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We show how discretization affects two major characteristics in complex networks: internode distances
�measured as the shortest number of edges between network sites� and average path length, and as a result there
are log-periodic oscillations of the above quantities. The effect occurs both in numerical network models as
well as in such real systems as coauthorship, language, food, and public transport networks. Analytical de-
scription of these oscillations fits well numerical simulations. We consider a simple case of the network
optimization problem, arguing that discrete effects can lead to a nontrivial solution.
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I. INTRODUCTION

Complex networks that represent such sophisticated sys-
tems as acquaintances between people �1�, collaboration of
scientists �2�, protein interactions �3�, Internet �4� or city
public transport �5� have drawn much attention during the
last few years. Among other network characteristics, the
most frequently examined features are internode distance de-
fined as a number of edges along the shortest path connect-
ing two vertices and an average path length—the mean value
of above quantity. Several authors �6–10� have dealt with
this problem using different approaches to obtain analytical
expressions for average path lengths. Such a high concern
regarding distance features can be justified by the following
reasons: �i� the fundamental purpose of many networks is to
link distant nodes in a way that enables efficient flow of
information, traffic, etc., �ii� average path length is consid-
ered as the most natural observable in complex networks,
�iii� most of the examined systems exhibit the property of
small average path length �l� in comparison to the network
size N �i.e., �l�� ln N or even �l�� ln ln N�, �iv� identifying
mathematical description of the distance between two nodes
�i.e., virus infected individuals �11�, crucial chemical com-
pounds �3�, stock assets �12�� allows us to judge on the sta-
bility of the system and its tolerance to failures �13�.

In this paper we study a simple effect of log-periodic
oscillations in average path lengths which we observe in sev-
eral real-world examples. Using a formalism developed in
�10� we give a theoretical explanation of this feature sup-
ported by numerical simulations of scale-free networks with
different scaling exponents. We show that such oscillations
are due to discrete effects of path length distributions for
networks with large average degree values. We also study a
fundamental and well-known problem of optimal network
density taking into account the shortest average path length
and the smallest number of links in a network �15�. We find
that the oscillations substantially influence the solution of
this problem.

II. HIDDEN VARIABLES

Recently it has been shown �16,17� that the average dis-
tance �lij� between nodes i and j characterized by degrees ki

and kj can be expressed as

�lij� = a − b ln�kikj� . �1�

This relation is fulfilled in a wide spectrum of real-world
networks and their models such as random graphs or
Barabási-Albert evolving networks �17�, however our recent
research shows deviations from this scaling law which take a
form of regular oscillations. This can be clearly seen in
Fig. 1 where four real-world networks and two common
known models have been gathered.

To explain differences between Eq. �1� and plots in Fig. 1
we will use and modify results obtained by Fronczak et al. in
�10�. In the cited paper exact expressions for average path
length using hidden variables formalism have been received.
Assuming that each node i is characterized by its hidden
variable hi randomly drawn from a given distribution ��h�,
and a connection probability between any pair of nodes is
proportional to hihj one can show �19� that a degree distri-
bution P�k� is

P�k� = �
h

e−hhk

k!
��h� . �2�

The probability pij
* �x� that vertices i and j are xth neighbors

can be expressed �10� as pij
* �x�=F�x−1�−F�x�, where

F�x� = exp�− ABx� �3�

and A=
hihj

�h2�N , B=
�h2�

�h� . One should keep in mind that the pa-

rameter B is a “global” one �i.e., its value is determined only
by the first and second moment of a hidden variable distri-
bution�, while A can be called “local,” it depends on a spe-
cific product hihj. As the expectation value of average dis-
tance between i and j can expressed as �lij�=�x=1

x=�xpij
* �x�

=�x=0
x=�F�x�, one can write the following equation using Pois-

son summation formula �see Appendix B in �10��:

�lij� =
− ln A − �

ln B
+

1

2
+ R ,

R = �
n=1

�

Rn 	 2�
n=1

� 
�
0

�

F�x�cos�2n�x�dx� , �4�

where �=0.5772 is Euler’s constant. If the average number
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of links is relatively small then the function F�x� decreases
slowly, terms in the cosine transform of such a smooth func-
tion are negligible and the term R can be neglected. Other-
wise one must take into account, at least for the first term
from the infinite series in Eq. �4�, what leads to log-periodic
oscillation �lij� with the period � ln�hihj�=ln B �see the di-
cussion below�.

