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Average path length in random networks
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Analytic solution for the average path length in a large class of uncorrelated random networks with hidden
variables is found. We apply the approach to classical random graphs of Erdds and(B@nygvolving
networks introduced by Barabasi and Albert as well as random networks with asymptotic scale-free connec-
tivity distributions characterized by an arbitrary scaling expornent2. Our result for 2<a<3 shows that
structural properties of asymptotic scale-free networks including numerous examples of real-world systems are
even more intriguing than ultra-small world behavior noticegume scale-free structures and for large system
sizesN— oo there is a saturation effect for the average path length.
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During the last few years random, evolving networkslytical description of main topological properties of the fore-
have become a very popular research domain among physioing networks. We derive a general theoretical formalism
cists[1-4)]. A lot of efforts were put into the investigation of describing metric featureé.e., APL, intervertex distance
such systems, in order to recognize their structure and tdistribution) of random networks with hidden variables, as-
analyze emerging complex properties. It was observed thauming that the connection probability scalesgs-hih;
despite network diversity, most of real web-like systems[18]. The last assumption concerning the factorized form of
share three prominent structural features: small average paffy translates into the absence of two-point correlations and
length(APL), high clustering andcale-freg(SF) degree dis- applies to a broad class of networks.
tribution [1-5]. Several network topology generators have The issue of the small-world property is of great impor-
been proposed to embody the fundamental characteristidcance for network studies. The property directly affects such
[6-12. crucial fields like information processing in different com-

To find out how the small-world propertgi.e., small munication system@ncluding the Interngt[19—-23, disease
APL) arises, the idea of shortcuts has been proposed bgr rumor transmission in social networkad3—25 as well as
Watts and Strogatfl3]. To understand where the ubiquity of network designing and optimizatidi26—29. Not long ago,
scale-free distributions in real networks comes from the conthere was a strong belief that all the processes become more
cept of evolving networks basing on preferential attachmenefficient when the mean distance between network sites is
has been introduced by Barabasi and Alb&it Recently smaller. Recently however, it was shown that the small-
Calderelli and coworkers[12] have presented another world property may have an unfavorable influence on such
mechanism that accounts for origins of power-law connecphenomena like synchronizabilif0].
tivity distributions. It is interesting that the mechanism is  Despite the universality and usefulness of the small-world
neither related to dynamical properties nor to preferentiatoncept, except a few casgdl—34, satisfactory calculations
attachment. Caldarelét al. have studied a simple static net- of the average path leng{A\PL) almost do not exist. Even
work model in which each vertek has assigned a taly in the case ohigedErdds-Rényi graphs only a scaling rela-
(fitness, hidden variabjeandomly drawn from a fixed prob- tion (not an exact formuladescribing APL is known akg
ability distribution p(h). In their fitness model, edges are ~In N/In{(k) [3]. In this paper we derive an exact formula
assigned to pairs of vertices with a given connection probfor the average distandg between any two nodesand j
ability ;;, depending on the values of the tagsand h characterized by given values of hidden variaiigand h;.
assigned at the edge end points. Similar models have begweraging the quantity; over all pairs of vertices we obtain
also analyzed in several other studjéd4-1q. the average path length characterizing the whole network. It

A generalization of the above-mentioned network modelds important to stress that our formulas for APL do not posess
has been recently proposed by Bogufia and Pastor-Satorragy free parameters, and therefore may be directly compared
[17]. In the cited paper, the authors have argued that sucith the results of computer simulations. In this paper we
diverse networks like classical random graphs of Erdds antiave tested our analytic results against numerical calcula-
Rényi (ER), fitness model proposed by Caldaredtial. and  tions performed for Erdos-Rényi classical random graphs, a
even scale-free evolving networks introduced by BarabasBA model, and scale-free networkgk) ~ k™ with arbitrary
and Albert(BA) may be described by a common formalism. scaling exponentr. In all the cases we obtain a very good
Boguiia and Pastor-Satorras have derived analytical expreagreement between our theoretical predictions and the results
sions for connectivity distribution®(k) and relations de- of numerical investigation.
scribing degree correlations in such networks as functions of Let us start with the following lemma.
distributions of hidden variables(h) and the probability of Lemma 1: If A,As,...,A, are mutually independent
an edge establishmepf. In this paper we present an ana- events and their probabilities fulfill relation§};P(A)<e
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P(UAi)=1—ex -2 P(Aa))—Q, 1)
i=1 i=1
where0=<Q<X["j(ns)l/j!~(1+&)".

