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We demonstrate the power of data mining techniques for the analysis of collective social dynamics within British

Tweets during the Olympic Games 2012. The classification accuracy of online activities related to the successes of
British athletes significantly improved when emotional components of tweets were taken into account, but employing
emotional variables for activity prediction decreased the classifiers’ quality. The approach could be easily adopted
for any prediction or classification study with a set of problem-specific variables.
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1. Introduction

Knowledge of human collective behaviour is a power-
ful tool in the hands of those who know how to use it.
Advances in economics and social sciences can be in-
sightful but quantitative descriptions are often absent.
The reason might be the high complexity of many social
systems, their highly nonlinear dynamics and internal re-
lationships. Physicists have encountered these kinds of
problems many times and have provided valuable con-
clusions — if one knows only a little about the underly-
ing microscopic system dynamics (such as a phase space,
short- and long-distance interactions), then one can focus
on the macroscopic outputs of the system using statisti-
cal methods [1–7].

Following mass adoption of the internet, it became
clear that gathering massive amounts of data about a
people’s behavior (on-line stock markets, social media)
— nearly impossible before — had become easy. It is
possible to track the activities of an entity but describ-
ing a person would be a great challenge for the scientists
of the future. Nevertheless, internet data are extremely
useful to study collective human behaviors. This ap-
proach has already been tested within some recent stud-
ies [8–10]. Moreover, it provides quantitative methods for
social dynamics and emotion analyses [11–14]. The last
cited model describes possible proceedings of online dis-
cussions taking into account the emotional context of
posts — e.g., if the first post in a discussion has strong
positive emotions, what tends to happen to the rest of
the discussion?

These new possibilities always create new challenges
— including how to effectively manage the necessary
big data.
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1.1. Data mining in science
Astronomy and astrophysics had to deal with a data

abundance since an invention of an automatic optical
telescope and digital photograpy. An amount of highly
magnified high resolution pictures of the sky heavily out-
numbered a size of the labor force.

Traditional methods to analyse big data are too time-
consuming — even an army of astronomers would need to
study such big datasets for years. This problem led to the
development of statistical data exploration methods [15].
For example, extracting the features of an object from
a photo and applying a classification algorithm trained
on empirical data enables the detection of various kinds
of stars and galaxies. Data mining techniques have also
been employed in large CERN projects — e.g., in particle
classifications conducted during the Higgs boson search
experiments [16], but also in many other physical sciences
— for example predicting certain kinds of crystals [17]
or graphen-like structures [18] in solid-state physics.

Of course, data mining applications are not limited
to physics and science in general (at the moment, these
are not even their main areas). There are also commer-
cial (e.g., basket analyses [19], customer behaviour re-
search [20]), medical (e.g., automated diagnostics [21])
and economics (e.g., credit scoring [22]) uses. The devel-
opment of data mining techniques is inevitable and will
greatly impact on our everyday life.

1.2. Science in data mining
Data mining perhaps began in the 1700s when Bayes

presented his famous theorem about a conditional prob-
ability to the Royal Society but the real advances hap-
pened in the 20th century — cluster analysis [23], genetic
algorithms [24], classification trees [25], support vector
machines [26] etc. Nowadays, these are also part of the
new discipline of big data science. While most findings
should be considered as being contributions from math-
ematics and computer science, data mining has bidirec-
tional interactions with physics.
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Physics-based approaches have led to new interest-
ing methods, such as a clustering algorithm based on
quantum mechanics [27], support vector machine stud-
ies based on statistical physics [28] or a cluster analysis
method inspired by theoretical spin glasses research [29].

In the face of the great benefits and potentials of data
mining, it seems that developing new methods and im-
proving existing ones could be a great help for the next
generation of physicists.

1.3. Main focus
The main aims of the paper are to check (i) if one

can predict online social dynamics using data mining
techniques, (ii) if one can detect special events taking
place in the real world from observations of online dis-
cussions, (iii) if detecting emotional content can con-
tribute to a better performance for some social data min-
ing techniques.

