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Supremacy distribution in evolving networks
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We study a supremacy distribution in evolving Barabasi-Albert networks. The supresnaicg nodei is
defined as the total number of all nodes that are not older itteamd can be linked to it by a directed path
(including the nodé). The nodes form a basin connected to the ricalits in-component. For a network with
a characteristic parameter=1,2,3,..., thesupremacy of an individual node increases with the network age
ast™*™'2 in an appropriate scaling region. It follows that there is a relasi@n~ k™! between a node degree
k and its supremacy, and the supremacy distributid(s) scales as™1-21*™_Analytic calculations basing on
a continuum theory of supremacy evolution and on a corresponding rate equation have been confirmed by
numerical simulations.
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I. INTRODUCTION that are not older than the nodand that are connected o

During the past few years, there has been much interest il?ly directed paths as in Fig. 1. If we assume that the riode

the modeling of network§l-5], and several parameters de- fepresents a scientist who wrote an important pgpéor a

o . olitician who created an influential parfiL9,2Q, we can
scribing the network structure _have been considered. Th onsider all nodes belonging to the tree as his/her successors.
examples are degree distributid®(k) [2,6], mean path

. ) If the treeT(i,t) containss, nodes, then the numbeyis the
length [7-10, betweenness centralityoad) [9,11], or first . .
and higher-order clustering coefficiens2—14. Universal measure of the supremacy or the predominance of the inode

scaling has been observed for some of these parameters at timet. Since the evolution of the network is governed by
9 : : . e p PAR and all properties of the network are described by some
computer simulations and in real data describing such ob-

jects as the Internet, WWW, scientific collaboration net-p.mb.ab”.Ity d|str|put|ons, we are interested in the supremacy
distribution P(s) in the network.

works, or food webg3-5]. Here we study a parameter that The resulting subgraph(i,t) can be also interpreted as a

can play an important role in the description of a class of luster of 9 ; dg 'tp ) ,th directed Ipt' bl

directed networks. We call the parametestermacysince ~ CUSter of connected sites in the directed percolation problem

it describes the number of nodes that are subordinated to [§’21_25’ and the supremacy of a nodes just the size of

certain node. The parameters is equal to the size of the basﬁlf'(:hba CIUStﬁr dst_artlng grom the siteThe subgfrarrl)ﬁl'(l 2
connected to a certain nodeor to the size of its in- nas been called if8,17,23 an in-component of the node

component{15-17. In the next section, we define our pa- and has been cor_lsidered[m _for desc_:riptiqn of the Inter-

rameter and show its relevance for different problems of'€t structure and ifi6] for scaling relations in food webs. It
complex networks. Section Il includes a continuum theory"as been proveflls] that the supremacy distribution in the
for the supremacy time evolutiog(t) and the supremacy 8

probability distribution P(s) in the Barabasi-Albert(BA) o

model withm=1, in Sec. IV we find and solve a correspond- ﬁﬁ
ing rate equation, while in Sec. V a generalization of our /

problem for the BA model witm>1 is presented. 2/

Il. THE MODEL ﬁ

parametem=1 [1,2]. At the moment;, a nodei is created
and it attaches to some older node in the network according
to the preferential attachment rlPAR). Then in the next 2
time steps, other nodes are created and are attached to the
nodei or to other nodes of the network following PAR. As a
result, at the momerit>t; there is a subgraph in a form of a

Let us consider the BA network with the characteristic ‘/’

tree T(i,t) beginning in the nodé and containing all nodes I.i
FIG. 1. Schematic illustration of the supremacy effects in the
*Electronic address: jholyst@if.pw.edu.pl treelike BA network withm=1. Numbers situated in the vicinity of
"Electronic address: agatka@if.pw.edu.pl the nodes represent their supremacies.
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Internet is given by a power law with the characteristic ex- 10%grre - - -
ponent 1.9. It has also been shojii6] that spanning trees in 10°]
food webs treated as transportation networks are described

by a universal allometric-like dependence between values of

the supremacy and a respective cost funcfj. In a natu- S
ral way, the concept can be also used for branching processes %
and river networkg27].