Proof: Using the method of inclusion and exclusi{3b]
we get

P(,u Ai) =2 (- 1)), ()
i=1 j=1
with
siy= X PA)PA) - P(A)
lsi1<i2<~--<i»sn
1(2 Y
= j—,(E P(Ai)> -Q, 3
“\i=1
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(hy=(k), (h*)=(k(k-1)). (8

With respect to our following calculations the relati()
requires a few comments. First, let us note thatkfer the
Poisson-like propagator that accompanies the distribution
p(h) in the formula forP(k) is a sharply peaked function
analogous to delta, . For this reason, in the limit of large
nodes degrees we obtain a correspondence between the stud-
ied uncorrelated networks with hidden variables and random
graphs with a given degree sequelittee so-called configu-
ration modej [36],

P(k) ~ p(K). 9

Another very important conclusion that comes from con-
siderations performed in Refl7] and seems to affect our
later derivations is that we cannot generate uncorrelated ran-
dom networks with a power-law degree distributi®k)
~k™@ and the scaling exponent2¢<3 by means of the
factorized probability(4) (see alsq37,38). The axiomatic

where Osts(nj/j!—(”))sJ'. The term in brackets repre- definition of probability require®;; < 1, giving the condition

i

sents the total number of redundant components occurring iff" the maximum value of the the hidden varialig,,,

the last line of(3). NeglectingQ; it is easy to see thatl

-P(UA;)) corresponds to the firsin+1) terms in the
MacLaurin expansion of eXp=P(A))). The effect of higher-

order terms in this expansion is smaller tHar (ne)™/(n

+1)!. It follows that the total error of1) may be estimated as

Q<EJ-”:1Q]-+R. This completes the proof.

~+VN. When we think about hidden variables as about de-
sired degreegas sketched in the previous paragrapie
condition fork,5= hmax iS in contradiction to the cut-off of
the power-law degree distributidg,~ N¥(@=Y [39] that al-
lows for nodes with degrees higher thiapy,,. For this reason,
our formalism describing metric properties of random uncor-
related networks should not work well for SF networks with

Let us notice that the tern®; in (3) disappear when one
approximates multiple sunﬁggil<iz<...<i_gn by correspond-
ing multiple integrals. Foe=A/n<1 the error of the above
assessment is less théA exp(A)/n and may be dropped in

2= a<3. In contrast to the above discussion, we noticed
that our analytical predictions are consistent with numerical
calculations performed for scale-free networks with arbitrary
= scaling exponent> 2. We suspect that the unexpected con-
the limit n— cc. _ . formity for networks with 2<«<3 may be related to the
At the moment we briefly repegafter Ref.[17]) the main  oyyreme small fraction obad pairsof nodes with large de-

properties of random networks with hidden variables andy ees that do not fulfill the conditiop; <1 (see Appendix
connection probabilityp; given by

A).
hh Now, we come back to the main subject of the paper; it
Bij = I_Bl (4) means the issue of the average path length in random net-

works. Let us consider a walk of lengthcrossing index-
where 8 is a certain constant. In the case of random netlinked vertices{i,v;,v,...v«1),j}. Because of the lack of
works, where two-point correlations at the level of hiddencorrelations the probability of such a walk is described by
variables are absent we have the producff)wlT)Ulv2 T’vzvs' . 'wa-l)i’ wherep;; gives a con-

B=(hN, (5) nection probability between verticesndj (4). At this stage
it is important to stress that the graph theory distinguishes
whereas in correlated BA networks the prefactor gains anwalk from a path[40]. A walk is just a sequence of vertices.
other form. Bogufia and Pastor-Satorras have shown that d&he only condition for such a sequence is that two succes-
gree distributiorP(k) in such uncorrelated networks is given sjive nodes must be the nearest neighbors. A walk is termed a
by path if all of its vertices are distinct. In fact, we are interested
ik in the shortest paths. In order to do it, let us consider the
e p(h), (6)  situation when there exists at least one walk of the lemgth
k! between the verticeisand]. If the walk(s) is (are) the short-