Twitter is a social website that reacts to some kinds
of external impacts (i.e., medal winning during the 2012
Olympic Games in London). In this paper, its activities
are predicted and its dynamics are classified. The re-
lationships between the number of dimensions available,
the methods applied, emotional data usage and the ac-
curacy of trained classifiers are also analyzed.

Note that previous statistical Twitter analyses have
also yielded interesting results, such as stock mar-
ket predictions [30] or extreme social-media events
predictions [31].

2. Data
2.1. Original dataset

The original dataset was gathered by the Statisti-
cal Cybermetrics Research Group from University of
Wolverhampton and shared as part of the EU funded
CyberEmotions project.

From 2012-07-11 to 2012-08-13 (2012 Olympic Games
in London and about two weeks before), all tweets writ-
ten in English and sent within a radius of 50 km around
London were gathered if they contained a sports-related
hashtag (e.g., #olympics, #100mrun). The information
about each tweet consists of its unique ID, text (up to
160 characters, including hashtags), date and time sent,
author’s user name, if a tweet was a response to another
tweet — ID and author’s user name of that tweet, posi-
tive sentiment strength (scored by the SentiStrength clas-
sifier [32]; from 1 to 5, where 1 — no positive sentiment
and 5 — very strong positive sentiment), negative emo-
tion strength (scored by the SentiStrength classifier; from
–1 to –5, where –1 — no negative sentiment and –5 —
very strong negative sentiment).

Tweets with no sentiment (i.e., a positive sentiment
score of 1 and a negative sentiment score of –1) were
discarded from the analysis.

2.2. Aggregated and derived data
The original dataset was aggregated into 3134 non-

overlapping 15-minute time windows. In each win-
dow, features were calculated as presented in Table I.

TABLE I

Features in 15-minute windows used in the classification
aggregated and derived from original dataset; features
marked with star (*) are considered sentiment dimensions
in the study.

Abbre-
viation

Description How it was calculated?

ACT Activity
A number of tweets

sent in a given
15-minute window

SENT* Sentiment
A mean difference
between a positive

and a negative emotions score

PERC
UNIQ

Percent
of unique users

A number of unique users
(tweet authors) divided
by the number of tweets

PERC
REP

Percent
of reply tweets

A number of tweet
that are replies divided
by the number of tweets

MEAN
PL

Post length
A mean tweet number

of characters

dACT
First derivative

of activity

A difference between ACT
in the time windows and ACT
in the previous time window

dSENT*
First derivative
of sentiment

A difference between SENT
in the time windows and SENT
in the previous time window

d2ACT
Second derivative

of activity

A difference between dACT
in the time windows and dACT
in the previous time window

d2SENT*
Second derivative

of sentiment

A difference between dSENT
in the time windows and dACT
in the previous time window

SENT
PEAK*

Sentiment peak description in 2.2.

These variables were used as predictors for benchmark
problems.

Peaks of activity and sentiment in the Twitter time
series were detected using the algorithm described in [33]
and the presence of a sentiment peak was marked as a
feature of each time window (sentiment peak — SENT
PEAK*). The presence of an activity peak was later used
as a benchmark for problem 3.

2.3. Medal data
For some analyses, dates and times of British athletes

winning a medal were recorded. Medal colors and sports
events were also gathered but not used in the study.
The complete list can be found in Appendix A.

3. Benchmark problems

Classifiers (i.e., data mining methods trained on a set
of observations of given dimensionality) were provided
information about the features in previous time windows
and were tested on three two-class classification prob-
lems. A summary of class populations for each problem
is in Table II.
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TABLE II

Class counts for each benchmark problem.

Problem Observations Class 1 count Class 2 count
Trend prediction 3140 1614 (51.4%) 1516 (48.6%)
Threshold exceed 3140 1768 (56.3%) 1362 (43.7%)
Peak classification 516 482 (93.4%) 34 (7.6%)

The combination of features listed in Table I was con-
sidered in each time window as an observation vector.

Below we describe the tasks that the classifiers had
to solve.

3.1. Trend prediction

Each time window was considered as an observation.
The classifier had to determine if the activity compo-
nent in the next time window would be lesser (class 1)
or greater (class 2) than the activity in the present time
window, knowing the present and the past feature vector.

