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Finite size induces crossover temperature in growing spin chains
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We introduce a growing one-dimensional quenched spin model that bases on asymmetrical one-side Ising
interactions in the presence of external field. Numerical simulations and analytical calculations based on Markov
chain theory show that when the external field is smaller than the exchange coupling constant J there is a
nonmonotonous dependence of the mean magnetization on the temperature in a finite system. The crossover
temperature Tc corresponding to the maximal magnetization decays with system size, approximately as the
inverse of the Lambert W function. The observed phenomenon can be understood as an interplay between the
thermal fluctuations and the presence of the first cluster determined by initial conditions. The effect exists also
when spins are not quenched but fully thermalized after the attachment to the chain. By performing tests on
real data we conceive the model is in part suitable for a qualitative description of online emotional discussions
arranged in a chronological order, where a spin in every node conveys emotional valence of a subsequent post.
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I. INTRODUCTION

Due to their simplicity and fully analytical treatment, one-
dimensional models are useful and comprehensible objects for
theoretical studies. Of the exceptional importance backed by
the feasibility of calculations is the Ising model [1–12]. Such a
system with short-range ferromagnetic interactions possesses
no crossover temperature when system’s susceptibility is
observed. This is true for a nongrowing system and when
each spin is symmetrically coupled to its left and right
neighbor [13]. In this paper we introduce an evolving spin
model with an asymmetrical one-side dynamics. However,
the asymmetry is unlike the one proposed by Huang [14,15],
where the spin variable can take on two eigenvalues +1 and
−1/λ with λ > 1, nor is it connected to the degeneration of
higher-energy spin state [16]. Instead, we explicitly modify
the Ising Hamiltonian by taking into account only node’s
left neighbor as well as equip our model with a growing
component (a new node is quenched after a single update).
We show that under nonzero external field smaller than inter-
action constant, the model exhibits a crossover temperature
where the mean magnetization is maximal. This phenomenon
is further explained as an interplay between the thermal
fluctuations and the first spin cluster determined by initial
conditions.

Although one-dimensional systems are frequently used to
model social dynamics [17–21], such an approach often suffers
from over-simplicity, e.g., one finds no evidence to support
the idea that agents related to social interactions are to be
distributed on a chain. In this paper we give clear reasons for
choosing this very topology. In fact, our model is motivated
by the recent research [22,23] on affective interactions among
participants of Internet fora [24–26]. Such media often use a
chronological structure of the incoming posts that can be easily
regarded as a one-dimensional chain (i.e., the consecutive
posts are represented by the nodes in the chain). The results
of our previous analyses [22,23] indicate that one of the
most dominant phenomena seen in such media is a strong
dependence of the expressed emotion on the emotion of the
last comment (i.e., the newest one).

II. MODEL DESCRIPTION

The model bases on the idea of a growing chain (see
Fig. 1). The process is organized as follows: the first node
of the chain has a random spin s0 = ±1 (that could be
interpreted as emotional valence [27] of a post in online
discussion), that is drawn with probability Pr(s0 = ±1) = 1/2
[Figs. 1(a)–1(b)]. Then, another node of the chain is added
to the right side of the last one [Fig. 1(c)] and it is initially
equipped with a spin once again drawn with equal probabilities
Pr(s1 = ±1) = 1/2. Subsequently, the node becomes a subject
to the updating procedure that is based on the Ising-like
model approach [Fig. 1(d)]. For each new node n, we define
a function En = −J sn−1sn − hsn, where the constant J > 0
corresponds to exchange integral in the Ising model and h is
the external field. A minimum of the function En conforms
to spins of the same sign in the consecutive nodes of the
chain, thus En can be treated as an emotional discomfort
function felt by a user posting a message sn. As the spin is
drawn, we test how flipping its sign to the opposite one (i.e.,
from sn = +1 to sn = −1 or likewise) affects the change of
function E as �E = E ′

n − En = −(J sn−1 + h)(s ′
n − sn), where

term E ′
n corresponds to s ′

n calculated when sn → s ′
n = −sn.

Then we follow the Metropolis algorithm [28], i.e., if the
�E < 0 we accept the change; otherwise, we test if the
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FIG. 1. (Color online) A scheme of the simulation process. (a)–
(d) Consecutive steps of an exemplary simulation: (a) starting from
an empty node, (b) adding random spin to the first node, (c) adding
the next node, (d) inserting spin according to dynamics rule. (e) An
effect of the simulation. Orange (s = +1) and blue (s = −1) discs
symbolize spins.
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FIG. 2. (Color online) Average spin 〈s〉 as function of tempera-
ture T for different values of the external magnetic field (symbols).
Solid lines come from Eqs. (4) and (5). All data points are for
N = 103.

expression exp[−�E(kBT )−1] is smaller or larger than a
random value ξ ∈ [0; 1] (here, kB is Boltzmann constant and
T is temperature). If the latter occurs, we accept the change;
otherwise, the spin is kept as originally chosen. The procedure
of adding new nodes and setting their spin variables according
to the above-described rules is repeated until the size N of the
chain is reached [Fig. 1(e)].