. L ) . est patks) i andj are exactlyx-th neighbors, otherwise they
wherep(h) describes a distribution of hidden variables. The e closer neighbors. In terms of the statistical ensemble of

P(k) =2
h

above relation between both distributioR&) and p(h) im-
plies a relation between their moments,

(h"y=(k(k=1)...(h—n+ 1)), (7)

and, respectively,

random graph$41] the probabilityp;;(x) of at least one walk
of the lengthx between andj expresses also the probability
that these nodes are neighbors of order not higher han
Thus, the probability thatandj are exactly-th neighbors is
given by the difference
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pIJ (x) = p;j(x) = pij(x = 1). (10) son summation formula allows us to simplify the above sum

. (see Appendix B
In order to write the formula fop;;(x) we take advantage

of the Iemma(l), —-1In hihj +In N+ |n<h2> -y }

N N iy = N -ing T2’
pij(X)zl_eX _E 2 Tjivl""ﬁu(x_l)j ’ (11)

U1:1 U(X—l):]‘

(16)

wherey=0.5772 is the Euler’'s constant. The average inter-
vertex distance for the whole network depends on a specified

where N is the total number of vertices in a network. A distribution of hidden variables(h),

sequence ofx+1) vertices{i,vy,v,, ... v(x-1),j} beginning
with i and ending withj corresponds to a single eveytand B N
the number of such events is given by N*"1. Putting (4) = ZInh +In N2+ Inh™) Y, 1_
into (11) and replacing the sum over node indexes by the InN+In¢h%) —In B 2
sum over the hidden variable distributipgh), one gets

17

We need to stress that both parametgrand| diverge when
_hihy @)X (12) the argument of the logarithmic function in the denominator
(MN\ B of both expressiong16) and (17) approaches one, i.e.

N(h?)/ B=1. Note that substitutings) for 8 in the last con-
Due to(10) the probability that both vertices are exactly the gition and then taking advantage 67) one recovers the
x-th neighbors may be written as well-known estimation for the percolation threshold
(k?y/{ky=2 in undirected random networks with arbitrary de-

pj(x)=1- ex;{—

() =F(x= 1)~ FX, (13 gree distribution{20,43—45 (see Appendix ¢
where To test the formula(17) we start with the well-known
i x networks: ER classical random graphs, BA model and scale-
F(x) = exp[— hih; <<h )N) } (14) free networks. The choice of these networks is not acciden-
(MN\ B ' tal. The models play an important role in the network sci-

nce. The ER model was historically the first one but it has
een realized that it is too random to describe real networks.
. S , The most striking discrepancy between the ER model and
independence of all contributing everts In fact, since the o5 nerworks appears when comparing degree distributions.
same edge may participate in severaialks there exist Cor- - ag mentioned at the beginning of the paper, degree distribu-
relations between these events. Nevertheless, it is easy t0 Sg6,5 follow a power-law in most of the real systems,

thaltkthe fractiorr]w of ?orre:]ated walks Iis negligigle for Shﬁrtwhereas classical random graphs exhibit a Poisson degree
walks (x<N) that play the major role in random graphs distribution. It was found that the most generic mechanism

showing small-world behavior. It is also important to stresSyyjying real networks into scale-free structures is the linear

that our formalism does not neglect loops. preferential attachment. The simplest model that incorporates
Let us point out that having relationd3) and (14), de-  he ryle of preferential attachment was introduced by

scribing the probability that the shortest distance betweem apasi and Alberf6]. Other interesting mechanisms lead-

two z_irbitrary n_ode$ andj_ equalsx, one can find almost all ing to scale-free networks were proposed by @olal. [14]
metric properties of studied networs2]. For example, av-  anq Caldarelliet al. [12]. Goh and coworkers were the first

eraging(13) over all pairs of vertices one obtains the inter-\yho pointed out that power-law connectivity distribution
vertex distance distributiop(x)=((p;;(x)));. It is also pos-  p(k) may result from the Zipf law applied to hidden variable
sible to calculate,—the mean number of vertices a certain distributionp(h) ~ ™. The concept of the Zipf law has been
distancex away from a randomly chosen vertexThe quan- eyt developed by Caldareléit al. in their paper[12]. In

tity can be written ag,=/p;(x)p(h))Ndh. Note that taking  fact, the most important achievement of the paper mentioned
only the first two terms of power series expansion of bothyy Caldarelli et al. relates to a nontrivial discovery that
exponential functions i113) and making use of4) and(8)  scale-free networks may be also obtained from exponential
one gets the relationshipz,=z(z,/2)**=(k((K)/(k)  distribution of fitnesseg(h) ~e™. Since, however, the case
-1)* that was obtained by Newmaat al. [36] when as-  of scale-free networks with exponentially distributed fit-
suming a tree-like structure of random graphs with arbitraryhesses does not fulfil4), we do not take it into account in