3.2. Threshold forecasting

The procedure was as in 3.1., but the classifier had
to determine if the activity in a given 15-minute win-
dow would be lesser (class 1) or greater (class 2) than
500 tweets.

3.3. Peak classification

Each time window where an activity peak was detected
was considered as an observation. The classifier had to
determine if the peak co-occurred with an event in which
a British athlete(s) had won a medal.

4. Methodology

9 data mining methods were chosen for testing along
with 17 features for the first and the second problem
and 15 for the third problem. The accuracy for each
pair “method-set of features” (sets of features constructed
from up to 6 elements) was tested on the benchmark
problems.

All 2-, 3-, 4-, 5- and 6-element permutations of fea-
tures were employed to train each method on a randomly
chosen 80% of the observations and tested on the remain-
ing 20% of the observations. The procedure was repeated
20 times for each pair.

4.1. Data mining methods

Applied methods:

• linear discriminant analysis (LDA),

• naive Bayes (NB),

• quadratic discriminant analysis (QDA),

• regression tree (REG TREE),

• support vector machines (SVM) with various cores;

SVM cores:

• linear (SVM LIN),
• tangential (SVM MLP),

• polynomial (3rd order) (SVM POLY3),

• quadratic (SVM QUAD),

• radial-based function (SVM RBF).

4.2. Variables sets

For each observation in the set, the following fea-
tures were selected (t means “in the time window where
the peak occurred”, t − 1 means “in the previous time
window” and so on) for first two problems (abbreviations
described in Table I): ACT(t−1), ACT(t−2), ACT(t−3),
SENT(t − 1), SENT(t − 2), SENT(t − 3), dACT(t − 1),
dACT(t− 2), dSENT(t− 1), dSENT(t− 2), d2ACT(t−
1), d2ACT(t − 2), d2SENT(t − 1), d2SENT(t − 2),
PROC REP(t−1), PROC UNIQ(t−1), MEAN PL(t−1).
For the third problem: ACT(t), ACT(t−1), ACT(t−2),
SENT(t), SENT(t − 1), SENT(t − 2), SENT PEAK(t),
SENT PEAK(t−1), SENT PEAK(t−2), PERC UNIQ(t),
PERC UNIQ(t− 1), PERC UNIQ(t− 2), MEAN PL(t),
MEAN PL(t− 1), MEAN PL(t− 2).

5. Results

For each benchmark problem, the relationships be-
tween the number of dimensions and classifier accuracy
were analysed as well as the impact of applying a specific
number of emotional dimensions.

5.1. Trend prediction

In Fig. 1 the best (left) and the mean (right) accuracy
of trend predicting (see subsection 3.1.) classifiers with
a given dimensionality is presented. The best results are
achieved for support vector machines with a radial-basis
function as their core. These classifiers achieved an accu-
racy of 66%. It is interesting that adding dimensions does
not necessarily enhance the quality of the best classifiers.
The mean accuracy of a classifier tends to increase with
every additional dimension, however.

Figure 2 shows the relationship between the accuracy
of the trend predicting classifiers and the number of
emotional dimensions for all methods, while in Fig. 3
— for support vector machines with radial basis core
(the most accurate classifiers for the problem). It is clear
that in this case using emotional dimensions does not
enhance classification. Emotional features seem to carry
no valuable information for this kind of exercises — com-
paring accuracies for 2 dimensional classifiers with 0 emo-
tional features (2–0 emo) with 3–1 emo, 4–2 emo, 5–3 emo
and 6–4 emo gives nearly the same result.
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Fig. 1. Maximum (left graph) and mean (right) accuracy of classifiers as a function of a number of variables (dimen-
sions); standard deviations were not plotted for the sake of readability, they are of the order of 0.02.

Fig. 2. Box plot of accuracy of trend forecasting for different numbers of variables used by various classifiers as a
function of number of emotion-related variables.

Fig. 3. Box plot of accuracy of trend forecasting for different number of variables used by SVM with a radial basis
core as a function of number of emotion-related variables.

Fig. 4. Maximum (left graph) and mean (right) accuracy of classifiers as a function of a number of variables (dimen-
sions); standard deviations were not plotted for the sake of readability, they are of the order of 0.02.
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Fig. 5. Box plot of accuracy of threshold exceed forecasting for different numbers of variables used by various classifiers
as a function of number of emotion-related variables.

