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We study a supremacy distribution in evolving Barabasi-Albert networks. The supremacysi of a nodei is
defined as the total number of all nodes that are not older thani and can be linked to it by a directed path
(including the nodei). The nodes form a basin connected to the nodei as its in-component. For a network with
a characteristic parameterm=1,2,3, . . ., thesupremacy of an individual node increases with the network age
asts1+md/2 in an appropriate scaling region. It follows that there is a relationsskd,km+1 between a node degree
k and its supremacys, and the supremacy distributionPssd scales ass−1–2/s1+md. Analytic calculations basing on
a continuum theory of supremacy evolution and on a corresponding rate equation have been confirmed by
numerical simulations.

DOI: 10.1103/PhysRevE.70.046119 PACS number(s): 89.75.Hc, 02.50.2r

I. INTRODUCTION

During the past few years, there has been much interest in
the modeling of networks[1–5], and several parameters de-
scribing the network structure have been considered. The
examples are degree distributionPskd [2,6], mean path
length [7–10], betweenness centrality(load) [9,11], or first
and higher-order clustering coefficients[12–14]. Universal
scaling has been observed for some of these parameters in
computer simulations and in real data describing such ob-
jects as the Internet, WWW, scientific collaboration net-
works, or food webs[3–5]. Here we study a parameter that
can play an important role in the description of a class of
directed networks. We call the parameter asupermacysince
it describes the number of nodes that are subordinated to a
certain node. The parameters is equal to the size of the basin
connected to a certain nodei or to the size of its in-
component[15–17]. In the next section, we define our pa-
rameter and show its relevance for different problems of
complex networks. Section III includes a continuum theory
for the supremacy time evolutionsistd and the supremacy
probability distribution Pssd in the Barabasi-Albert(BA)
model withm=1, in Sec. IV we find and solve a correspond-
ing rate equation, while in Sec. V a generalization of our
problem for the BA model withm.1 is presented.

II. THE MODEL

Let us consider the BA network with the characteristic
parameterm=1 [1,2]. At the momentti, a nodei is created
and it attaches to some older node in the network according
to the preferential attachment rule(PAR). Then in the next
time steps, other nodes are created and are attached to the
nodei or to other nodes of the network following PAR. As a
result, at the momentt. ti there is a subgraph in a form of a
treeTsi ,td beginning in the nodei and containing all nodes

that are not older than the nodei and that are connected toi
by directed paths as in Fig. 1. If we assume that the nodei
represents a scientist who wrote an important paper[18] or a
politician who created an influential party[19,20], we can
consider all nodes belonging to the tree as his/her successors.
If the treeTsi ,td containssi nodes, then the numbersi is the
measure of the supremacy or the predominance of the nodei
at time t. Since the evolution of the network is governed by
PAR and all properties of the network are described by some
probability distributions, we are interested in the supremacy
distributionPssd in the network.

The resulting subgraphTsi ,td can be also interpreted as a
cluster of connected sites in the directed percolation problem
[8,21–25], and the supremacy of a nodei is just the size of
such a cluster starting from the sitei. The subgraphTsi ,td
has been called in[8,17,25] an in-component of the nodei
and has been considered in[15] for description of the Inter-
net structure and in[16] for scaling relations in food webs. It
has been proved[15] that the supremacy distribution in the
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FIG. 1. Schematic illustration of the supremacy effects in the
treelike BA network withm=1. Numbers situated in the vicinity of
the nodes represent their supremacies.
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Internet is given by a power law with the characteristic ex-
ponent 1.9. It has also been shown[16] that spanning trees in
food webs treated as transportation networks are described
by a universal allometric-like dependence between values of
the supremacy and a respective cost function[26]. In a natu-
ral way, the concept can be also used for branching processes
and river networks[27].

