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We investigate analytically the behavior of the Ising model on two connected Barabasi-Albert networks.
Depending on relative ordering of both networks there are two possible phases corresponding to parallel or
antiparallel alignment of spins in both networks. A difference between critical temperatures of both phases
disappears in the limit of vanishing inter-network coupling for identical networks. The analytic predictions are
confirmed by numerical simulations.
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I. INTRODUCTION

The Ising model on Barabasi-Albert �BA� scale-free net-
work �1� has been investigated both numerically �2� as well
as analytically �3� and it has been shown that the critical
temperature of such a system is proportional to the logarithm
of a total spins number N. Similar the Ising models have
been investigated for a general class of random scale-free
graphs �4–6� and it has been shown that critical temperatures
of such systems depend substantially on a characteristic ex-
ponent � describing the probability distribution of node de-
grees. Other studies of this model include investigations of
antiferromagnetic interactions �7�, dynamics on directed net-
works �8� and critical properties of spin glasses �9�.

Besides a large interest in physical properties of Ising-like
models, they also seem to be important for opinion formation
modeling �10–13�. The Ising model exhibits a majority rule
dynamics—the feature that often can be found in social sys-
tems, where a given person changes his/her opinion to fit to
a majority of his neighbors. Since it is common that social
networks have modular structure of weakly coupled clusters
�14�, it is of particular interest to see how the Ising model
behaves in the case of two interacting complex networks.
While geometrical properties of interconnected complex net-
works have been studied before �15�, the dynamics in such
systems has not been explored thoroughly.

We start with analytical investigations of the Ising model
on two interconnected Barabasi-Albert networks, and then
show results of numerical simulations confirming our ana-
lytical studies.

II. MODEL

Our model considers Ising spins on a BA network. Each
node of the network has a spin. We study only ferromagnetic
interactions existing between directly connected spins.

The BA model is a model of a growing network �1�. One
starts with m fully connected nodes, and adds new nodes to
the network. Each new node creates m connections to the
existing network. The probability that a connection will be

made to a node i is proportional to its degree ki. This results
in a scale-free network, with a degree distribution
P�k��k−3. We assume that two BA networks are connected
by EAB links �Fig. 1�. Each of these links connects a node in
network A with a node in network B. We choose a node in
network A preferentially, i.e., the probability to pick a given
node i equals �Ai=kAAi /� jkAAj. Note that we are using intra-
network node degree kAAi here, not the total node degree. We
choose the node in network B in the same way and connect
two chosen nodes by a link. This means that an inter-network
degree kAB of a node in the network A is proportional to an
intra-network node degree kAA on average. A similar relation
holds for degrees in the network B.

III. ANALYTIC CALCULATIONS

The problem of the Ising model in a single BA network
was already solved analytically by Bianconi by an appropri-
ately tailored mean-field approach �3�. We use a similar ap-
proach for the problem of two connected networks.

The Hamiltonian of the Ising model for a single BA net-
work can be written as

H = − �
i,j

Jijsisj − �
i

hisi, �1�

where si ,sj = ±1 are spins of nodes i , j, a constant Jij is a
ferromagnetic coupling between them and hi is an external
field acting on spin i. The coupling constants Jij are equal to
a positive constant if the spins are connected, and are zero
otherwise.
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FIG. 1. Two connected BA networks. A few nodes from each
network are shown. The intra-network degrees kAA and kBB as well
as inter-network degrees kAB and kBA for two sample nodes are
presented.
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The exact solution for the average spin �si� in a single
network can be written as

�si� = 	tanh
��
j

Jijsj + �hi�� , �2�

where �=1/T, the temperature T is measured in units of
inverse Boltzmann constant 1 /kB and averaging is over the
canonical ensemble. If we now consider an average over all
possible realizations of BA networks, then �Jij�=Jkikj /E. We
use the mean field approximation, taking �Jij� in place of Jij

in our equation. Since i and j are ordered pairs, the total
number of pairs E is twice the number of edges in the net-
work. If we take the external field hi equal to zero, Eq. �1�
has the following form:

�si� =	tanh�J�
j

 kikj

E
sj��� . �3�

Now we consider a pair of coupled networks A and B.
The parameters describing both networks can be split into
four groups—two describe internal properties of each net-
work, and two describe network-network interactions. We
introduce the following notation: sAi and sBi are spins in net-
works A and B, JAA and JBB are coupling constants between
spins in networks A and B, respectively, JAB=JBA are the
coupling constants between spins in different networks, kAAi
and kBBi are intra-network node degrees, kABi and kBAi are
inter-network node degrees, EAA and EBB are twice the total
numbers of all intra-network links in A and B, EAB=EBA is
the number of links between the networks.

