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Analytic solution for the average path length in a large class of uncorrelated random networks with hidden
variables is found. We apply the approach to classical random graphs of Erdös and Rényi(ER), evolving
networks introduced by Barabási and Albert as well as random networks with asymptotic scale-free connec-
tivity distributions characterized by an arbitrary scaling exponenta.2. Our result for 2,a,3 shows that
structural properties of asymptotic scale-free networks including numerous examples of real-world systems are
even more intriguing than ultra-small world behavior noticed inpurescale-free structures and for large system
sizesN→` there is a saturation effect for the average path length.
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During the last few years random, evolving networks
have become a very popular research domain among physi-
cists[1–4]. A lot of efforts were put into the investigation of
such systems, in order to recognize their structure and to
analyze emerging complex properties. It was observed that
despite network diversity, most of real web-like systems
share three prominent structural features: small average path
length(APL), high clustering andscale-free(SF) degree dis-
tribution [1–5]. Several network topology generators have
been proposed to embody the fundamental characteristics
[6–12].

To find out how the small-world property(i.e., small
APL) arises, the idea of shortcuts has been proposed by
Watts and Strogatz[13]. To understand where the ubiquity of
scale-free distributions in real networks comes from the con-
cept of evolving networks basing on preferential attachment
has been introduced by Barabási and Albert[6]. Recently
Calderelli and coworkers[12] have presented another
mechanism that accounts for origins of power-law connec-
tivity distributions. It is interesting that the mechanism is
neither related to dynamical properties nor to preferential
attachment. Caldarelliet al. have studied a simple static net-
work model in which each vertexi has assigned a taghi
(fitness, hidden variable) randomly drawn from a fixed prob-
ability distribution rshd. In their fitness model, edges are
assigned to pairs of vertices with a given connection prob-
ability p̃ij , depending on the values of the tagshi and hj
assigned at the edge end points. Similar models have been
also analyzed in several other studies[14–16].

A generalization of the above-mentioned network models
has been recently proposed by Boguñá and Pastor-Satorras
[17]. In the cited paper, the authors have argued that such
diverse networks like classical random graphs of Erdös and
Rényi (ER), fitness model proposed by Caldarelliet al. and
even scale-free evolving networks introduced by Barabási
and Albert(BA) may be described by a common formalism.
Boguñá and Pastor-Satorras have derived analytical expres-
sions for connectivity distributionsPskd and relations de-
scribing degree correlations in such networks as functions of
distributions of hidden variablesrshd and the probability of
an edge establishmentp̃ij . In this paper we present an ana-

lytical description of main topological properties of the fore-
going networks. We derive a general theoretical formalism
describing metric features(i.e., APL, intervertex distance
distribution) of random networks with hidden variables, as-
suming that the connection probability scales asp̃ij ,hihj
[18]. The last assumption concerning the factorized form of
p̃ij translates into the absence of two-point correlations and
applies to a broad class of networks.

The issue of the small-world property is of great impor-
tance for network studies. The property directly affects such
crucial fields like information processing in different com-
munication systems(including the Internet) [19–22], disease
or rumor transmission in social networks[23–25] as well as
network designing and optimization[26–29]. Not long ago,
there was a strong belief that all the processes become more
efficient when the mean distance between network sites is
smaller. Recently however, it was shown that the small-
world property may have an unfavorable influence on such
phenomena like synchronizability[30].

Despite the universality and usefulness of the small-world
concept, except a few cases[31–34], satisfactory calculations
of the average path length(APL) almost do not exist. Even
in the case ofagedErdös-Rényi graphs only a scaling rela-
tion (not an exact formula) describing APL is known aslER
, ln N/ lnkkl [3]. In this paper we derive an exact formula
for the average distancel i j between any two nodesi and j
characterized by given values of hidden variableshi andhj.
Averaging the quantityl i j over all pairs of vertices we obtain
the average path length characterizing the whole network. It
is important to stress that our formulas for APL do not posess
any free parameters, and therefore may be directly compared
with the results of computer simulations. In this paper we
have tested our analytic results against numerical calcula-
tions performed for Erdös-Rényi classical random graphs, a
BA model, and scale-free networksPskd,k−a with arbitrary
scaling exponenta. In all the cases we obtain a very good
agreement between our theoretical predictions and the results
of numerical investigation.