The above calculations require a few comments. First og
all, note that the assumption underlyini@) is the mutual

degree distribution. this paper. In the present study, we examine the case of scale-
Taking advantage of13) one can calculate the expecta- free networks with underlying scale-free distributions of hid-
tion value for the average distance betwéemdj, den variables.
" - Below we show that our formalism describing metric
C(h R — T properties of random networks may be successfully applied
i, by) = EXQJ(X) - E’OF(X)' (15) to all the above listed network models.

Classical ER random graph®ote that the only way to
Notice that a walk may cross the same node several timezcover the Poisson degree distribution form the expression
thus the largest possible walk length canxsec. The Pois- (6) is to assume
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FIG. 1. The average path lendiy versus network sizbl in ER Network size N
classical random graphs witk)=4,10, 20. Thesolid curves repre-
sent the numerical prediction of EL9). FIG. 2. Characteristic path length versus network siz&l in
BA networks. Solid lines represent E@5).
per(h) = Sy - (18)
—_ m 1
By = (21)
2 \tt

Now, applying the distributiorpgg(h) to (17) we get the

formula for the average path length in classical randomwhich is equivalent to(4) when assumingh;= 11 i h;

graphs, —1/\t and Bga=2/m. The distribution of hidden variables
pBA(h) in BA networks follows the relation

Er= Inl Nk Y, ; (19) pea(h)dh; = P(t)dt;, (22

® where P(t))=1/N is the distribution of nodes attachment

timest; for a network of sizeN. After a simple algebra one

Until now only a rough estimation of the quantity has beengets

known. One has expected that the mean intervertex distance

of the whole ER graph scales with the number of nodes in paa(h) = Eh—sy (23)

the same way as the network diameter. We are reminded that N

the diameted of a graph is defined as the maximal shortestfor h=1/VN

distance between any pair of vertices agk=In N/In(k)

[3]. Figure 1 shows the prediction of the equatid®) in

comparison to the numerically calculated APL in classical —In(hih;)) - In(m/2) -y 3

random graphs. InIn N+ In(m/2) + 2
Scale-free BA network3he basis of the BA model is its

construction procedurgs,46]. Two important ingredients of Averaging (24) over all pairs of vertices one obtains APL

the procedure are as follows: the continuous network growtigharacterizing the whole network,

and the preferential attachment. The network starts to grow INN-In(m2)-1-v 3

from an initial cluster ofm fully connected vertices. Each lga= Y,2 (25)

new node that is added to the network createlnks that InIn N +In(m/2) 2

connect it to previously added nodes. The preferential attaci]:

ment means that the probability of a new link growing out of

a vertexi and ending up in a verteiis given by

., 1. Now, it is simple to calculate the average
distance(16) between any two nodes in BA networks,

184k, hy) =

(24)

igure 2 shows the APL in BA networks as a function of the
network sizeN compared with the analytical formul@5).
There is a visible discrepancy between the theory and nu-
merical results whetk)=2m=4. The discrepancy disappears

(t) when the network becomes denser, i.e., whkienincreases.
B=mgt— (200  The same effect will appear later in Fig. 4, letting us deduce
2 kl(t) that for some reasons our formalism works better for denser
networks.