III. OSCILLATIONS

Figure 2 shows a comparison of such oscillations for net-
works with different link density �given by the parameter m
in the formula ��h� below�: low �m=2, upper row� and high
�m=40, lower row�. The examined systems are scale-free
networks characterized by a hidden variable distribution
��h�= ��−1�m�−1h−� with �=3. The networks have been
generated following the procedure C in �20� and represent

the class of random networks with asymptotic scale-free con-
nectivity distributions characterized by an arbitrary scaling
exponent �	2. In Fig. 2�b� F�x� �dotted line� and pij

* �solid
line� are presented together with points corresponding to dis-
crete values of those functions. It is clearly seen that for m
=40 probability pij

* is much more narrow than for m=2, thus
the slope of F�x� decays more rapidly. Figure 2�c� shows the
cosine transform of F�x� given by the integral in Eq. �4�.
Depending on the shape of F�x�, the amplitude of this trans-
form can take small �large� values resulting in small �large�
values of R. One should keep in mind that because R is in
fact a sum of discrete values of a given transform, taking
only the first term in the sum �i.e., n=1� is sufficient to
obtain a well-approximated value of R �cf. points corre-
sponding to discrete values of Rn in Fig. 2�c��. Figure 2�d�
shows resulting average distance �lij� between nodes i and j
as a function of hidden variables hihj without �dotted lines�
and with �solid lines� included term R. In the case of sparse
network the R term can be omitted �curves overlap�, while
for a dense one its value modifies the shape of �lij� a lot.

To obtain more quantitative results one should perform
the integral in Eq. �4�, however it is not analytical, so in
order to calculate the term R one can approximate F�x� with

the following piecewise linear function F̃�x�:

F̃�x� = 
1, x 
 x0,

1

e
�1 − ln A − x ln B� , x � �x0,x1� ,

0, x 	 x1,
� �5�

where x0= �1−ln A−e� / ln B and x1= �1−ln A� / ln B. Since
the function F�x� is translationally invariant with respect to
the argument x after rescaling the parameter A �F�x ;A�
=F�x−x� ;A��� one can freely choose the point in which the
slope coefficient is calculated as the tangent of F�x�. In order
to simplify the calculation we have chosen the inflexion

point xi of F�x�. Functions F̃�x� and F�x� are presented in
Fig. 3. Using Eq. �5� one can approximate terms Rn with

R̃n = −

ln B sin
�ne

ln B
�

�2n2e
sin
 �n

ln B
�2 ln A − 2 + e�� . �6�

As one can see taking only the first term in the above series
is justified because the next terms decay as 1/n2. Equation
�6� allows us to make an immediate observation that devia-
tions from Eq. �1� take the form of regular oscillations along
the hihj axis with period equal to ln B which increases with
the heterogeneity of the networks �see the inset in Fig. 3�.
This very value is connected with the discrete nature of dis-
tance in network—-the period along �lij� is equal to 1 �see
explanation in Appendix A� and the tangent of the function
�lij��hihj� is �ln B�−1 �see Eq. �4��. One can also easily calcu-
late that the deviation vanishes as long as �lij��k /2 where k
is an integer �see Appendix B�. For dense networks the am-
plitude of oscillations grows monotonically with B—that is
why the effect of oscillations is visible only in sufficiently
dense networks. Figure 4 presents a comparison of average

