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Homophily between agents and structural balance in connected triads of agents are complementary
mechanisms thought to shape social groups leading to, for instance, consensus or polarization. To capture
both processes in a unified manner, we propose a model of pair and triadic interactions. We considerN fully
connected agents, where each agent has G underlying attributes, and the similarity between agents in
attribute space (i.e., homophily) is used to determine the link weight between them. For structural balance
we use a triad-updating rule where only one attribute of one agent is changed intentionally in each update,
but this also leads to accidental changes in link weights and even link polarities. The link weight dynamics
in the limit of large G is described by a Fokker-Planck equation from which the conditions for a phase
transition to a fully balanced state with all links positive can be obtained. This “paradise state” of global
cooperation is, however, difficult to achieve requiring G > OðN2Þ and p > 0.5, where the parameter
p captures a willingness for consensus. Allowing edge weights to be a consequence of attributes naturally
captures homophily and reveals that many real-world social systems would have a subcritical number of
attributes necessary to achieve structural balance.
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Introduction.—Understanding human behavior is a fun-
damental challenge and models from physics can provide
quantitative frameworks for analyzing social dynamics [1],
with recent advances in understanding the phenomena of
social polarization, segregation and consensus (e.g.,
Refs. [2–5]). Given the current need for encouraging the
adoption of social norms that promote public health [6,7],
first-principles models that provide rigorous underpinnings
to how opinions evolve are more relevant than ever.
Opinions, preferences, actions (or generally attributes) of
humans are not independent variables but they are a part of
and rely on the other members of a social network. Recent
experiments and analysis show that social networks are
influenced by a set of distinct processes with possibly
competing interactions [8], with two of the most important
being structural balance and homophilic relations between
agents. Structural balance (also called Heider balance or
social balance) considers links between a set of three agents
and assumes that triadic interactions would lead towards
eliminating tensions, finally producing a balanced triad [9–
18]. Using this principle, Antal et al. [13] introduced a now
seminal link-evolution model of local triad dynamics
(LTD). They showed the existence of a phase transition
from a quasistationary state to a “paradise” state (with full
structural balance and no negative links). The LTDmodel is
formulated at the level of link polarity (i.e., whether the link
weight is positive or negative). We consider a more basic
notion, that agents have a set of underlying attributes which

give rise to the link weights and that these coevolve towards
structural balance. Thus we build a hybrid model with two-
body interactions and three-body interactions, the latter of
which are used in different branches of physics [19–22].
Existing coevolution models [23–30] study reaching the

states of polarization and segregation by assigning scalar
(usually binary) polarities to links and at most two-
dimensional attributes to nodes. Instead, following the
Axelrod model of culture dissemination [1,31,32], we
assume that each of N agents possesses G categorical
Boolean attributes and that edge weights decrease with
increasing distance between agents in the G-dimensional
attribute space. We introduce an attribute-based local triad
dynamics (ABLTD) model, where rather than changing the
polarity of a link in attempt to increase structural balance, a
more fine-grained change is made and one underlying
attribute of one agent is changed. In the large G and N
limit the link weight dynamics can be described by a
Fokker-Plank equation from which we show that the phase
transition observed by Antal et al. occurs for G > OðN2Þ.
For most real systems, the number of known attributes
would be subcritical and the system would not be able to
achieve full balance and global cooperation. Allowing edge
weights to depend on underlying attributes captures the
perspective that the relations between people are dependent
on the people themselves [33,34]. Moreover, it lets us
rigorously unify the principles of homophily and of social
balance and analyze the thermodynamic limit. This reveals
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that homophily with only few attributes can prevent
structural balance.
Model.—We consider a complete undirected signed

network with no self-loops of N agents labeled
i ¼ 1; 2;…; N. Each agent’s state is described by a
G-dimensional vector of Boolean attributes Ai ¼ fagi g
where g ¼ 1; 2;…; G as in Refs. [1,31,32]. Each attribute
agi is initially assignedþ1 or −1with equal probability. The
attributes correspond to agents’ opinions or preferences
about G distinct subjects and can change in time. This
allows a natural embedding in a Hamming space with xij ¼
ð1=2GÞAT