BA networks N=100000 7
a m=1

I1l. CONTINUUM THEORY OF SUPREMACY EVOLUTION 10°1 + m=2 ]
AND DISTRIBUTION FOR m=1 10" T T T T
10° 10 10? 10°
To find the supremacy distributioR(s), we follow the k

method that was introduced [2] for the calculation of de- FIG. 2. Supremacy as a function of the node degree. Solid lines

gree distributionP(k) in evolving networks. We start by de- epresent analytical predictions s) given by Eq.(5) in the case
termining the time dependence ft), assuming that it is @ of m=1 and Eq(13) in the case of=2. The line with the larger
continuous real variable. The supremacy of the nbde-  slope corresponds tm=2.

creases in time because new nodes can be attached to any
node of the tred (i,t). Let nodes belonging to the trdéi,t)
possess degreds” k®,... k. Using the PAR, we can
write the following equation for changes gft):

P(s)ds = P(t;)dt, (6)

whereﬁ(ti):llt is the distribution of node attachment times

as(t) _ % @ _ @ @ t; for a network of age. After a simple algebra, we get
at o2t 2t 1] 5| 9
. _—) P(s)=—|—— = e n2° (7)
whereK(i)=3 k', and we used the fact that at the moment t]ay (25-1)

t the sum of all node degrees in the whole network is equal to

2t. On the other hand, taking into account the tree structur®ne can see that the supremacy distribution is a time-

of the considered subgraph, we can write the suprergamy  independent function. Figure 3 show a comparison of the last
equation to numerical data. Let us stress thatsferl, the

S n _ supremacy distribution scales B$s) ~ s 2 while the degree
s=1 +§1 (k" =1)=1+K()-s, (2)  distribution for the BA mode[1,2] scales a®(k) ~ k3.

thusK(i)=25-1 and we have a simple equation IV. RATE EQUATION FOR SUPREMACY DISTRIBUTION

Js() ) 25 -1 . FOR m=1

at 2t Now we show how to get the supremacy distribution us-
_ _ ing the rate-equation approach that was introduced by
with the solution Krapivsky, Redner, and Leyvrgs] to study network degree
distributionP(k). Let N(s,t) be the number of nodes possess-
s() = %(tl + 1) (4) ing the supremacsy at timet. The rate equation fdx(s,t) is
i
where we took into account the intial conditigfit=t;)=1. 10°4 . BA networks N=100000 1
The solution(4) means that the node supremacy increases 10 ] : : z:; ]
linearly in time comparing to the square-root dependence of D, + m=5
the node degref?], i.e., k(t)=t/t;. Combining the last two 107 4 \ 1
results, we get a simple relation between the node supremacy § 10° 4 1
and the node degree, 10* ] ]
1 10°
sk = S[ke+ 1], (5) ’ ‘
2 10° 4 1

In the regionk<= 100, this formula fits well with numerical 1010 0t 10t g0t a0t

simulations presented in Fig. 2 while for larderifferences s

between the analytic theory and the numerical simulations FiG. 3. Supremacy distribution in the BA model. Solid lines

are observed. - . o represent analytical predictions Bfs) given by Eq.(7) in the case
The probability densityP(s) for the supremacy distribu- of m=1 and Eq.(14) in the case ofm=3, 5. Lines with smaller
tion in the network follows from the relation slopes correspond to larger parametars
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s
s=1+>, (k" -m)=K(i) +1-ms, (11)
=1

and time evolution of the supremacy is described by

(t)(m+1)/2 1
g { (1) = = + : 12
i 0=l — (12)
1
! 5 thus the relation between the degree and the supremacy is
m= m=
m k m+1 1
o . . sk) = (—) + : (13
FIG. 4. Schematic illustration of supremacy effects in the BA m+1\m m+1