Scale-free networks with arbitrary scaling exponerét
wherek;(t;) denotes the connectivity of a nogleat the time  ys start with the well-known model of scale-free networks
tj, when a new node is added to the network. Taking into introduced by Golet al. (Model A [14] and its certain modi-
account the time evolution of nodes degree in a BA networKication proposed by Caldarelét al. (Model B) [12]. We
[i.e., puttingk;(t;) =myt; /t] the probability of a link between show that both modelé and B possess peculiar properties
i andj can be rewritten in the following form: that make the application of our theoretical approach impos-
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sible. Next, we make use of a general procedure described at

the beginning of the paper to generate uncorrelated networks 107F :Z
with asymptotic power-law connectivity distributiofiglodel " ph) vo°
©). ' i®

Model A To construct the network one has to perform the
following stepsi(i) prepare a fixed numbét of vertices;(ii)
assign fitnesghidden variablgh;=i"", with 0= 7<1, to ev-
ery nodei=1,... N; (iii) select two vertices and j with
probabilities equal to normalized hidden variables({h)N) 10°L SFmodel a=3, m=10
and h;/((h)N), respectively, and add an edge between them : .
unless one already exisi{$y) repeat previous steps untiN
edges are made in the system. Goh and coworkers have
shown that the resulting network generated in accordance FIG. 3. Model C Degree distributiorP(k) (the main layey for
with the above procedure exhibits asymptotic power-|aw derandom network with an underlying hidden variable distribution

P(k) 10°%

10%E

10° 10’ 10° 10°

gree distribution, given by a power-law(the insel. Scatter data represent results of
numerical calculations, whereas solid curves express fornt@las
P(k) ~ k@ (26) and(29), respectively, foilP(k) and p(h).
where a-1 2
INN+1In T3 —Tl—y 1
a=1+1/r, (27) |a>3 = a_ @ + 5; (30)
which gives 2 a <. Although in these networks probabil- In( - 3) *inm
ity of a connection approximately factorizée$),
for a=3,
hhj \™ hh
~=A _ i ~ ]
p--—l—(l— ) =— (28) m
! ((MN)? Ba InN-In 5" 1-y 3
a=3 — ~.
where B,=(hY>N/m, there is one important feature of the 175 = m * X (31)
model. The nonanalytic statement, included in stidp of InInN+In Py

the construction procedure expressedhdd an edge unless
one already existgyives rise to uncontrolled intervertex cor- for 2< @< 3,
relations both for largen and smalla < 3.
Model B Caldarelli and coworkers have modified the ( 2 ) (a— 1) ( 2 )
— |InN+Inl — | -|—— |-~
|a<3 = 1

original model introduced by Golet al. by assigning to a-1 3-a a-1

nodes random fitnessés taken from a given distribution 3- 5

p(h)~h, instead of deterministic valuds=i—". They also <—a>|n N+ In( @ ) +Inm

assumed a modified edge establishment process: for every a~ Ta

pair of vertices andj a link was drawn with probability4), (32

where Bg=(ha)? Although the foregoing value oBg as- _ o ) )
sures us o<1, it is strongly overestimated and makes Figure 4 shows predictions of the above equations in com-
resulting networks very sparse with a large content of isoParison with numerically calculated shortest paths. We would

lated nodeg47]. like to stress that regardless of the valueaffor denser

Model C. In order to avoid features incorporated in both nNetworks(with higher values of parameten), one can ob-
models A and B, we have generated networks possessing€ve an excellent agreement between our theory and nu-
asymptotic scale-free behavior fde>1 coming out of Merical results.

power-law distributions of hidden variables, Summarizing, depending on the value of scaling exponent
a one can distinguish three scaling regions for the average

(a—1meD path length in scale-free networks. In the limit of large sys-

p(h) = T (29 temsN—w, APL scales with network size according to the

following relations: fora>3,

for h=m, ... hnae Where hp=mN/(D (see[39]) and

connection probability given bg4) and(5). A typical behav-

ior of connectivity distributionP(k) for networks generated for 4=3,

in accordance with this procedure is presented in Fig. 3. Note

that for k>m the connectivity distribution is well described we3 NN

by the power lawP(k) ~k™* (9). “IninN’ (34)
Applying the distribution(29) to the formula(17) one

obtains the following: fora> 3, for 2<a<3,

[%=2 ~ In N; (33
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L T ' ' ] Since distances between such nodes are usually very large in
iF “’”hs"‘ =4 .« comparison to distanced between nodes with higher degrees,
m=.

6F A m—20 / ] their absence may lead to the domination of the APL param-
. eter by distances between the population of nodes character-
. ized by medium degrees. Our result shows that fera2<3
structural properties of asymptotic scale-free networks in-
cluding numerous examples of real-world networks may be
even more intriguing than ultra-small world behavior re-
ported for pure scale-free systems.