Now we extend Eq. �3�, introducing the influence of the
second network. This way we obtain two equations for aver-
age spins in every network. We use a standard mean-field
approach, and approximate the hyperbolic tangent by a linear
function. Since average spins are relatively close or equal to
zero near our critical points, the approximation does not
introduce large errors. As result we get

�sAi� = �JAAkAAi�
j

kAAj�sAj�
EAA

+ �JBAkABi�
j

kBAj�sBj�
EBA

�4�

�sBi� = �JBBkBBi�
j

kBBj�sBj�
EBB

+ �JABkBAi�
j

kABj�sAj�
EAB

. �5�

To get a relation for the system critical temperature we need
to have a self-consistent equations for order parameter. The
case of a single network required introduction of only single
weighted spin S=�iki�si� /E, where the �si� is mean-field av-
erage for a given spin i. In the case of two connected net-
works, we need to consider four such weighted spins SAA,
SBB, SAB and SBA

SAA = �
i

kAAi�sAi�/EAA, �6�

SBB = �
i

kBBi�sBi�/EBB, �7�

SAB = �
i

kABi�sAi�/EAB, �8�

SBA = �
i

kBAi�sBi�/EBA. �9�

SAA and SBB hold the same meaning as for a single network,
SAB is the mean weighted spin of the network A observed by
spins in the network B, while SBA is a mean weighted spin of
the network B observed by spins in the network A.

Equation �10�–�13� were received from Eqs. �4� and �5�
by multiplying by appropriate factors �see Eqs. �6�–�9�� and
summing over i. These four equations contain only four
weighted spins as unknown collective variables and are ap-
proximate mean-field description of the system close to a
critical point. It follows we receive

SAA = �JAASAA�
i

kAAi
2

EAA
+ �JBASBA�

i

kABikAAi

EAA
, �10�

SBB = �JBBSBB�
i

kBBi
2

EBB
+ �JABSAB�

i

kBAikBBi

EBB
, �11�

SAB = �JAASAA�
i

kAAikABi

EAB
+ �JBASBA�

i

kABi
2

EAB
, �12�

SBA = �JBBSBB�
i

kBAikBBi

EBA
+ �JABSAB�

i

kBAi
2

EBA
. �13�

If we assume that kABi= pAkAAi and kBAi= pBkBBi, which
means that the number of links outside the network is pro-
portional to the number of links within the network, we can
greatly simplify our four equations. This assumption is valid
when one takes into account the way we create inter-network
links in our model. The probabilities pA and pB are fixed
numbers, although the values are not independent and are
connected with the number of links between networks in
following way: pAEAA=EAB=EBA= pBEBB.

Using this assumption, we do not need to consider the
cross-network weighted spins SAB and SBA as they are pro-
portional to SAA and SBB. Now our first two equations be-
come

SA = �JAASA�
i

kAAi
2

EAA
+ �JBASB�

i

kAAi
2 pA

EAA
�14�

SB = �JBBSB�
i

kBBi
2

EBB
+ �JABSA�

i

kBBi
2 pB

EBB
, �15�

where SA�SAA and SB�SBB. The equation array can be writ-
ten as a single matrix equation

S = ��̂S , �16�

where S is a vector � SA

SB
� describing the state of the system

and �̂ is a matrix describing effective interaction strengths
between spins belonging to the same or to different networks
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�̂ = �AA �BA

�AB �BB
� = � JAA

�kAA
2 �

�kAA�
pBJBA

�kAA
2 �

�kAA�

pAJAB

�kBB
2 �

�kBB�
JBB

�kBB
2 �

�kBB�
� . �17�

In the case of a single network A, solutions other than

SA=0 can exist only if �JAA

�kAA
2 �

�kAA� �1 �3�. In the case of two

coupled networks, this condition corresponds to an eigen-
value of Eq. �16� greater than 1. The eigenvalues are

�± =
�

2
��AA + �BB ± ���AA − �BB�2 + 4�BA�AB� . �18�

Comparing these eigenvalues with 1, we get the following
critical temperatures:

Tc± =
�AA + �BB ± ���AA − �BB�2 + 4�BA�AB

2
. �19�

Since the diagonal elements of �̂, �AA, and �BB are criti-
cal temperatures TcA,TcB for separate networks we can write
the critical temperatures for the coupled system as

Tc± =
TcA + TcB ± ��TcA − TcB�2 + 4�BA�AB

2
. �20�

To better understand the meaning of these solutions, we
introduce the following variables:

A = �TcA + TcB�/2 �21�

D = �TcA − TcB�/2 �22�

C = ��BA�AB. �23�

The value A �“average”� describes average critical tempera-
tures of the networks, D �“difference”� is the difference be-
tween critical temperatures of both networks, C �“coupling”�
describes a strength of inter-network interactions.