network withm=2. Solid arrows represent connections within the .
supremacy area/cluster of the top vertex, whereas dashed arroWsfollows that for dense networks witm> 1, the supremacy
express connections pointing outside the cluster. Note that there is3{t) increases in time much faster than the node dekjtee
single loop in the cluster. Figure 2 shows a comparison of the regdlB) to numerical
data form=2. One can see that the predicted scaling(kf
oy _  (ne. breaks down completely for large valueskoivhere the plot
IN(s,1 = [2(s= 1 ~1IN(s= 1.0 = 2= DIN(s,1 + 61 s(k) saturates. The reason is the presence of loops that for
at 2t ' m>1 appear in the network and that have been neglected in
(8)  our approach. Ifm>1, the result(13) is valid mainly for
vertices with a small degrele (and a small supremacy)
The first term on the right-hand side of E&) corresponds since loops are sparse in small clusters starting from such
to the creation of a new node with the supremacyrhe nodes. The saturation effect does not appear for the BA
process is proportional to the number of nodes with the sumodel with the parametean=1 where loops are absent.
premacys-1 and the corresponding transition probability = Taking into account Eq(12), we get the supremacy dis-
that follows from the PAR and Eq2). The second term tribution in the form
corrgsponds to the crea_ttion of a node with a suprensacy 1 1, + 1)s — 1 |-marmeD
+1, i.e., to the destruction of a node with a supremagcy P(s)= - - _[M]
while the last term describes the creation of a node with a t m m
supremacys=1. Writing N(s,t) =P(s)N,, whereNy,=t corre-
sponds to the total number of nodes at timend P(s) is the
probability of a node with the supremacy valsjeve get the
recursive equation

I8

ot . (19

We see that the scaling exponent for the supremacy distribu-
tion is equal tos=-1-2/(1+m), and in contrast to the scal-
ing exponent of degree distribution it depends on the param-
eterm. The result(14) is in good agreement with numerical
simulation for BA networks; see Fig. 3. The rate equation for

P(s) = 22; ip(s_ 1) fors=2, (9) m>lis similar to Eq.(8), i.e.,
IN(st) [(1+m)(s—-1)-1IN(s—1})
whereP(1)=2/3. Thesolution of Eq.(9) is It 2t
[(2+m)s—1]N(s,t)
P : 10 B T

(2s-1)(2s+1)°
The resulting solution for the probabili®(s) can be written
Note thats> 1, the solution(10) coincides with the solution s the following product:
(7) that has been received in the limit of the continuum
theory. In fact, the solutioril0) was obtained for the first 2 -1(m+1)-1]

S
[(i
time in [17] with a slightly different approach. P(s) = — Zg [i(m+1) + 1] (16)

V. SCALING OF SUPREMACY DISTRIBUTION FOR m>1  for s>1, whereP(1)=2/(m+2). For dense networksi>1,
the solution(16) can be approximately written as

The peculiar feature of the BA model is the independence
of the scaling exponent characterizing the degree distribution P(s) = 3 (17)
P(k) ~ k2 from the model parameten describing the num- ms
ber of links that are created by every new node. Belt_)w, W& hich coincides with Eq(14).
show that the scaling exponent of supremacy distribution
depends on the parameter If we neglect all loops existing
in the BA network with the characteristic parametar- 1
(see Fig. 4, then we can easily repeat our considerations In conclusion, we introduced a universal paramésesu-
from Secs. lll and IV. Instead of E@2), we get premacy that describes vertices in directed networks. The

VI. CONCLUSIONS
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parameter is equal to the size of a cluster starting from theasem=1, where no loops are present in the system. The
site in a directed percolation model. We have shown that foresults form>1 show that the influence of loops on the
the Barabasi-Albert model there is a relationship between theupremacy distribution is negligible for the evolving BA net-
supremacy and the vertex degree. It follows that there arevorks considered.

universal scaling laws describing the time evolution of the

supremacy and corresponding supremacy distributions in BA ACKNOWLEDGMENTS
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