To conclude, in this paper we have presented theoretical
approach for metric properties of uncorrelated random net-
works with hidden variables. We have derived a formula for
_ . . . probability pIJ (x) (13) that the shortest distance between two
5| SFwitha=3 a[bitrary nodes andj equalsx. We have shown that given
B m=5 . p;;(x) one can find every structural characteristic of the stud-
A m=20 . T ied networks. In particular, we have applied our approach to
4r . / 7 calculate exact expression for the average path lefigbhin

/ such networks. We have shown that our formalism may be
3t // . successfully applied to such diverse networks like classical

random graphs of Erdés and Rényi, evolving networks intro-

Average path length [,

Network size N

Average path length I,

Al & (C2) duced by Barabési and Albert as well as random networks
/ with asymptotic scale-free connectivity distributions charac-
102 10° 10° 10° 10° terized by arbitrary scaling exponest>2. In all the studied
Network size N cases we noticed a very good agreement between our theo-
retical predictions and results of numerical investigation.
4 ey T T T
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I L]
: / APPENDIX A
> F p
< s A (C3) The conditiorip; <1 (4) is not fulfilled for pairs of verti-
e e p o o cesi andj possessing large hidden variables desired de-

greeg h; andh;. To justify our calculations, we have to as-
sure ourselves that the fraction of such pairs is very small,

FIG. 4. Model C The average path length versus network size fhmax Pmax

Network size N

for =4 (C1), a=3(C2) anda=2.5(C3). The scatter data represent p(h) | p(h)dh dhy <1. (A1)
numerical calculations. Solid curves with open squares in the case Pimin Pij AIhy

of m=5 (open circles in the case ofi=20) express analytical pre- Using the Chebyshev’s inequalifg5] and solving[36] with
dictions of Eqs(30)—«32), respectively, foC1), (C2) and(C3). respect t@ij <1 one gets

<h2> 2 2 2
|a<3: i + } (35) <h>2(<h > <h> ) <N ’ (AZ)
3-a 2
where we assumed=(h)N. It can be shown that every net-

Note that although the results far=3 are consistent with work that is considered in this paper fulfill the condition.
estimations obtained by other authd3,34], the case of
2< a< 3 is different. In opposite to previous estimations sig- APPENDIX B
naling the double logarithmic dependerée3~InIn N, our The Poisson summation formula states that
calculations for the same range efpredict that there is a "
saturation effect for the mean path length in large networks. 1 -
Since the assumption underlying estimations leading to Xzz:‘)':(x) - 2':(0) * Jo F()dx
double logarithmic dependence in APL wapwe scale-free
behavior of degree distribution, we suspect that this discrep- - *
ancy may result from thambiguousbehavior ofP(k) in our +22 (f F(X)COS(Z”WX)dX)- (B1)
model. Let us note that in our modé€l there is a relatively =L AC0
small number of nodes with small degrelessee Fig. 3. Applying the formula to(15),
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- hih, <h2>N>X]
(hh.) = L b B LA
lii(hihy) % exp[ <h2>N< i , (B2)
one realizes that in most of cases
h:h
L L
mon = (B3)
which givesF(0)=1. One can also find that
* { hh <h2>N)
— gl - A ALV
fo F(x)dx E|< <h2>N>/|n< 5 ) (B4)

where E{y) is the exponential integral function that for
negative arguments is given by(Ey)=y+Iny [49], where

PHYSICAL REVIEW E70, 056110(2004)

v=0.5772 is Euler’s constant. Finally, it is easy to see that
owing to the generalized mean value theorem every integral
in the last term of the summation formulBl) is equal to
zero. It follows that the equation for the APL betwedeand

j is given by(16).

APPENDIX C

Note that, using additional assumptions one can simply
reformulate both formulagl6) and(17) as well as the whole
formalism in terms of node’s degrees instead of hidden vari-
ables. For more details s§48].