i ·Aj denoting the transformed distance between
agents i and j, and the polarity of their relation
Pij ¼ sgnðxijÞ ∈ f�1g. It follows that Pij is positive
(negative) if more than half of the attributes of nodes i
and j are the same (different). To ensure having signed
polarities we consider only odd numbers of attributes. The
triad of agents is said to be balanced if the product of
polarities of its three links is positive, i.e., PijPjmPmi ¼ 1.
Following Ref. [13], all triads can be classified by a typeΔk
(k ¼ 0, 1, 2, 3), where k is the number of negative links
contained. Unbalanced triads are of types Δ1 and Δ3.
Changing the polarity of one of a triad’s links changes an
unbalanced triad to a balanced one, and vice versa.
With this in place, we define the ABLTD dynamics. In

each step a link in a random unbalanced triad ΔðijmÞ is
picked. For a triad of type Δ3 a random link is chosen since
the triad is symmetric. For a type Δ1 with probability p the
negative link is chosen and with probability (1 − p) one of
the positive links is chosen. We flip one attribute of one of
triad’s nodes (e.g., agi ) so that the chosen link’s weight is
shifted by þ 1

G if it is a negative link that we want to turn
positive, and by − 1

G if it is a positive link we want to turn
negative. The larger the value of p the more likely that the
negative link is chosen and driven towards a positive value.
Hence p represents the eagerness of agents in an unbalanced
Δ1 triad to achieve consensus, i.e., to change negative links
to positive ones instead of positive ones to negative. The
coevolution of all three levels of the system’s structure
(attributes, links, and triads) is depicted in Fig. 1.
Asymptotic analytical solutions.—Every state of the

system has a specific placement of agents at points of
Hamming space. Because of indistinguishability of agents
many such states are equivalent. For any given state one can
in principle calculate the transition probabilities to all other
states and with those probabilities calculate exact measures
of balanced states. However, the number of possible states
grows rapidly with N and G making the method infeasible
in general.
For numerical simulations of a sufficiently large network

after a number of updates one can observe the following
states: (a) a stationary, paradise solution where only triads
Δ0 exist, (b) a stationary, nonparadise solution where
balanced triads Δ0 and Δ2 exist, or (c) a quasistationary

solution where all types of triads coexist. Networks of
type (c) are observed frequently and, although being
unbalanced, they can be characterized by the approximately
constant values of average measures such as positive link
density ρ or triad densities (see Fig. 2 inset). These
measures show fluctuations that lead finite-sized networks
to ultimately reach one of the balanced solutions (a) or (b).
The size of these fluctuations decrease with N and vanish
with N → ∞, meaning that in the thermodynamic limit a
system will stay in a quasistationary state never reaching a
balanced solution.
The possible values of the edge weights xij (from now on

denoted simply as x) form a discrete set: D ¼ f−0.5;
−0.5þ 1=G;−0.5þ 2=G;…; 0.5g. Any change in link
weight is in increments �1=G. Consider a random walk
onD. Let “jumping right” denote changing the weight to be
closer to 0.5 and “jumping left” changing the weight to be
closer to −0.5with respective probabilities denoted r and l.
During an update a walker stays in place with probability
1 − ðrþ lÞ. There are two possible reasons of each jump:
intentional and accidental. Intentional changes (ICs) are a
desired consequence of the model dynamics and push triads
towards structural balance. However, flipping an attribute

FIG. 1. Coevolution of attributes, edge polarities and triadic
relations. Nodes' attributes (a) determine the relations between
agents (b) and formation of balanced and unbalanced triads (c).
Unbalanced triads drive the evolution of node attributes (a) and so
on. In (b) positive and negative links are denoted with þ and −,
respectively. Panel (c) emphasizes the four types of possible
triads (without presenting all links): two balanced (Δ0 and Δ2)
and two unbalanced (Δ1 and Δ3) denoted with blue and red
colors, respectively. If only Δ0 and Δ2 were present a group
polarization would be observed, i.e., agents could be divided into
two hostile groups (marked with ellipses) with all links within
members of the given group positive and with cross-links
negative. However, having some unbalanced triads such a
division does not exist.
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of one agent alters the weights of all this agent’s links, not
only the one thatwas intended.All these otherN − 2 changes
are accidental. An accidental change (AC) may result in a
jump in either direction but with different probabilities
dependent on the weight x. The jump probabilities can be
easily calculated. For instance, probability of “jumping
right”: r≡ PðrÞ ¼ PðrjACÞPðACÞ þ PðrjICÞPðICÞ. The
full expressions (see Supplemental Material [35]) are