Using this notation the critical temperatures can be writ-
ten shortly as

Tc± = A ± �D2 + C2. �24�

Let us now consider eigenvectors associated with �±.
They are proportional to the magnetization of both networks
that appears below a given critical temperature and disap-
pears above it. The un-normalized eigenvectors are

S± = � 1

− D ± �D2 + C2

�BA
� . �25�

The eigenvector S− has opposite signs of its components and
corresponds to networks ordered with antiparallel weighted
spins, while the eigenvector S+ has the same signs of the
components and corresponds to networks ordered with par-
allel weighted spins.

In the limit of vanishing inter-network coupling �C=0� the
eigenvalues are simply the diagonal elements of the matrix

�A=TcA, �B=TcB and the associated normalized eigenvectors
are SA= � 1

0
�, SB= � 0

1
�. This means that in this limit two stable

states of the system correspond to the ordering of just one of
the networks, and there is no relation between the order in
each network. It shows our approach gives correct results in
this specific case. Now let us investigate the inequality con-
ditions for existence of solutions S±. From the condition
�±�1 we have

A − T � �D2 + C2, �26�

T − A � �D2 + C2. �27�

The meaning of these inequalities is presented at Fig. 2.
If we consider networks of the same size, the dependence

of critical temperatures on inter-network interaction strength
C is linear, and both critical temperatures are the same for
C→0. In such case the system critical temperature
Tc±=A=TcA=TcB �Fig. 3�.

The analytic results hold true for any random network,
where the probability of a link existing between any two
nodes i and j is proportional to the product kikj. This is the
only assumption about network structure we have used, so

FIG. 2. The area of parameters C and D where the ordered states
S± can exist. The order appears in the dashed areas. The state S− of
antiparallel ordering corresponds to the left picture, the state S+ or
parallel ordering corresponds to the right picture. The radius of the
circle is the difference T−A. Note that solution S− does not exist
for A�T and solution S+ exist for any C and D for A�T. In the
case C=0 the networks do not interact at all, and the solutions lose
their normal meaning.

FIG. 3. The dependence of temperatures Tc± on number of links
between networks EAB. The dashed lines are analytic predictions
�Eq. �19��. The symbols are numeric results. Circles correspond to
Tc− �J /kB�. Squares and diamonds correspond to Tc+ �J /kB� and are
calculated from susceptibility 	= �Sh−S0� /h. Triangles correspond
to Tc+ �J /kB� and are calculated from susceptibility 	��S2�− �S�2.
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any networks where the condition is fulfilled �i.e., random
networks� are subject to our analytical predictions.

Our numerical calculations, found in the following sec-
tion, correspond to the specific case of BA network and con-
stant coupling JAA=JAB=JBA=JBB=J. We can write the criti-
cal temperatures as follows:

Tc± =
TcA + TcB

2
±�
TcA − TcB

2
�2

+ pApBTcATcB, �28�

where TcA=J�mA /2�ln NA and TcB=J�mB /2�ln NB. NA is the
number of nodes in network A, mA is the number of links
each new node creates �see BA network creation in Sec. III�.
Similar for network B.

IV. NUMERIC RESULTS

Our analytic calculations show the existence of two dif-
ferent ordered states and estimate values of two critical tem-
peratures where these states disappear. Below we investigate
numerically a case of two coupled BA networks with
the same number of nodes NA=NB=5000 and links
EAA=EBB=50 000 ��kAA�= �kBB�=10�.

We run Ising dynamics on these networks, setting the fol-
lowing initial condition: all spins in both networks have the
same value sAi=sBi= +1. We allow the system to relax for

=20 time steps, perform averaging for 
=20 time steps,
then increase the temperature and start from the same initial
condition as before. This way, results for different tempera-
tures are not correlated. We find the weighted spin
S=SA+SB for each temperature T and average it over 100
network realizations. Simulations are performed for different
numbers of inter-network links EAB=1000,2000,3000 and
4000 that were attached preferentially to fulfill the assump-
tions of our model �see the discussion at the end of Sec. II�.

