insensitive to the parameter c, the or-
der flow parameter a changes return distributions just as
in the standard CB model.

Fig. 5. Comparison between the original CB model
(left part) and the CB model on the LHERG clusters
(right part). Distributions of price changes are com-
puted for parameter c = 0.99 (black cross), 0.9 (blue
square), 0.8 (red circle), c = 0.7 (green triangle).
The grey line is for visual guidance and has expo-
nent−2.5. In the original CB model distribution quickly
loses fat tail when c goes away from percolation thresh-
old, while in our LHERG model the power-law prevails.

The CB model on LHERG clusters produces power-
law fat tails when the results are averaged over multiple
realizations. When we keep to one, single realization, the
distribution does not display power-law tail, and instead
exhibits secondary peaks, that correspond to large clus-
ters taking decisions to buy or sell (Fig. 6). This means
that the model can reproduce fat tails only when the
topology is dynamical and changes in time, although not
necessarily every time step.

Fig. 6. Distribution of price changes for CB model
on single realization of LHERG cluster. Distribution
are computed for parameter c = 0.99 (black cross),
0.95 (blue square), 0.8 (red circle), 0.5 (green triangle).

6. Conclusions

We have introduced a model of hierarchical Erdős–
Rényi graph, where nested clusters of successively higher
hierarchies emerge from connecting lower-level compo-
nents. We have studied an extension of Cont-Bouchaud
model, where we use interactions drawn from Potts model
to decide whether agents buy or sell, allowing for differ-
ent couplings between agent decisions, rather than an
absolute correlation assumed in the CB original model.
We have used the hierarchical E–R graph as the topol-
ogy, with couplings decreasing with a higher hierarchical
degree of neighborhood. The model does show a broad
return distribution only when working in the limit resem-
bling the original CB model, meaning that the hierarchi-
cal structure of interactions does not result in power-law
fluctuations when Potts interactions are used. In the sec-
ond approach the CB model has been studied on clusters
taken from the limited hierarchical E–R graph, where
clusters can merge in following hierarchy levels only if
they successfully make at least one connection in the cur-
rent one. If such a structure is kept dynamical, the clus-
ter size distributions show on average power-law behav-
ior, therefore inducing a power-law return distribution in
CB model using this topology. This happens for a wide
range of average degrees c, not only when it is close to
the E–R percolation threshold, therefore lifting one of the
assumptions required for the model to explain fat tails in
market fluctuation distributions, although necessitating
dynamical cluster structure.
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