FIG. 1. �Color online� Mean distance �lij� between pairs of
nodes i and j as a function of a product of their degrees kikj for four
real-world networks and two models. �a� Astro coauthorship net-
work, N=13 986, �k�=25.56; �b� English language word co-
occurrence network, N=7381, �k�=11.98; �c� Caribbean food web
network, N=249, �k�=25.73; �d� Opole public transport network,
N=205, �k�=50.19. �e� Erdös-Rényi random graph, N=10 000,
�k�=40. �f� Barabási-Albert network, N=10 000, m=20. All data
are logarithmically binned. In the case of real-world networks an
edge between two nodes exists if �a� one scientists cites another, �b�
two words are consecutive, �c� one specie devours another, and �d�
there is a direct route connecting two bus or tram stops. For data
sources see �18,14�.
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distance �lij� versus hihj for scale-free networks with differ-
ent scaling exponents �. As expected, the amplitude of os-
cillations rises with decaying �, which can be easily under-
stood as ln B�1

	 ln B�2
for �1
�2. Similar oscillation

effects can also be observed for average path length �l�,
which value is obtained by integration of Eq. �4� over all
pairs of products hihj �see inset �b� in Fig. 5�.

IV. COST FUNCTION

Let us now focus on possible applications of the presented
phenomenon. One of them can be a network optimization
process which has been widely studied in recent years
�15,21,22�. Such an optimization is of common interest in
many different areas, among them electrical engineering,
telecommunication, road construction, and trade logistics.
The simplest model is based on the assumption of minimal
transport costs. These costs include two main aspects of net-
work performance: a price of constructing and maintaining
links between nodes and a price caused by communication
delays of information transfer. The former one is propor-
tional to the total number of links �we assume the same price
for every link�, while the latter one should be proportional to
the sum of the shortest existing connections between each
two nodes:

C = �1 − ��
N

2
�k� + �
N

2
��l� . �7�

Here � is a parameter controlling a ratio between prices of a
single link and costs of communication delays. In fact one
must find an optimal link density considering two contradic-
tive demands: a fully connected network with the shortest
connections and a tree with the smallest number of links. A
typical solution of this problem is a unimodal cost function
with minimum at some intermediate value of �k�.

Discrete effects in networks studied above can lead to
reshaping of the total cost function. As an example let us
consider the scale-free network generated by the method de-
scribed in �20� with parameters N=106 and �=3. The cost
function for this network is presented in Fig. 5 �we also show
how this function could look if we neglected discrete ef-
fects�. One can see that neglecting the correction term can

Pajek

Pajek

FIG. 2. �Color online� Comparison of two networks characterized by hidden variable distribution ��h�= ��−1�m�−1h−� for �=3.0 and
N=10 000—upper row m=2, lower row m=40. �a� Samples of sparse �upper� and dense �lower� networks; �b�, �c�, �d� detailed description
in text and in caption of Fig. 3. In case of plots �b� and �c� values of A have been chosen in such a way that the deviation is maximal.

FIG. 3. �Color online� Function F�x� �solid lines� and its linear

approximation F̃�x� �dotted lines� for scale-free network with �
=3, N=10 000 and m=40 calculated for three different values of the
product hihj �see labeled dashed lines in Fig. 2�: �A−� hihj =11 389,
maximal negative deviation from the �lij� trend; �A0� hihj =43 249
minimal �zero� deviation from the �lij� trend; �A+� hihj =198 730,
maximal positive deviation from the �lij� trend. Dashed line repre-
sents the point of inflexion xi of F�x� �F�xi�=1/e� used to calculate

tangent of F�x�. Inset shows R̃1 versus product hihj in the case of
m=2 �dotted line� and m=40 �solid line�.
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lead to about 30% underestimation of optimal network den-
sity. Inset �a� in Fig. 5, obtained for another value of the
parameter �, shows a different situation—instead of one glo-
bal minimum we have now two well separated minima. The
network administrator who tries to operate in accordance
with the economic rule �7� must to remember that the im-
provement of network efficiency can lead to a temporal in-
crease of costs and can be discouraging since one must pass
over the cost barrier. Much simpler application of the ob-

served phenomenon is presented in Fig. 5�b�, where one can
see that during the network growth there are regions where
average path length increases slower �faster� which can en-
courage �discourage� the network administrator for further
network expansion.