rðxÞ ¼
� ð0.5 − xÞaþ for x > 0

ð0.5 − xÞa− þ i− for x < 0
; ð1Þ

lðxÞ ¼
� ð0.5þ xÞaþ þ iþ for x > 0

ð0.5þ xÞa− for x < 0
; ð2Þ

where coefficients a� and i� represent probabilities
PðACjx≷0Þ and PðICjx≷0Þ, respectively, and in the
mean-field approximation can be calculated as functions
of N, p, and the density of positive links ρ (see Ref. [35]).
Assuming G → ∞ the evolution of the probability that a

link has a weight x, denoted Wðx; tÞ, is described by the
Fokker-Planck equation,

∂Wðx; tÞ
∂t ¼

�
−

∂
∂x cðxÞ þ

∂2

∂x2DðxÞ
�
Wðx; tÞ; ð3Þ

with drift cðxÞ ∝ r − l and diffusion DðxÞ ∝ rþ l [36–38].
The quasistationary solution of Eq. (3) can be expressed by
the corresponding potential as WstðxÞ ∝ e−ϕðxÞ, where

ϕðxÞ ¼ 2G
a� þ i�

ða�x2 þ i�jxjÞ: ð4Þ

This allows us to derive an equation for the quasistationary
values of positive link density ρ, as ρ ¼ R

x>0 WstðxÞdx. The
right-hand side transforms into the transcendental function
containing the cumulative standard normal distribution Φ
dependent on ρ, p and the ratio ðG=N2Þ, see Supplemental
Material [35] for details. Analytical solutions and numeri-
cal results for N ¼ 11, 99, and 399 are shown in Fig. 2. The
analytical fit is better for p < 0.5 and when ðG=N2Þ is
larger. One can observe a phase transition in ρ that
approaches 1 when the parameter p crosses a critical value
dependent on N and G.
When N → ∞ the density ρ is dependent on the relation

between N and G as a solution of

ρ ¼ Φþ
Φþ þ exp ðGN2

C2
−−C2

þ
2

ÞΦ−

; ð5Þ

where Φ� ¼ Φ( − C�ð
ffiffiffiffi
G

p
=NÞ) and C� are rational func-

tions of ρ and p (see Ref. [35]).
To quantify the study, let us assume G ¼ OðNγÞ. There

are three scenarios. (i) If γ < 2, then Eq (5) transforms into
simply ρ ¼ 0.5, where the quasistationary state with an
equal number of positive and negative links exists. (The
magenta line in Fig. 2.) It can be shown that the numbers of
balanced and unbalanced triads are equal. (ii) If γ > 2, then
using L’Hospital’s rule we obtain ρ ¼ C−=ðCþ þ C−Þ,
which can be transformed into

ðρ − 1Þ½ð6p − 2Þρ2 − 2ρþ 1� ¼ 0: ð6Þ

The solutions are the paradise state ρ ¼ 1 and a quasista-
tionary solution ρ ¼ ½1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3ð1 − 2pÞp �−1 (the black line in
Fig. 2). Thus for γ > 2 the ABLTD model is equivalent to
the LTD model where a phase transition is observed at
p ¼ 0.5. Below p < 0.5 the system fluctuates around a
quasistationary state. For p > 0.5, the system achieves
paradise. Numerical simulations on even small systems
show a qualitatively similar transition (e.g., N ¼ 11, the
blue dots, in Fig. 2). For such small systems sizes quasista-
tionary fluctuations in ρ may be difficult to observe and the
transition occurs for values p < 0.5.
The system phase diagram obtained for N → ∞ is

presented in Fig. 3. Apart from the already mentioned
transition to paradise for γ > 2 it also emphasizes the
transition for γ ¼ 2, where the relation between numbers of
nodes and attributes determines the system fate.