Let us start with the following lemma.
Lemma 1: If A1,A2, . . . ,An are mutually independent

events and their probabilities fulfill relations∀iPsAidø«
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then

PSø
i=1

n

AiD = 1 − expS− o
i=1

n

PsAidD − Q, s1d

where0øQ,o j=0
n+1sn«d j / j !−s1+«dn.

Proof: Using the method of inclusion and exclusion[35]
we get

PSø
i=1

n

AiD = o
j=1

n

s− 1d j+1Ss jd, s2d

with

Ss jd = o
1øi1,i2,¯,i jøn

n

PsAi1
dPsAi2

d ¯ PsAi j
d

=
1

j !
So

i=1

n

PsAidD j

− Qj , s3d

where 0øQj ø (nj / j !−s n
j
d)« j. The term in brackets repre-

sents the total number of redundant components occurring in
the last line of(3). NeglectingQj it is easy to see that(1
−PsøAid) corresponds to the firstsn+1d terms in the
MacLaurin expansion of exp(−oPsAid). The effect of higher-
order terms in this expansion is smaller thanR, sn«dn+1/ sn
+1d!. It follows that the total error of(1) may be estimated as
Q,o j=1

n Qj +R. This completes the proof.
Let us notice that the termsQj in (3) disappear when one

approximates multiple sumso1øi1,i2,¯,i jøn
n by correspond-

ing multiple integrals. For«=A/n!1 the error of the above
assessment is less thenA2 expsAd /n and may be dropped in
the limit n→`.

At the moment we briefly repeat(after Ref.[17]) the main
properties of random networks with hidden variables and
connection probabilityp̃ij given by

p̃ij =
hihj

b
, s4d

where b is a certain constant. In the case of random net-
works, where two-point correlations at the level of hidden
variables are absent we have

b = khlN, s5d

whereas in correlated BA networks the prefactor gains an-
other form. Boguñá and Pastor-Satorras have shown that de-
gree distributionPskd in such uncorrelated networks is given
by

Pskd = o
h

e−hhk

k!
rshd, s6d

wherershd describes a distribution of hidden variables. The
above relation between both distributionsPskd andrshd im-
plies a relation between their moments,

khnl = kksk − 1d . . . sh − n + 1dl, s7d

and, respectively,

khl = kkl, kh2l = kksk − 1dl. s8d

With respect to our following calculations the relation(6)
requires a few comments. First, let us note that fork→` the
Poisson-like propagator that accompanies the distribution
rshd in the formula forPskd is a sharply peaked function
analogous to deltadh,k. For this reason, in the limit of large
nodes degrees we obtain a correspondence between the stud-
ied uncorrelated networks with hidden variables and random
graphs with a given degree sequence(the so-called configu-
ration model) [36],

Pskd , rskd. s9d

Another very important conclusion that comes from con-
siderations performed in Ref.[17] and seems to affect our
later derivations is that we cannot generate uncorrelated ran-
dom networks with a power-law degree distributionPskd
,k−a and the scaling exponent 2øa,3 by means of the
factorized probability(4) (see also[37,38]). The axiomatic
definition of probability requiresp̃ij ø1, giving the condition
for the maximum value of the the hidden variablehmax

,ÎN. When we think about hidden variables as about de-
sired degrees(as sketched in the previous paragraph) the
condition forkmax.hmax is in contradiction to the cut-off of
the power-law degree distributionkcut,N1/sa−1d [39] that al-
lows for nodes with degrees higher thankmax. For this reason,
our formalism describing metric properties of random uncor-
related networks should not work well for SF networks with
2øa,3. In contrast to the above discussion, we noticed
that our analytical predictions are consistent with numerical
calculations performed for scale-free networks with arbitrary
scaling exponenta.2. We suspect that the unexpected con-
formity for networks with 2øa,3 may be related to the
extreme small fraction ofbad pairsof nodes with large de-
grees that do not fulfill the conditionp̃ij ø1 (see Appendix
A).

