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Universal scaling of distances between vertices of Erdős-Rényi random graphs, scale-free Barabási-Albert
models, science collaboration networks, biological networks, Internet Autonomous Systems and public trans-
port networks are observed. A mean distance between two nodes of degrees ki and kj equals to �lij�=A
−B log�kikj�. The scaling is valid over several decades. A simple theory for the appearance of this scaling is
presented. Parameters A and B depend on the mean value of a node degree �k�nn calculated for the nearest
neighbors and on network clustering coefficients.
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Recently, much effort has been put into investigation of
network systems, in order to recognize their structures and
emerging complex properties �for a review see �1–4��. The
empirical analysis of many real complex networks has re-
vealed the presence of several universal scaling laws. The
scale-free behavior of degree distributions P�k��k−� �5� ob-
served in a number of social, biological and technological
systems is probably the most amazing. Aside from that,
many further scaling laws have been found, such as a depen-
dence of clustering coefficient on node degree in hierarchical
networks c�k��k−� �6�, scaling of connection weight distri-
bution �7,8�, connection load distribution �9�, load depen-
dence on degree �10� and others �11–13�.

At the macroscale one can describe a whole network by a
dependence of a mean distance between any pair of nodes on
the network size and in many real networks the small-world
effect is observed �14�, i.e., the mean distance l between
nodes of such networks increases not faster than logarithmi-
cally with their size N. In scale-free networks the small-
world effect changes to ultrasmall-world effect �l
� log log N� when ��3 �15–18�. It was also observed that if
a network disorder is present, optimal paths become much
longer and the small-world effect disappears �19�. The recent
research on complex networks is slowly shifting from prob-
lems of network topology to directed and weighted networks
�20–22�, network dynamics �23�, as well as to the issue of
network efficiency �24�.

In the present paper we return to networks geometry and
analyze surprising empirical scaling that has not been con-
sidered before. We think that our observations can be impor-
tant for understanding of network structures and for pro-
cesses driving their evolution as well as for constructing
search algorithms in real web-like systems. We show that the
mean distance between nodes with degrees ki and kj is given
by the following relation

�lij� = A − B log�kikj� . �1�

The above scaling law is shown to be correct not only for
network models but also for many real networks regardless
of their degree distribution and correlation profiles.

Figure 1 presents mean distance �lij� between pairs of

nodes i and j as a function of a product of their degrees kikj
in selected complex networks. Analyzed systems belong to
very different classes ranging from generic models of ran-
dom graphs and scale-free networks, through natural systems
such as food webs and metabolic networks to manmade like
the Internet and public transport networks. We include data
for Erdős-Rényi random graphs, Barabási-Albert evolving
networks, biological networks �25–27� �Silwood, Ythan,
Yeast�, social networks �28,29� �coauthorship groups Astro
and cond-mat�, Internet Autonomous Systems �30� and se-
lected networks for public transport in Polish cities �31,32�
�Gorzów Wlkp., Łódź, Zielona Góra�. One can see, that the
relation �1� is very well fulfilled over several decades for all
our data. Let us stress that the networks mentioned above
display a wide variety of basic characteristics. Among them
there are both scale-free and single scale networks, with ei-
ther negligible or very high clustering coefficient, assortative
�34�, disassortative or uncorrelated. The only apparent com-
mon feature of all above systems is the small-world effect.
We have checked however that for the small-world Watts-
Strogatz model �14�, the scaling �1� is nearly absent and it is
visible only for large rewiring probability, and only for larger
degrees, where nodes have many shortcuts.

Although the scaling �1� works well for distances aver-
aged over all pairs of nodes specified by a given product kikj
there can be large differences if one changes ki while keeping
kikj constant. Figure 2 presents the dependence of average
path length lij on ki, for a fixed product kikj in the case of
Astro network and for the Internet Autonomous Systems in
1999. One can see that although the Astro network is assor-
tative �34� �short-range attraction�, pairs of nodes with simi-
lar degrees are in average further away than different degree
pairs �long-range repulsion�. For the disassortative network
AS �34� the behavior is opposite. For uncorrelated networks
�Erdős-Rényi, Barabási-Albert�, the average path length is
constant if the product kikj is fixed �33�.

To justify the relation �1� let us consider a simple ap-
proach that bases on a concept of branching trees exploring
the space of a random network. We need to estimate the
mean shortest path between a node i of degree ki and a node
j of degree kj. Let us notice that following a random direc-
tion of a randomly chosen edge one approaches node j with
a probability pj =kj / �2E�, where 2E=N�k� is a double num-
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ber of links. It follows that in average one needs Mj =1/ pj
=2E /kj of random trials to arrive at the node j.