III. CONTINUUM THEORY OF SUPREMACY EVOLUTION
AND DISTRIBUTION FOR m=1

To find the supremacy distributionPssd, we follow the
method that was introduced in[2] for the calculation of de-
gree distributionPskd in evolving networks. We start by de-
termining the time dependence ofsistd, assuming that it is a
continuous real variable. The supremacy of the nodei in-
creases in time because new nodes can be attached to any
node of the treeTsi ,td. Let nodes belonging to the treeTsi ,td
possess degreeski

s1d ,ki
s2d , . . . ,ki

ssid. Using the PAR, we can
write the following equation for changes ofsistd:

] sistd
] t

= o
l=1

si ki
sld

2t
=

Ksid
2t

, s1d

whereKsid=ol=1
si ki

sld, and we used the fact that at the moment
t the sum of all node degrees in the whole network is equal to
2t. On the other hand, taking into account the tree structure
of the considered subgraph, we can write the supremacysi as

si = 1 +o
l=1

si

ski
sld − 1d = 1 +Ksid − si , s2d

thusKsid=2si −1 and we have a simple equation

] sistd
] t

=
2si − 1

2t
, s3d

with the solution

sistd =
1

2
S t

ti
+ 1D s4d

where we took into account the intial conditionsist= tid=1.
The solution(4) means that the node supremacy increases
linearly in time comparing to the square-root dependence of
the node degree[2], i.e.,kistd=Ît / ti. Combining the last two
results, we get a simple relation between the node supremacy
and the node degree,

sskd =
1

2
fk2 + 1g, s5d

In the regionkø100, this formula fits well with numerical
simulations presented in Fig. 2 while for largerk, differences
between the analytic theory and the numerical simulations
are observed.

The probability densityPssd for the supremacy distribu-
tion in the network follows from the relation

Pssiddsi = P̃stiddti , s6d

whereP̃stid=1/t is the distribution of node attachment times
ti for a network of aget. After a simple algebra, we get

Pssid =
1

t
U ] si

] ti
U−1

=
2

s2si − 1d2 . s7d

One can see that the supremacy distribution is a time-
independent function. Figure 3 show a comparison of the last
equation to numerical data. Let us stress that fors@1, the
supremacy distribution scales asPssd,s−2 while the degree
distribution for the BA model[1,2] scales asPskd,k−3.

IV. RATE EQUATION FOR SUPREMACY DISTRIBUTION
FOR m=1

Now we show how to get the supremacy distribution us-
ing the rate-equation approach that was introduced by
Krapivsky, Redner, and Leyvraz[6] to study network degree
distributionPskd. Let Nss,td be the number of nodes possess-
ing the supremacys at timet. The rate equation forNss,td is

FIG. 2. Supremacy as a function of the node degree. Solid lines
represent analytical predictions ofsskd given by Eq.(5) in the case
of m=1 and Eq.(13) in the case ofm=2. The line with the larger
slope corresponds tom=2.

FIG. 3. Supremacy distribution in the BA model. Solid lines
represent analytical predictions ofPssd given by Eq.(7) in the case
of m=1 and Eq.(14) in the case ofm=3, 5. Lines with smaller
slopes correspond to larger parametersm.
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] Nss,td
] t

=
f2ss− 1d − 1gNss− 1,td − s2s− 1dNss,td

2t
+ ds,1.

s8d

The first term on the right-hand side of Eq.(8) corresponds
to the creation of a new node with the supremacys. The
process is proportional to the number of nodes with the su-
premacys−1 and the corresponding transition probability
that follows from the PAR and Eq.(2). The second term
corresponds to the creation of a node with a supremacys
+1, i.e., to the destruction of a node with a supremacys,
while the last term describes the creation of a node with a
supremacys=1. Writing Nss,td=PssdN0, whereN0= t corre-
sponds to the total number of nodes at timet andPssd is the
probability of a node with the supremacy values, we get the
recursive equation

Pssd =
2s− 3

2s+ 1
Pss− 1d for sù 2, s9d

wherePs1d=2/3. Thesolution of Eq.(9) is

Pssd =
2

s2s− 1ds2s+ 1d
. s10d

Note thats@1, the solution(10) coincides with the solution
(7) that has been received in the limit of the continuum
theory. In fact, the solution(10) was obtained for the first
time in [17] with a slightly different approach.