FIG. 2. Steady states of the ABLTD model for different
relations between numbers of attributes G and nodes N. Shown
is the density of positive links ρ as a function of probability p
(desire for consensus). When G > OðN2Þ the system displays a
transition to the paradise state (ρ ¼ 1) provided p is sufficiently
large. Analytical solutions (dashed and solid lines) fit the
numerical results (markers) well for p < 0.5. Letting G ¼
OðNγÞ we see the fit is more accurate when γ is larger. The
solid black and magenta curves show the solutions in the
asymptotic limit N → ∞ when γ > 2 and γ < 2, respectively.
The inset shows time evolution for two example systems. Both
achieve a quasistationary phase, after which the smaller system
ultimately reaches the paradise state. Main plot shows the time
and ensemble average of the link density when the system is in
the quasistationary state if such a state is observed.
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The final scenario is (iii) if γ ¼ 2, then the system
reaches an intermediate asymptotic solution (see Ref. [35]).
Assuming G ¼ ðbNÞ2 we obtain the equation for the
critical point p�, above which the quasistationary state
disappears:

1ffiffiffiffiffiffi
2π

p exp ( −
1

2
b2ð1 − p�Þ2) ¼ bp�Φ( − bð1 − p�Þ): ð7Þ

The critical point and, therefore, the phase transition to
paradise exist so long as b ≥

ffiffiffiffiffiffiffiffiffiffiffiffið2=πÞp
.

No transition in three-node network.—With a very small
number of nodes and/or attributes it is difficult to observe a
quasistationary state. However, in such systems a finite
state can be analyzed thoroughly. This allows for the
observation of a different kind of transition than described
previously: a transition where the change of parameter p
alters the fate of a system from never to always reaching a
paradise state, i.e., from PP ¼ 0 to PP ¼ 1, where PP
denotes the probability of paradise in the final state
(see Fig. 4).
The simplest case is a network comprising only one

triad. For such a system with a small number of attributes it
is possible to calculate exactly the probabilities of sta-
tionary balanced states. With higher G, one needs numeri-
cal simulations, and with G → ∞ analytical calculations
are again possible. In such a case and assigning attributes at
random, the initial distribution of triads of typesΔ0,Δ1,Δ2,
and Δ3 is equal to 1

8
, 3
8
, 3
8
, and 1

8
. Still, the attribute update

causes two links to change their weights, but since G → ∞
the probability of crossing the polarity change threshold
(i.e., x ¼ 0) for both of the links at the same time is
negligible. Thus, with one edge flip a triad of type Δ3

always turns into Δ2. The fate of a triad of type Δ1 depends
on the parameter p. The evolution of weights for links in
such a triad is given as follows:

_x− ¼ p − ð1 − pÞx−; ð8Þ

_xþ ¼ −
1 − p
2

−
1þ p
2

xþ; ð9Þ

where x� represents the weight of one of the two positive
links or a negative link in this triad. Additive constant terms
in Eqs. (8)–(9) are related to the intentional change of a
corresponding link, while the linear parts to the accidental
change of an adjacent link. These equations are valid up to
the moment when any of the link weights cross 0, which is
equivalent to the flip of the link polarity.
Probability of a change Δ1 → Δ0 is equivalent to

calculating the probability that a negative link will be first
to change polarity. Equations (8)–(9) let us calculate
PΔ1→Δ0

(see Supplemental Material [35] for details) and
derive an asymptotic probability of reaching the paradise
state: PPðpÞ ¼ 1

8
þ PΔ1→Δ0

ðpÞ 3
8
. The results for numerical

simulations averaged over initial conditions and an asymp-
totic solution as well as the results for the LTD model are
presented in Fig. 4(a).

Only paradise state

Quasi-stationary state

FIG. 3. Phase diagram for the ABLTD model in the asymptotic
limit emphasizes the abrupt change of phases in γ ¼ 2. Axes
represent probability p and exponent γ, which describe agents’
willingness for consensus and relation between numbers of nodes
N and attributes G [G ¼ OðNγÞ], respectively. The brightness
represents the expected density of positive links ρ. When γ > 2
and p ≥ 0.5 the only possible state is a paradise state (ρ ¼ 1).
Otherwise the system reaches the quasistationary state. For γ < 2
for all p the densities of positive and negative links are equal
(ρ ¼ 0.5) as are the number of balanced and unbalanced triads.
For γ > 2 such equality is obtained for p ¼ 1=3 (marked by a
dashed line).