For low temperatures T the system is ordered. As the tem-
perature increases the average weighted spin S decreases.
When the temperatures increase over Tc+, the ferromagnetic
ordered state of both networks disappears, i.e., both networks
become paramagnetic �Fig. 4�.

Finding the exact value of critical temperature Tc+ from
numerical simulations is not straightforward. If one observes
the dependence of the weighted magnetization on rising tem-
perature and tries to fit the magnetization decay to a linear or
to an exponential function, the results strongly depend on
relaxation time 
. To overcome this problem we observed the
temperature dependence of the system susceptibility 	. In
fact, by comparison to standard models of magnetic systems,
one can expect that the initial susceptibility diverges at
T=Tc+. In our finite system we are looking simply for the
maximum of 	. To estimate 	 we are using two methods.
First we compare average weighted spin S for a small exter-
nal field h=0.05J and the value of S0 with no external field.
It follows 	= �Sh−S0� /h. Because such results are strongly
fluctuating as a function of system history and temperature
�Fig. 4�, we calculate running average over 30 temperature
points and find the maximum of 	 by fitting a parabolic
curve. The top of the parabola corresponds to the position of
the critical temperature Tc+. We found that these values are

independent of the relaxation time 
 used in our numerical
experiment. The second method of finding the critical tem-
perature Tc+ is observation of the time average �S2�− �S�2,
where we average over one relaxation period 
. The magni-
tude of the fluctuations is proportional to the susceptibility
	��S2�− �S�2 according to the fluctuation-dissipation theo-
rem �16�. Similarly to the previous method, we calculate
running average over ten points and find the maximum. The
values are shifted by a constant value comparing to analytic
results and do not fluctuate as much as those obtained from
the first method �see Fig. 3�.

Now we consider the same networks with the following
initial condition for each temperature: spins in both networks

FIG. 4. The dependence of the average weighted spin
S=SA+SB and its susceptibility for small external field h=0.05J in
the case of two BA networks with EAB=1000 connections between
them. An initial condition for each temperature is a completely
ordered system. The full symbols depict S, the X symbols corre-
spond to susceptibility 	= �S0.05−S0� /h �the lines are just to guide
eye�, the empty symbols are 30-point running average of the sus-
ceptibility. The parabolic fit was used to find the susceptibility
maximum.

FIG. 5. The temperature dependence of the average weighted
spin value �S � = �SA+SB� in the case of two BA networks with
EAB=4000 connections between them. Initial conditions for each
temperature are two fully ordered networks with opposite spins.
The symbols correspond to numerical data and gray lines are ap-
proximations of magnetization behavior below and above critical
temperature.

KRZYSZTOF SUCHECKI AND JANUSZ A. HOŁYST PHYSICAL REVIEW E 74, 011122 �2006�

011122-4



are ordered antiparallel sAi= +1,sBi=−1. The relaxation al-
gorithm and the measurement procedure are the same as for
parallel spin case, however now we consider absolute values
of weighted spin of the whole system �S � = �SA+SB�. For low
temperatures T both networks remain ordered in opposite
directions �Fig. 5� and as result an average weighted spin
value �S � = �SA+SB� fluctuates around 0. When the tempera-
ture increases over Tc−, the state of antiparallel ordered net-
works disappears and networks start to order in a parallel
fashion. An example of such a scenario is presented at Fig. 6.
When temperature further increases and T�Tc+ the system
becomes paramagnetic.

We found numerically the critical temperature Tc− from
the intersection of extrapolations of rising and declining part
of the curve S�T� �linear fit was used for the rising part and
exponential fit for the declining part� �Fig. 5�. This point
slightly depends on relaxation times 
. For large 
 the effect
of finite system size can be easily observed and the system
jumps from an antiparallel state to a parallel one that has a
lower energy.

The results for dependence of Tc− and Tc+ on the number
of links between networks EAB agree with the analytic calcu-
lations �Fig. 3�.

V. CONCLUSIONS

In the system of two BA networks, the Ising model pos-
sesses two low-temperature stable states — both networks
ordered parallel or antiparallel. It follows there are two criti-
cal temperatures corresponding to the disappearance of these
two stable states—Tc− and Tc+. They are placed symmetri-
cally around the average of critical temperatures of separate
networks. The difference between them depends on density
of inter-network links and the difference between critical
temperatures of separate networks. The analytic calculations
agree with performed numeric simulations.
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FIG. 6. An example of time evolution of magnetization for two
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ture, the antiparallel ordered state is not stable, and the initial con-
dition of networks ordered in such fashion evolves towards a stable
parallel ordered state.
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