Now, we come back to the main subject of the paper; it
means the issue of the average path length in random net-
works. Let us consider a walk of lengthx crossing index-
linked verticeshi ,v1,v2. . .vsx−1d , jj. Because of the lack of
correlations the probability of such a walk is described by
the productp̃iv1

p̃v1v2
p̃v2v3

. . .p̃vsx−1d j
, where p̃ij gives a con-

nection probability between verticesi and j (4). At this stage
it is important to stress that the graph theory distinguishesa
walk from a path[40]. A walk is just a sequence of vertices.
The only condition for such a sequence is that two succes-
sive nodes must be the nearest neighbors. A walk is termed a
path if all of its vertices are distinct. In fact, we are interested
in the shortest paths. In order to do it, let us consider the
situation when there exists at least one walk of the lengthx
between the verticesi and j . If the walk(s) is (are) the short-
est path(s) i and j are exactlyx-th neighbors, otherwise they
are closer neighbors. In terms of the statistical ensemble of
random graphs[41] the probabilitypijsxd of at least one walk
of the lengthx betweeni and j expresses also the probability
that these nodes are neighbors of order not higher thanx.
Thus, the probability thati and j are exactlyx-th neighbors is
given by the difference
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pij
* sxd = pijsxd − pijsx − 1d. s10d

In order to write the formula forpijsxd we take advantage
of the lemma(1),

pijsxd = 1 − expF− o
v1=1

N

. . . o
vsx−1d=1

N

p̃iv1
. . . p̃vsx−1d jG , s11d

where N is the total number of vertices in a network. A
sequence ofsx+1d verticeshi ,v1,v2, . . . ,vsx−1d , jj beginning
with i and ending withj corresponds to a single eventAi and
the number of such events is given byn=Nx−1. Putting (4)
into (11) and replacing the sum over node indexes by the
sum over the hidden variable distributionrshd, one gets

pijsxd = 1 − expF−
hihj

kh2lN
S kh2lN

b
DxG . s12d

Due to(10) the probability that both vertices are exactly the
x-th neighbors may be written as

pij
* sxd = Fsx − 1d − Fsxd, s13d

where

Fsxd = expF−
hihj

kh2lN
S kh2lN

b
DxG . s14d

The above calculations require a few comments. First of
all, note that the assumption underlying(1) is the mutual
independence of all contributing eventsAi. In fact, since the
same edge may participate in severalx-walks there exist cor-
relations between these events. Nevertheless, it is easy to see
that the fraction of correlated walks is negligible for short
walks sx!Nd that play the major role in random graphs
showing small-world behavior. It is also important to stress
that our formalism does not neglect loops.

Let us point out that having relations(13) and (14), de-
scribing the probability that the shortest distance between
two arbitrary nodesi and j equalsx, one can find almost all
metric properties of studied networks[42]. For example, av-
eraging(13) over all pairs of vertices one obtains the inter-
vertex distance distributionpsxd=kkpij

* sxdlil j. It is also pos-
sible to calculatezx—the mean number of vertices a certain
distancex away from a randomly chosen vertexi. The quan-
tity can be written aszx=epij

* sxdrshjdNdhj. Note that taking
only the first two terms of power series expansion of both
exponential functions in(13) and making use of(4) and (8)
one gets the relationshipzx=z1sz2/z1dx−1=kklskk2l / kkl
−1dx−1 that was obtained by Newmanet al. [36] when as-
suming a tree-like structure of random graphs with arbitrary
degree distribution.

Taking advantage of(13) one can calculate the expecta-
tion value for the average distance betweeni and j ,

l i jshi,hjd = o
x=1

`

xpij
* sxd = o

x=0

`

Fsxd. s15d

Notice that a walk may cross the same node several times
thus the largest possible walk length can bex=`. The Pois-

son summation formula allows us to simplify the above sum
(see Appendix B),

l i jshi,hjd =
− ln hihj + ln N + lnkh2l − g

ln N + lnkh2l − ln b
+

1

2
, s16d

whereg.0.5772 is the Euler’s constant. The average inter-
vertex distance for the whole network depends on a specified
distribution of hidden variablesrshd,

l =
− 2kln hl + ln N + lnkh2l − g

ln N + lnkh2l − ln b
+

1

2
. s17d

We need to stress that both parametersl i j andl diverge when
the argument of the logarithmic function in the denominator
of both expressions(16) and (17) approaches one, i.e.
Nkh2l /b=1. Note that substituting(5) for b in the last con-
dition and then taking advantage of(7) one recovers the
well-known estimation for the percolation threshold
kk2l / kkl=2 in undirected random networks with arbitrary de-
gree distribution[20,43–45] (see Appendix C).