(a) (b)

FIG. 4. Observed transitions of fates for small systems of size
(a) N ¼ 3 and (b) N ¼ 11. Plots show the probability of reaching
paradise PP in ABLTD as a function of incentive to achieve
consensus p. (a) In the case of a one-triad system there is no
transition. The figure compares PP for the numerical results of
two diverse numbers of attributes G and the approximate PPðpÞ
in the limit G → ∞. Numerical results for large G agree with the
analytical solution. The expected analytical results for the LTD
model are also shown for comparison. (b) In the system with
N ¼ 11 the transition from never (PP ¼ 0) to always (PP ¼ 1)
reaching paradise is observed and becomes sharper with increas-
ing G.
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These solutions indicate that for the smallest system, no
matter how large the incentive for consensus p is, PP can
never be 1 [see Supplemental Material [35] for PPðpÞ with
other values of G]. For larger systems PP can show a sharp
increase given enough attributes, as observed for N ¼ 11
shown in Fig. 4(b). Otherwise, for instance for G ¼ 3 or
G ¼ 5, paradise may not be likely for any value of p.
Invariant features.—When p ¼ 1=3 different measures

(e.g., probability PP, or density ρ for both balanced and
quasistationary states) are independent of the number of the
attributes G. This observation has been confirmed in all
numerical and analytical results for all network sizes. It is
related to the fact that for p ¼ 1=3 for all unbalanced triads
all nodes and links are updated with the same probability.
For this p the exact values for any N can be calculated only
for some special cases, e.g., for G ¼ 1: ρðG ¼ 1Þ ¼ 0.5
and PPðG ¼ 1Þ ¼ 2−ðN−1Þ. We have statistically confirmed
that the above relations are valid for larger G (see
Supplemental Material [35]).
Conclusions.—We developed a rigorous framework

based on statistical physics that unifies the principles of
homophily and structural balance and also provides an
analytic treatment combining dyadic and triadic relation-
ships. Rather than manipulating the polarity of links, as in
most previous works on structural balance, we consider that
link weights are a consequence of underlying attributes of
nodes. This captures the fundamental perspective that
agents have preferences, and also embeds our system in
a Hamming space giving a quantitative measure of sim-
ilarity between agents, and finally reveals the interplay of
homophily and structural balance. The basis of our ABLTD
model dynamics are adjustments of attributes. The triadic
desire to achieve structural balance causes changes in
attributes where the dyadic edge-weight dynamics obey
a Fokker-Plank equation. These changes are performed in
order for agents to become more or less similar, which is
motivated by the positive and negative social influence,
respectively [39]. The latter phenomenon is still under
debate [40]. A recent experimental study shows that dyadic
relations adapt towards structural balance when placed in
triads with reciprocity also playing a role [41]. A phase
transition from a quasistationary state to a paradise state can
be observed in the ABLTD model and the nature of the
transition depends on the exponent γ relating the number of
attributes G and nodes N, where G ∼ Nγ . Our study
emphasizes the importance of incorporating attributes into
structural balance theory and shows that homophily can
impede a system from achieving balance and global
cooperation.
Our analytic and numerical results indicate that the LTD

and ABLTD models are equivalent in the limit N;G → ∞
and G > OðN2Þ. In such a case below p < 0.5 the system
fluctuates around a quasistationary state. For p > 0.5 the
system achieves the paradise state. When G ≤ OðN2Þ the
asymptotic results are different. For instance, when

G < OðN2Þ, then the quasistationary state with equal
number of balanced and unbalanced triads exists for all p.
An experimental analysis of homophily and structural

balance would require proper datasets with time-varying
data of agents’ relations, opinions, and personal character-
istics. With this one can estimate the possible fates of the
system. As an example consider a small group of agents.
Our model indicates that paradise is unlikely even with
high eagerness towards consensus (parameter p). For a
team (sports or industry) a common goal (a strong single
attribute) may be sufficient in achieving a paradise state
otherwise a leader may need interventions to create bond-
ing relations and prevent division into separate subgroups,
especially for large numbers of attributes [42]. Results from
our model can explain why structural balance is not
observed in some experiments over large social networks
[43–45]. It may be the outcome from internal features of the
network itself. The state without balance is also the natural
state, as it is shown in our model for a wide range of node
and attribute values. Incorporating susceptible and influ-
ential agents [46] into our triadic updating scheme, as well
as zealots [42], would also be of interest.
Our work reveals the competing tension between homo-

phily and structural balance and the importance of account-
ing for node attributes, especially when the number of the
attributes is small, which we believe is the most common
real-world scenario.
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