Fig. 6. Box plot of accuracy of threshold exceed forecasting for different number of variables used by SVM with a
radial basis core as a function of number of emotion-related variables.

Fig. 7. Maximum (left graph) and mean (right) accuracy of classifiers as a function of a number of variables (dimen-
sions); standard deviations were not plotted for the sake of readability, they are of the order of 0.02.

5.2. Threshold exceed forecasting

In Fig. 4 the best (left) and the mean (right) accuracy
of threshold forecasting (see subsection 3.2.) classifiers
with a given dimensionality is presented. The best results
are achieved for support vector machines with a radial-
basis core function. These classifiers achieved an accuracy
of 96%. Also in this case adding dimensions does not nec-
essarily increase the quality of a classifier; for SVM with
a tangential core adding new dimensions decreases the

accuracy of the best classifier. Again, the mean accuracy
of the classifier tends to increase with every additional
dimension, however.

Figure 5 shows the relationship between the accuracy
and the number of emotional dimensions for all meth-
ods, while in Fig. 6 — for support vector machines with
a radial-basis core (the most accurate classifier for the
problem). Also in this case, using emotional variables
provided no classifier enhancing information.
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5.3. Peak classification

The third problem is fundamentally different from the
previous ones. In Fig. 7 the best (left) and the mean
(right) accuracy of the peak type classifiers (see sub-
section 3.3.) with a given dimensionality is presented.
The results are a little surprising — the best accuracy
(about 96%) was achieved for the naive Bayes classifier
with 3 features. Similar results were achieved by naive
Bayesian classifiers with a different number of dimen-
sions and a regression tree. The mean accuracy of the

classifier tends to increase with every additional dimen-
sion for most of the methods, but not for the best and
the worst method.

Figure 8 shows the relationship between the accuracy
and the number of emotional dimensions for all methods,
while in Fig. 9 — for naive Bayes classifiers (the most
accurate classifiers for the problem). In this case, us-
ing emotional dimensions clearly increases the accuracy
of the classifiers.

Fig. 8. Box plot of accuracy of peak classification for different numbers of variables used by various classifiers as a
function of number of emotion-related variables.

Fig. 9. Box plot of accuracy of peak classification for different number of variables used by SVM with a radial basis
core as a function of number of emotion-related variables.

6. Conclusions

This research has been conducted on Twitter activity
and sentiment data. We investigated the role of emo-
tional dimensions in classification but our approach could
be easily adapted to any classification (or prediction)
study of certain systems. To achieve this, change the
dataset to another aggregated macroscopic collection of
data from a system with unknown internal microscopic
dynamics and emotional dimensions to problem-specific
variables. The insights provided may confirm the useful-
ness of the variables and identify the best suited methods
and variable sets for a specific problem.

The results show the significance of the emotional con-
tent of Twitter posts in the peak classification study re-
lated to special events (i.e., medal winning), but employ-
ing emotional dimensions in predicting activity brings
no additional insights.

A set of popular data mining techniques’ performance
was analyzed for activity prediction and peak classifi-
cation. The results are interesting because of evidence
about the importance of emotions in social media and a
wide spectrum of applications (e.g., predicting time se-
ries, classifying the origins of peaks).

The relationship between the accuracies of a set of ba-
sic data mining methods and number of features as
well as between their accuracy and the number of emo-
tional features was also analyzed. The benchmark prob-
lems consisted of (A) trend prediction, (B) forecasting
of threshold crossing and (C) peak classification.

Depending on the problem, the best classifiers had an
accuracy of (A) 66%, (B) 96% and (C) 96%.

Adding a dimension to the benchmark problems in-
creased the mean classifier accuracy for most cases but
the best classifier for a given method is not necessarily
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the one with the largest number of dimensions. In a
few cases, adding dimensions decreases the best accuracy
and the mean classifier accuracy.

Using an emotional dimension has no impact for (A)
and (B), while clearly enhances accuracy for (C).