To test the formula(17) we start with the well-known
networks: ER classical random graphs, BA model and scale-
free networks. The choice of these networks is not acciden-
tal. The models play an important role in the network sci-
ence. The ER model was historically the first one but it has
been realized that it is too random to describe real networks.
The most striking discrepancy between the ER model and
real networks appears when comparing degree distributions.
As mentioned at the beginning of the paper, degree distribu-
tions follow a power-law in most of the real systems,
whereas classical random graphs exhibit a Poisson degree
distribution. It was found that the most generic mechanism
driving real networks into scale-free structures is the linear
preferential attachment. The simplest model that incorporates
the rule of preferential attachment was introduced by
Barabási and Albert[6]. Other interesting mechanisms lead-
ing to scale-free networks were proposed by Gohet al. [14]
and Caldarelliet al. [12]. Goh and coworkers were the first
who pointed out that power-law connectivity distribution
Pskd may result from the Zipf law applied to hidden variable
distributionrshd,h−a. The concept of the Zipf law has been
next developed by Caldarelliet al. in their paper[12]. In
fact, the most important achievement of the paper mentioned
by Caldarelli et al. relates to a nontrivial discovery that
scale-free networks may be also obtained from exponential
distribution of fitnessesrshd,e−h. Since, however, the case
of scale-free networks with exponentially distributed fit-
nesses does not fulfill(4), we do not take it into account in
this paper. In the present study, we examine the case of scale-
free networks with underlying scale-free distributions of hid-
den variables.

Below we show that our formalism describing metric
properties of random networks may be successfully applied
to all the above listed network models.

Classical ER random graphs. Note that the only way to
recover the Poisson degree distribution form the expression
(6) is to assume
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rERshd = dkkl,h. s18d

Now, applying the distributionrERshd to (17) we get the
formula for the average path length in classical random
graphs,

lER=
ln N − g

lnkkl
+

1

2
. s19d

Until now only a rough estimation of the quantity has been
known. One has expected that the mean intervertex distance
of the whole ER graph scales with the number of nodes in
the same way as the network diameter. We are reminded that
the diameterd of a graph is defined as the maximal shortest
distance between any pair of vertices anddER=ln N/ lnkkl
[3]. Figure 1 shows the prediction of the equation(19) in
comparison to the numerically calculated APL in classical
random graphs.

Scale-free BA networks. The basis of the BA model is its
construction procedure[6,46]. Two important ingredients of
the procedure are as follows: the continuous network growth
and the preferential attachment. The network starts to grow
from an initial cluster ofm fully connected vertices. Each
new node that is added to the network createsm links that
connect it to previously added nodes. The preferential attach-
ment means that the probability of a new link growing out of
a vertexi and ending up in a vertexj is given by

p̃ij
BA = m

kjstid

ol
klstid

, s20d

wherekjstid denotes the connectivity of a nodej at the time
ti, when a new nodei is added to the network. Taking into
account the time evolution of nodes degree in a BA network
[i.e., puttingkjstid=mÎti / tj], the probability of a link between
i and j can be rewritten in the following form:

p̃ij
BA =

m

2

1
Îtit j

, s21d

which is equivalent to(4) when assuminghi =1/Îti, hj

=1/Îtj and bBA=2/m. The distribution of hidden variables
rBAshd in BA networks follows the relation

rBAshiddhi = P̃stiddti , s22d

where P̃stid=1/N is the distribution of nodes attachment
times ti for a network of sizeN. After a simple algebra one
gets

rBAshd =
2

N
h−3, s23d

for h=1/ÎN, . . . ,1. Now, it is simple to calculate the average
distance(16) between any two nodes in BA networks,

l i j
BAshi,hjd =

− lnshihjd − lnsm/2d − g

ln ln N + lnsm/2d
+

3

2
. s24d

Averaging (24) over all pairs of vertices one obtains APL
characterizing the whole network,

lBA =
ln N − lnsm/2d − 1 −g

ln ln N + lnsm/2d
+

3

2
. s25d

Figure 2 shows the APL in BA networks as a function of the
network sizeN compared with the analytical formula(25).
There is a visible discrepancy between the theory and nu-
merical results whenkkl=2m=4. The discrepancy disappears
when the network becomes denser, i.e., whenkkl increases.
The same effect will appear later in Fig. 4, letting us deduce
that for some reasons our formalism works better for denser
networks.