Now let us consider a branching process represented by
the tree Ti �Fig. 3� that starts at the node i where an average
branching factor is � �all loops are neglected�. If a distance
between the node i and the surface of the tree equals to x
then in average there are Ni=ki�

x−1 nodes at such a surface
and there is the same number of links ending at these nodes.
It follows that in average the tree Ti touches the node j when
Ni=Mj, i.e., when

kikj�
x−1 = N�k� . �2�

Since the mean distance from the node i to the node j is
�lij�=x thus we get the scaling relation �1� with

A = 1 +
log�N�k��

log �
and B =

1

log �
. �3�

The result �3� is in agreement with the paper �35� where the
concept of generating functions for random graphs has been
used.

One has to take into account that in the above consider-
ations we have assumed there are no degree–degree correla-
tions, we have neglected all loops and we have treated the
branching level x as a continuum variable to fulfill the rela-
tion �2�. The last approximation can be improved if one finds

a probability distribution for P�lij� and a corresponding av-
erage value �lij�. Such an approach has been performed in
our papers �17,18� where we have applied the concept of
hidden variables and have received the same value of the
parameter B and small corrections to A.

The mean branching factor � is a mean value over all
local branching factors and over all trees in the network. In
the first approximation it could be estimated as the mean
arithmetic value of a nearest neighbor degree less one �in-
coming edge�: �= �k�nn−1. Such a mean value is however
not exact because local branching factors in every tree are
multiplied one by another in �2�. The corrected mean value
of � should be taken as an arithmetic mean value over all
geometric values from different trees, what is very difficult
to perform numerically. We calculate arithmetic mean
branching factor over nearest neighborhood of every node m,
i.e., ��m�= �k�nn

�m�−1, and then average it geometrically over
all nodes m, i.e., �= ���m��m. Although our approach is not
exact, it leads to a good agreement between coefficients Ae,
Be taken from real networks �see Table I� and A, B calculated
from our model.

The influence of loops of the length three on the relation
�1� can be estimated as follows. Let us assume that in the
branching process forming the tree Ti two nodes from the
nearest neighborhood of the node i are directly linked �the
dashed line at Fig. 3�. In fact such a situation can occur at

FIG. 1. Mean distance �lij� between pairs of nodes i and j as a function of a product of their degrees kikj: �a� Erdős-Rényi random graphs:
�k�=20 and N=10 000 �squares� N=50 000 �circles�; �b� Barabási-Albert networks: �k�=8 and N=1000 �squares� N=10 000 �circles�; �c�
biological networks: Silwood �squares�, Yeast �triangles�, Ythan �diamonds�; �d� coauthorship networks: Astro �squares�, Cond-mat �circles�;
�e� Internet Autonomous Systems: Year 1997 �squares�, Year 1998 �circles� Year 1999 �triangles�, Year 2001 �diamonds�; �f� public transport
networks in Polish cities: Gorzów Wlkp. �squares�, Łódź �triangles�, Zielona Góra �circles� In �b�, �d�, and �e� data are logarithmically binned
with the power of 2, in the case of �c� and �a� with the power of 1.25 and in case of �f� data are not binned.
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any point of the branching tree Ti. Since such links are use-
less for further network exploration by the tree Ti thus an
effective contribution from both connected nodes to the mean
branching factor of the tree Ti is decreased. Assuming that
clustering coefficients of every node are the same, the cor-
rected factor for the branching process equals to �c=�−c�
where c is the network clustering coefficient. This equation
is not valid for the branching process around the node i
where �i�=�−c�ki−1�. A similar situation arises around the
node j. Replacing ki and kj with �k� in �i� and � j� one gets

TABLE I. Comparison between experimental and theoretical data. Astro and Cond-mat are coauthorship networks, Silwood, Yeast, and
Ythan are biological networks and AS stands for the Internet Autonomous Systems with number meaning the year data were gathered,
Gorzów Wlkp., Łódź, and Zielona Góra are public transport networks in corresponding Polish cities. N is the number of nodes, �k�-mean
degree value, c-clustering coefficient. Ae and Be mean experimental values �Fig. 2� whereas A and B are given by �3�, A� and B� by �5�. �A,
�A�, �B, �B� indicate the following differences A−Ae, A�−Ae, B−Be, B�−Be.