V. CONCLUSIONS

To summarize, we have observed log-periodic oscillations
in a large class of complex networks models as well as in
social, biological, and transport networks. The phenomenon
emerges due to the discretiztion effects and is significant for
dense networks. We have shown that the oscillations can
substantially influence a solution of the network optimization
problem when the utility function includes both link prices as
well as costs of delays of internode communication.

ACKNOWLEDGMENTS

Two of the authors �J.S. and J.A.H.� acknowledge support
from the EU grant Measuring and Modelling Complex Net-
works Across Domains—MMCOMNET �Grant No. FP6-
2003-NEST-Path-012999� and from Polish Ministry of Sci-
ence and Higher Education �Grant No. 13/6.PR UE/2005/7�.
One of the authors �P.F.� acknowledges a support from the
EU Grant No. CREEN FP6-2003-NEST-Path-012864 and
from Polish Ministry of Science and Higher Education
�Grant No. 134/E-365/6.PR UE/DIE 239/2005-2007�. The
authors are thankful to Agata Fronczak for fruitful discus-
sions.

APPENDIX A

To give the intuition behind the main argument of the
paper and to better understand the discrete nature of dis-
tances in networks let us concentrate on the lower row of
Fig. 2�b� �i.e., on a case of a dense network�. As one can

FIG. 4. �Color online� Average distance �lij�
between nodes i and j versus their hidden vari-
able product hihj �plots �a�, �b�, and �c�� or kikj

�d� for scale-free networks �m=10� of N
=10 000 nodes and �=2.2 �a�, �=3 �b� and �d�,
and �=4 �c�. Scatter data are obtained using the
algorithm presented in �20� while solid lines have
been calculated from Eq. �4� where R is taken
directly from Eq. �6�.

FIG. 5. �Color online� Cost function C versus average degree
�k� for the scale-free network characterized by N=106 nodes,
�=3.0 and �=10−4. Solid line is obtained assuming oscillations’
correction while the dotted line neglects it. Inset �a� shows cost
function C for identical network parameters N and � but with
�=5.4�10−4. Left-hand Y axis corresponds to cost function with
oscillations’ correction �solid line� while right-hand Y axis corre-
sponds to the function that neglects the correction �dotted line�.
Inset �b� presents average path length �l� versus system size N
for scale-free network with �=3 and m=40: solid line is theory,
while scatter data have been obtained using the hidden variable
algorithm �20�.
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expect, the variance of the probability pij
* �x� is close to zero

because the most probable distance x between nodes is equal
to 2 and the influence of other distances �1,3,4,5,…� can be
neglected.

Let us assume that the function pij
* �x� has a maximum at

x=2.5 �i.e., for different value of parameter A�. Now, the
variance is maximal since distances x=2 and x=3 give con-
tribution to it to the same extent. Finally, if pij

* �x� has a
maximum at x=3 then again a variance will be minimal. It
means that a probability variation emerges because the dis-
tances are expressed only by natural numbers. The same dis-
crete values generate oscillations of internode distances with
the period along �lij� equal to 1.

APPENDIX B

The obvious condition to obtain values of �lij� for which

the oscillations disappear is R̃=0. However, taking into ac-
count that the terms in the series of Eq. �6� decay as 1/n2 we

approximate this condition as R̃1=0. Thus, using this Eq. �6�
we have

�

ln B
�2 ln A − 2 + e� = − k� , �B1�

where k=0,1 ,2 , . . .. Extracting ln A from the above equation
and substituting it in Eq. �4� we obtain an equation for �lij�,

�lij� =
k + 1

2
+

e

2
− 1 − �

ln B
. �B2�

For sufficiently large and well connected networks the sec-
ond term is relatively small in comparison to �lij�=1 �i.e., for
scale-free networks with �=3, N=10 000, and m=20, the
second term is equal to 0.05�. Thus we can renumerate k as

k̃=k+1 and write the following approximate equation:

�lij� �
k̃

2
�B3�

for k̃=2,3 , . . .. This allows us to state, that oscillations dis-
appear as long as the value of �lij� is a multiple of 1 /2
�cf. crossings of solid and dotted lines at bottom plot of
Fig. 2�d��.