Scale-free networks with arbitrary scaling exponent. Let
us start with the well-known model of scale-free networks
introduced by Gohet al. (Model A) [14] and its certain modi-
fication proposed by Caldarelliet al. (Model B) [12]. We
show that both modelsA and B possess peculiar properties
that make the application of our theoretical approach impos-

FIG. 1. The average path lengthlER versus network sizeN in ER
classical random graphs withkkl=4,10,20. Thesolid curves repre-
sent the numerical prediction of Eq.(19). FIG. 2. Characteristic path lengthlBA versus network sizeN in

BA networks. Solid lines represent Eq.(25).
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sible. Next, we make use of a general procedure described at
the beginning of the paper to generate uncorrelated networks
with asymptotic power-law connectivity distributions(Model
C).

Model A. To construct the network one has to perform the
following steps:(i) prepare a fixed numberN of vertices;(ii )
assign fitness(hidden variable) hi = i−t, with 0øt,1, to ev-
ery nodei =1, . . . ,N; (iii ) select two verticesi and j with
probabilities equal to normalized hidden variables,hi / skhlNd
and hj / skhlNd, respectively, and add an edge between them
unless one already exists;(iv) repeat previous steps untilmN
edges are made in the system. Goh and coworkers have
shown that the resulting network generated in accordance
with the above procedure exhibits asymptotic power-law de-
gree distribution,

Pskd , k−a, s26d

where

a = 1 + 1/t, s27d

which gives 2,a,`. Although in these networks probabil-
ity of a connection approximately factorizes(4),

p̃ij
A = 1 −S1 −

hihj

skhlNd2DmN

.
hihj

bA
, s28d

where bA=khl2N/m, there is one important feature of the
model. The nonanalytic statement, included in step(iii ) of
the construction procedure expressed asadd an edge unless
one already exists, gives rise to uncontrolled intervertex cor-
relations both for largem and smalla,3.

Model B. Caldarelli and coworkers have modified the
original model introduced by Gohet al. by assigning to
nodes random fitnesseshi taken from a given distribution
rshd,h−a, instead of deterministic valueshi = i−t. They also
assumed a modified edge establishment process: for every
pair of verticesi and j a link was drawn with probability(4),
wherebB=shmaxd2. Although the foregoing value ofbB as-
sures us ofp̃ij

B,1, it is strongly overestimated and makes
resulting networks very sparse with a large content of iso-
lated nodes[47].

Model C. In order to avoid features incorporated in both
models A and B, we have generated networks possessing
asymptotic scale-free behavior fork@1 coming out of
power-law distributions of hidden variables,

rshd =
sa − 1dmsa−1d

ha , s29d

for h=m, . . . ,hmax, where hmax.mN1/sa−1d (see [39]) and
connection probability given by(4) and(5). A typical behav-
ior of connectivity distributionPskd for networks generated
in accordance with this procedure is presented in Fig. 3. Note
that for k.m the connectivity distribution is well described
by the power lawPskd,k−a (9).

Applying the distribution(29) to the formula(17) one
obtains the following: fora.3,

la.3 =

ln N + lnSa − 1

a − 3
D −

2

a − 1
− g

lnSa − 2

a − 3
D + ln m

+
1

2
; s30d

for a=3,

la=3 =

ln N − lnSm

2
D − 1 −g

ln ln N + lnSm

2
D +

3

2
; s31d

for 2,a,3,

la,3 =
S 2

a − 1
Dln N + lnSa − 1

3 − a
D − S 2

a − 1
D − g

S3 − a

a − 1
Dln N + lnSa − 2

3 − a
D + ln m

+
1

2
.

s32d

Figure 4 shows predictions of the above equations in com-
parison with numerically calculated shortest paths. We would
like to stress that regardless of the value ofa, for denser
networks(with higher values of parameterm), one can ob-
serve an excellent agreement between our theory and nu-
merical results.