Network N �k� c Ae A �A /A A� �A� /A� Be B �B /B B� �B� /B�

Erdős-Rényi 10 000 20.00 0.002 5.48 5.08 −0.08 5.08 0.08 0.798 0.769 −0.04 0.770 −0.04
Erdős-Rényi 50 000 20.00 0.000 5.86 5.61 −0.04 5.61 −0.04 0.729 0.769 0.05 0.769 0.05
Barabási-Albert 1000 8.00 0.038 4.54 4.24 −0.07 4.27 −0.06 0.813 0.830 0.02 0.842 0.03
Barabási-Albert 10 000 8.00 0.007 5.17 4.81 −0.08 4.81 −0.07 0.778 0.777 0.00 0.779 0.00
Astro 13 986 25.56 0.609 5.24 4.30 −0.22 4.98 −0.05 0.707 0.595 −0.19 0.786 0.10
Cond-mat 17 013 9.46 0.604 5.90 5.09 −0.16 6.38 0.08 0.908 0.786 −0.16 1.150 0.21
Silwood 153 4.77 0.142 4.22 3.69 −0.14 3.78 −0.12 0.955 0.941 −0.02 1.004 0.05
Yeast 1846 2.39 0.068 7.53 6.66 −0.13 6.87 −0.10 1.406 1.552 0.09 1.629 0.14
Ythan 135 8.83 0.216 3.39 3.35 −0.01 3.45 0.02 0.649 0.765 0.15 0.832 0.22
AS 1997 3015 3.42 0.182 3.99 3.39 −0.18 3.42 −0.17 0.562 0.596 0.06 0.629 0.11
AS 1998 4180 3.72 0.250 4.08 3.41 −0.20 3.45 −0.18 0.555 0.575 0.04 0.620 0.10
AS 1999 5861 3.86 0.250 4.03 3.35 −0.20 3.38 −0.19 0.532 0.540 0.01 0.579 0.08
AS 2001 10 515 4.08 0.289 3.96 3.23 −0.23 3.25 −0.22 0.471 0.481 0.02 0.518 0.09
Gorzów Wlkp. 269 2.48 0.082 24.36 16.06 −0.52 19.76 −0.23 12.27 5.333 −1.30 6.651 −0.84
Łódź 1023 2.83 0.065 24.01 11.67 −1.06 12.70 −0.89 8.621 3.084 −1.80 3.389 −1.54
Zielona Góra 312 2.98 0.067 10.03 8.96 −0.12 9.63 −0.04 3.908 2.682 −0.46 2.917 −0.34

FIG. 2. Dependence of average path length on ki, for fixed kikj

product. The lines connecting the symbols are there for clarity. The
bars show point weight, meaning relative numbers of pairs ij. The
horizontal lines are weighted averages over ki, and are just average
path lengths for given kikj. The top shows data for the Internet
Autonomous Systems, while bottom for Astro coauthorship net-
work. Note: The very small shifts on ki axis between data for dif-
ferent kikj are artificially introduced to make the weight bars not
overlap.

FIG. 3. Tree formed by a random process, starting from the
node i and approaching the node j.
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kikj���1 − c���2���1 − c��x−3 = N�k� , �4�

where c�=c��k�−1� /�. It follows that instead of �3� we have

A� = 3 +
log�N�k�� − 2 log���1 − c���

log���1 − c��
, B� =

1

log���1 − c��
.

�5�

Table I contains a comparison between the experimental data
�Fig. 1� and theoretical predictions given by Eqs. �3� and �5�.
One can observe that the range of parameters A and B for
different networks is very broad. Our approximate approach
fits very well to random Erdős-Rényi graphs and BA models
and is fairly good for coauthorship and biological networks
as well as for the Internet Autonomous System and public
transport network in Zielona Góra while for two other trans-
port systems it leads to larger errors. Corrections due to clus-
tering effects give a better fit for the coefficient A�, while for
some networks the coefficient B is closer to experimental
value Be than B�. The good agreement between theory based

on random networks and empirical data suggests that the
considered real networks exhibit a large level of randomness.

In conclusions we have observed universal path length
scaling for different classes of real networks and models. The
mean distance between nodes of degrees ki and kj is a linear
function of log�kikj�. The scaling holds over many decades
regardless of network degree distributions, correlations and
clustering. A simple model of random tree exploring the net-
work explains such a behavior and leads to a good agreement
with experimental data. We expect that the observed scaling
law is universal for many complex networks, with applica-
bility reaching far beyond the quoted examples.
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