V. SCALING OF SUPREMACY DISTRIBUTION FOR m.1

The peculiar feature of the BA model is the independence
of the scaling exponent characterizing the degree distribution
Pskd,k−3 from the model parameterm describing the num-
ber of links that are created by every new node. Below, we
show that the scaling exponent of supremacy distribution
depends on the parameterm. If we neglect all loops existing
in the BA network with the characteristic parameterm.1
(see Fig. 4), then we can easily repeat our considerations
from Secs. III and IV. Instead of Eq.(2), we get

si = 1 +o
l=1

si

ski
sld − md = Ksid + 1 −msi , s11d

and time evolution of the supremacy is described by

sistd =
m

m+ 1
S t

ti
Dsm+1d/2

+
1

m+ 1
, s12d

thus the relation between the degree and the supremacy is

sskd =
m

m+ 1
S k

m
Dm+1

+
1

m+ 1
. s13d

It follows that for dense networks withm@1, the supremacy
sistd increases in time much faster than the node degreekistd.
Figure 2 shows a comparison of the result(13) to numerical
data form=2. One can see that the predicted scaling ofsskd
breaks down completely for large values ofk where the plot
sskd saturates. The reason is the presence of loops that for
m.1 appear in the network and that have been neglected in
our approach. Ifm.1, the result(13) is valid mainly for
vertices with a small degreeki (and a small supremacysi)
since loops are sparse in small clusters starting from such
nodes. The saturation effect does not appear for the BA
model with the parameterm=1 where loops are absent.

Taking into account Eq.(12), we get the supremacy dis-
tribution in the form

Pssid =
1

t
U ] si

] ti
U−1

=
2

m
F sm+ 1dsi − 1

m
G−sm+3d/sm+1d

. s14d

We see that the scaling exponent for the supremacy distribu-
tion is equal tod=−1–2/s1+md, and in contrast to the scal-
ing exponent of degree distribution it depends on the param-
eterm. The result(14) is in good agreement with numerical
simulation for BA networks; see Fig. 3. The rate equation for
m.1is similar to Eq.(8), i.e.,

] Nss,td
] t

=
fs1 + mdss− 1d − 1gNss− 1,td

2t

−
fs1 + mds− 1gNss,td

2t
+ ds,1. s15d

The resulting solution for the probabilityPssd can be written
as the following product:

Pssd =
2

m+ 2p
i=2

s
fsi − 1dsm+ 1d − 1g

fism+ 1d + 1g
s16d

for s.1, wherePs1d=2/sm+2d. For dense networksm@1,
the solution(16) can be approximately written as

Pssd .
2

ms
, s17d

which coincides with Eq.(14).

VI. CONCLUSIONS

In conclusion, we introduced a universal parameter(a su-
premacy) that describes vertices in directed networks. The

FIG. 4. Schematic illustration of supremacy effects in the BA
network with m=2. Solid arrows represent connections within the
supremacy area/cluster of the top vertex, whereas dashed arrows
express connections pointing outside the cluster. Note that there is a
single loop in the cluster.
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parameter is equal to the size of a cluster starting from the
site in a directed percolation model. We have shown that for
the Barabasi-Albert model there is a relationship between the
supremacy and the vertex degree. It follows that there are
universal scaling laws describing the time evolution of the
supremacy and corresponding supremacy distributions in BA
models. Contrary to the scaling results for the node degree,
the corresponding scaling exponents of supremacy depend
on the characteristic model parameterm. Numerical simula-
tions are in good agreement with analytical estimations for
nodes with a small and medium supremacy, especially for the

casem=1, where no loops are present in the system. The
results for m.1 show that the influence of loops on the
supremacy distribution is negligible for the evolving BA net-
works considered.
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