Summarizing, depending on the value of scaling exponent
a one can distinguish three scaling regions for the average
path length in scale-free networks. In the limit of large sys-
temsN→`, APL scales with network size according to the
following relations: fora.3,

la.3 , ln N; s33d

for a=3,

la=3 ,
ln N

ln ln N
; s34d

for 2,a,3,

FIG. 3. Model C. Degree distributionPskd (the main layer) for
random network with an underlying hidden variable distribution
given by a power-law(the inset). Scatter data represent results of
numerical calculations, whereas solid curves express formulas(6)
and (29), respectively, forPskd andrshd.
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la,3 =
2

3 − a
+

1

2
. s35d

Note that although the results foraù3 are consistent with
estimations obtained by other authors[33,34], the case of
2,a,3 is different. In opposite to previous estimations sig-
naling the double logarithmic dependencela,3, ln ln N, our
calculations for the same range ofa predict that there is a
saturation effect for the mean path length in large networks.
Since the assumption underlying estimations leading to
double logarithmic dependence in APL was apurescale-free
behavior of degree distribution, we suspect that this discrep-
ancy may result from theambiguousbehavior ofPskd in our
model. Let us note that in our modelC there is a relatively
small number of nodes with small degreesk (see Fig. 3).

Since distances between such nodes are usually very large in
comparison to distanced between nodes with higher degrees,
their absence may lead to the domination of the APL param-
eter by distances between the population of nodes character-
ized by medium degrees. Our result shows that for 2,a,3
structural properties of asymptotic scale-free networks in-
cluding numerous examples of real-world networks may be
even more intriguing than ultra-small world behavior re-
ported for pure scale-free systems.

To conclude, in this paper we have presented theoretical
approach for metric properties of uncorrelated random net-
works with hidden variables. We have derived a formula for
probability pij

* sxd (13) that the shortest distance between two
arbitrary nodesi and j equalsx. We have shown that given
pij

* sxd one can find every structural characteristic of the stud-
ied networks. In particular, we have applied our approach to
calculate exact expression for the average path length(17) in
such networks. We have shown that our formalism may be
successfully applied to such diverse networks like classical
random graphs of Erdös and Rényi, evolving networks intro-
duced by Barabási and Albert as well as random networks
with asymptotic scale-free connectivity distributions charac-
terized by arbitrary scaling exponenta.2. In all the studied
cases we noticed a very good agreement between our theo-
retical predictions and results of numerical investigation.
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APPENDIX A

The conditionp̃ij ø1 (4) is not fulfilled for pairs of verti-
cesi and j possessing large hidden variables(or desired de-
grees) hi and hj. To justify our calculations, we have to as-
sure ourselves that the fraction of such pairs is very small,

E
hmin

hmax

rshjdE
p̃i jb/hj

hmax

rshiddhi dhj ! 1. sA1d

Using the Chebyshev’s inequality[35] and solving[36] with
respect top̃ij ø1 one gets

kh2l
khl2skh2l − khl2d ! N2, sA2d

where we assumedb=khlN. It can be shown that every net-
work that is considered in this paper fulfill the condition.

APPENDIX B

The Poisson summation formula states that

o
x=0

`

Fsxd =
1

2
Fs0d +E

0

`

Fsxddx

+ 2o
n=1

` SE
0

`

Fsxdcoss2npxddxD . sB1d

Applying the formula to(15),

FIG. 4. Model C. The average path length versus network sizeN
for a=4 (C1), a=3 (C2) anda=2.5(C3). The scatter data represent
numerical calculations. Solid curves with open squares in the case
of m=5 (open circles in the case ofm=20) express analytical pre-
dictions of Eqs.(30)–(32), respectively, for(C1), (C2) and (C3).
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l i jshihjd = o
x=0

`

expF−
hihj

kh2lN
S kh2lN

b
DxG , sB2d

one realizes that in most of cases

hihj

kh2lN
. 0, sB3d

which givesFs0d=1. One can also find that

E
0

`

Fsxddx= − EiS−
hihj

kh2lN
DY lnS kh2lN

b
D , sB4d

where Eisyd is the exponential integral function that for
negative arguments is given by Eis−yd=g+ln y [49], where

g.0.5772 is Euler’s constant. Finally, it is easy to see that
owing to the generalized mean value theorem every integral
in the last term of the summation formula(B1) is equal to
zero. It follows that the equation for the APL betweeni and
j is given by(16).

APPENDIX C

Note that, using additional assumptions one can simply
reformulate both formulas(16) and(17) as well as the whole
formalism in terms of node’s degrees instead of hidden vari-
ables. For more details see[48].
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