[1] S. Bornholdt and H. G. Schustdrdandbook of Graphs and
Networks(Wiley-Vch, New York, 2002.
[2] S. N. Dorogovtsev and J. F. F. Mend&sjolution of Networks
(Oxford University Press, Oxford, 2003
[3] R. Albert and A. L. Barabasi, Rev. Mod. Phy#&4, 47 (2002.
[4] S. N. Dorogovtshev and J. F. F. Mendes, Adv. PHy%. 1079
(2002.
[5] S. H. Strogatz, Natur@_ondon 410 268 (2003).
[6] A. L. Barabasi and R. Albert, Scienc286, 509 (1999.
[7] R. Albert and A. L. Barabési, Phys. Rev. Let85 5234
(2000.
[8] S. N. Dorogovtse\et al, Phys. Rev. Lett.85, 4633(2000.
[9] P. L. Krapivskyet al, Phys. Rev. Lett.86, 5401(2001).
[10] P. L. Krapivsky and S. Redner, Phys. Rev. 3, 066123
(2001).
[11] K. Klemm and V. M. Eguiluz, Phys. Rev. B65 036123
(2002.
[12] G. Caldarelliet al,, Phys. Rev. Lett.89, 258702(2002.
[13] D. J. Watts and S. H. Strogatz, Natufeondon) 393 440
(1998.
[14] K.-l. Goh et al, Phys. Rev. Lett.87, 278701(2001).
[15] F. Chung and L. Lu, Ann. Combg, 125(2002.
[16] B. Soderberg, Phys. Rev. B6, 066121(2002.
[17] M. Bogufid and R. Pastor-Satorras, Phys. Re\6&: 036112
(2003.

[18] In fact, all the derivations presented in this paper may be sim-

3200(200)).

[25] Z. Dez$ and A. L. Barabasi, Phys. Rev. &, 055103(2002.

[26] L. A. Adamic et al, Phys. Rev. E64, 046135(2001).

[27] B. J. Kim et al,, Phys. Rev. E65, 027103(2002.

[28] S. Valverdeet al,, e-print cond-mat/0204344.

[29] L. A. Braunsteinet al,, Phys. Rev. Lett.91, 168701(2003.

[30] T. Nishikawaet al, Phys. Rev. Lett91, 014101(2003.

[31] M. E. J. Newmaret al, Phys. Rev. Lett.84, 3201(2000.

[32] G. Szabéet al, Phys. Rev. E66, 026101(2002.

[33] R. Cohen and S. Havlin, Phys. Rev. Le®0, 058701(2003.

[34] S. N. Dorogovtse\et al, Nucl. Phys. B653 307 (2003.

[35] W. Feller,An Introduction to Probability Theory and its Appli-
cations(Wiley, New York, 1968.

[36] M. E. J. Newmaret al, Phys. Rev. E64, 026118(2001.

[37] S. Maslowet al., e-print cond-mat/0205379.

[38] J. Park and M. E. J. Newman, Phys. Rev6& 026112(2003.

[39] In a finite network, the cut-off of degree distributid?(k)
~k™* may be estimated fronf"k“cmP(k)=1/N yielding kg
~ NW(a-1)

[40] R. J. Wilson,Introduction to Graph TheoryLongman, City,
1985.

[41] Z. Burdaet al., Phys. Rev. E64, 046118(2000).

[42] A. Fronczaket al, e-print cond-mat/0308629.

[43] M. Molloy and B. Reed, Random Struct. Algorithn® 161

(1995.

ply reformulated when assume a general factorized form off44] D. S. Callawayet al, Phys. Rev. Lett.85, 5468(2002.

pij=f(h)g(h;), whereg and f denote arbitrary functions.
[19] R. Albertet al,, Nature(London) 406, 378 (2000.
[20] R. Cohenet al, Phys. Rev. Lett.85, 4626(2000.
[21] R. Cohenet al., Phys. Rev. Lett.86, 3682(2001).
[22] R. Pastor-Satorrast al, Phys. Rev. Lett.87, 258701(2001).
[23] V. M. Eguiluz and K. Klemm, Phys. Rev. Let89, 108701
(2002.
[24] R. Pastor-Satorras and A. Vespignani, Phys. Rev. L&§.

[45] A. V. Goltsevet al, Phys. Rev. E67, 026123(2003.

[46] A. L. Barabéasiet al, Physica A272 173(1999.

[47] We have numerically checked that in the case of scaling expo-
nentsa=2.5 and network siz&=10* (see Fig. 2 in[12]) the
amount of isolated vertices approaches 90%.

[48] A. Fronczaket al., e-print cond-mat/0212230.

[49] I. S. Gradshteyret al, Table of Integrals, Series, and Products
(Academic, New York, 2000

056110-7