�1� S. Milgram, Psychol. Today 2, 60 �1967�.
�2� D. J. Watts and S. H. Strogatz, Nature �London� 393, 440

�1998�.
�3� H. Jeong, B. Tombor, R. Albert, Z. H. Oltavi, and A.-L.

Barabási, Nature �London� 407, 651 �2000�.
�4� R. Pastor-Satorras and A. Vespignani, Evolution and Structure

of the Internet: A Statistical Physics Approach �Cambridge
University Press, Cambridge, 2004�.

�5� V. Latora and M. Marchiori, Phys. Rev. Lett. 87, 198701
�2001�.

�6� M. E. J. Newman, C. Moore, and D. J. Watts, Phys. Rev. Lett.
84, 3201 �2000�.

�7� G. Szabó, M. Alava, and J. Kertész, Phys. Rev. E 66, 026101
�2002�.

�8� R. Cohen and S. Havlin, Phys. Rev. Lett. 90, 058701 �2003�.
�9� S. N. Dorogovtsev, J. F. F. Mendes, and A. N. Samukhin, Nucl.

Phys. B 653, 307 �2003�.
�10� A. Fronczak, P. Fronczak, and J. A. Hołyst, Phys. Rev. E 70,

056110 �2004�.
�11� M. Barthelemy, A. Barrat, R. Pastor-Satorras, and A. Vespig-

nani, Phys. Rev. Lett. 92, 178701 �2004�.
�12� J.-P. Onnela, A. Chakraborti, K. Kaski, J. Kertész, and A.

Kanto, Phys. Rev. E 68, 056110 �2003�.
�13� R. Albert, H. Jeong, and A.-L. Barabási, Nature �London� 406,

378 �2000�.

�14� J. Sienkiewicz and J. A. Hołyst, Phys. Rev. E 72, 046127
�2005�.

�15� F. Schweitzer, Brownian Agents and Active Particles
�Springer, Berlin, 2003�.

�16� A. E. Motter, T. Nishikawa, and Y. C. Lai, Phys. Rev. E 66,
065103�R� �2002�.

�17� J. A. Hołyst, J. Sienkiewicz, A. Fronczak, P. Fronczak, and K.
Suchecki, Phys. Rev. E 72, 026108 �2005�.

�18� Sources for data are the following: data for Astro network have
been collected from publicly avaible database at http://
arxiv.org; English coocurrance dataset has been downloaded
from V. Batagelj, http://vlado.fmf.uni-lj.si/pub/networks/
pajek/; and Caribbean food web data have been taken from
The Integrative Ecology Group http://ieg.ebd.csic.es. Opole
data have been collected for so-called “space P” �14� which is
definied as follows: nodes are bus, tram or underground stops
and an edge means that there is a direct route linking them.

�19� M. Boguñá and R. Pastor-Satorras, Phys. Rev. E 68, 036112
�2003�.

�20� A. Fronczak and P. Fronczak, Phys. Rev. E 74, 026121 �2006�.
�21� M. T. Gastner and M. E. J. Newman, Eur. Phys. J. B 49, 247

�2006�.
�22� R. Ferrer i Cancho and R. Solé, Statistical Physics of Complex

Networks, Lecture Notes in Physics �Springer, Berlin, 2003�.

LOG-PERIODIC OSCILLATIONS DUE TO DISCRETE… PHYSICAL REVIEW E 75, 066102 �2007�

066102-5