Considering the relation of emotional to other dimen-
sions in the context of our conclusions, it is important
to note that using the dimensions enhances a classifica-
tion quality for the last benchmark problem only and
decreases it for another two problems. It seems that
emotional data is strictly related to medal events but pro-
vides little information about activity changes. Probably,
there are some kinds of problems that can be described
with problem-specific dimensions which provide a signif-
icant improvement in particular kinds of analyses and
decrease in others. The approach presented in the paper
would be helpful to identify the problems and the related
dimensions.

The results confirm the usefulness of classifiers, give in-
sights about applying additional features and dimensions
and show that the methods analyzed can be applied to
quantitative descriptions of social media phenomena.
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Appendix A — Events with British medalists

No. Date Time Sport Event Medal

1 29 July 18:45 Cycling Women’s road race Silver
2 29 July 23:45 Swimming Women’s 400 m freestyle Bronze
3 30 July 22:00 Gymnastics Men’s artistic team all-around Bronze
4 31 July 16:00 Equestrian Team eventing Silver
5 1 August 15:00 Rowing Women’s coxless pair Gold
6 1 August 15:30 Rowing Men’s eight Bronze
7 1 August 19:15 Cycling Men’s time trial Bronze
8 1 August 19:15 Cycling Men’s time trial Gold
9 2 August 18:45 Canoeing Men’s slalom C-2 Gold
10 2 August 18:45 Shooting Men’s double trap Gold
11 2 August 18:45 Canoeing Men’s slalom C-2 Silver
12 2 August 19:00 Judo Women’s 78 kg Silver
13 2 August 21:15 Cycling Men’s team sprint Gold
14 3 August 15:15 Rowing Men’s single sculls Bronze
15 3 August 15:15 Rowing Women’s double sculls Gold
16 3 August 15:45 Rowing Men’s coxless pair Bronze
17 3 August 21:45 Cycling Men’s team pursuit Gold
18 3 August 22:15 Cycling Women’s keirin Gold
19 4 August 14:45 Rowing Men’s coxless four Gold
20 4 August 15:00 Rowing Women’s lightweight double sculls Gold
21 4 August 21:15 Cycling Women’s team pursuit Gold
22 4 August 00:00 Athletics Women’s heptathlon Gold
23 4 August 00:30 Athletics Men’s long jump Gold
24 4 August 01:00 Athletics Men’s 10,000 m Gold
25 5 August 17:45 Sailing Finn class Gold
26 5 August 19:15 Gymnastics Men’s pommel horse Bronze
27 5 August 19:15 Gymnastics Men’s pommel horse Silver
28 5 August 19:45 Tennis Men’s singles Gold
29 5 August 20:30 Tennis Mixed doubles Silver
30 5 August 22:00 Cycling Men’s omnium Bronze
31 5 August 00:15 Athletics Women’s 400 m Silver
32 6 August 17:45 Gymnastics Women’s uneven bars Bronze
33 6 August 20:00 Equestrian Team jumping Gold
34 6 August 21:15 Cycling Men’s sprint Gold
35 7 August 16:15 Sailing Men’s sailboard Silver
36 7 August 17:15 Triathlon Men’s triathlon Bronze
37 7 August 17:15 Triathlon Men’s triathlon Gold
38 7 August 19:15 Equestrian Team dressage Gold
39 7 August 20:15 Cycling Women’s omnium Gold
40 7 August 21:15 Cycling Men’s keirin Gold
41 7 August 21:30 Cycling Women’s sprint Silver
42 7 August 00:00 Athletics Men’s high jump Bronze
43 9 August 19:00 Equestrian Individual dressage Bronze
44 9 August 19:00 Equestrian Individual dressage Gold
45 9 August 19:45 Boxing Women’s flyweight Gold
46 9 August 01:30 Taekwondo Women’s 57 kg Gold
47 10 August 16:45 Sailing Women’s 470 class Silver
48 11 August 12:45 Canoeing Men’s K-1 200 m Gold
49 11 August 23:00 Athletics Men’s 5,000 m Gold
50 11 August 00:15 Boxing Men’s bantamweight Gold
51 11 August 01:15 Diving Men’s 10 m platform Bronze
52 12 August 18:45 Boxing Men’s super heavyweight Gold