III. NUMERICAL SIMULATIONS

Without losing the generality all numerical simulations
have been performed for J = kB = 1. The average spin
in the chain (an equivalent of the average emotion in
online discussion) is calculated as 〈s〉 = 1

N

∑N
n=1 sn and af-

terwards averaged over M realizations (typically, in this study
M = 105). Figure 2 shows the average spin 〈s〉 as a function
of the temperature T for selected values of external field h. In
the case of h < 1 the plot reveals 〈s〉 equal to zero for small
T � 1, then a clear maximum for some specific crossover
value Tc appears. Finally, a decrease toward zero for T > Tc

takes place. In the case of h � 1 such a phenomenon is not
observed: instead, 〈s〉 = 1 for small T and then there is a
monotonous decrease toward zero.

Figure 3 shows that for smaller systems (e.g., N = 102)
the crossover temperature Tc is of order 0.5–1 and is shifted
toward lower values for larger systems. It is also interesting to
track the dependence of the average spin value on the external
field (see Fig. 4). In the case of low temperatures (T < Tc)
average spin value changes abruptly from 〈s〉 = −1 to 〈s〉 = 0
for h = −1 and then from 〈s〉 = 0 to 〈s〉 = 1 for h = 1. For
higher temperatures (T > Tc) this change is smoother and
length range of h for which 〈s〉 ≈ 0 is smaller.

IV. ANALYTICAL DESCRIPTION

The system dynamics can be easily described using a two-
state Markov chain approach [29]. The growth of the chain

FIG. 3. (Color online) Average spin 〈s〉 as function of tempera-
ture T for different values of the chain size N (symbols); all data
points for h = 0.1. Solid lines come from Eq. (4) and the dotted line
is tanh(2h/T ).

follows the transition matrix P,

P =
[

p 1 − p

1 − q q

]
, (1)

with conditional probabilities p = Pr (+|+) and q =
Pr (−|−). Matrix P defines probabilities evolution of
both states Pr(sn = ±1) as sn+1 = snP, where sn =
[Pr(sn = +1) Pr(sn = −1)]. The average spin in the nth
node is 〈sn〉 = s0Pn[1 −1]T , with s0 = [1/2 1/2]. Finally,
the mean 〈sn〉 calculated over all nodes in the chain equals to

〈s〉 = p − q

2 − p − q

[
1 + 1

N
− 1 − (p + q − 1)N+1

N (2 − p − q)

]
. (2)

The specific values of p and q for our model are{
p = Pr (+|+) = 1 − 1

2e−β̃(h+J )

q = Pr (−|−) = 1
2 ± 1

2 ∓ 1
2e±β̃(h−J )

, (3)

where upper signs correspond to case |h| < J , lower signs
to |h| � J , and β̃ = 2/(kBT ) (see the appendix for details).
In further discussion we assume that h > 0, although all
derivations and effects are also true for h < 0 with reversed
spins. Different form of q for small and large |h| follows
from the interchange of energy level positions corresponding
to states sn = sn+1 = −1 and sn = −1,sn+1 = +1 (see Fig. 6
and the appendix). Putting Eq. (3) into Eq. (2) we get the
average spin in the chain for low magnetic fields |h| < J as

〈s〉s = tanh β̃h

[
1 + 1

N
− 1 − (1 − e−β̃J cosh β̃h)N+1

Ne−β̃J cosh β̃h

]
,

(4)
and for |h| � J as

〈s〉l = sgn(h)
cosh β̃J − eβ̃|h|

sinh β̃J − eβ̃|h|

×
[

1 + 1

N
− 1 − (e−β̃|h| sinh β̃J )N+1

N (1 − e−β̃|h| sinh β̃J )

]
. (5)
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(a) (b)

FIG. 4. (Color online) Average spin 〈s〉 as function of the external field h for different values of temperature T (symbols). Solid lines come
from Eq. (4).

Let us note that factors standing in front of square brackets
of Eqs. (4) and (5) describe the thermodynamical limit and
coincide with the corresponding factor in Eq. (2). These
analytical results are fully supported by numerical simulations
(solid lines in Figs. 2, 3, and 4).

Both numerical and analytical approaches indicate crucial
role played by the system’s size N (see Fig. 5): for a constant
value of external field h increasing N leads to a shift in Tc

toward T = 0 as well as to an increase of the maximum value
〈s〉(Tc). To get an analytical estimation of Tc we assume that
β̃h � 1, which gives the opportunity to rewrite Eq. (4) as

〈s〉s ≈ β̃h

[
1 + 1

N
− 1 − (1 − e−β̃J )N+1

Ne−β̃J

]
. (6)

Because it is linearly dependent on h, the factor is an equivalent
of the susceptibility ( ∂〈s〉s

∂h
)h=0 times h. If we further assume

FIG. 5. (Color online) Crossover temperature Tc versus the size
of the chain N . Symbols are numerical solution of Eq. (4) while the
solid line comes from Eq. (7). Note that decay of Tc is very slow. The
symbols for three lowest h values overlap. The inset shows Tc versus
1/ ln N .

N 
 1, and solve ∂〈s〉s
∂T

= 0, one can approximate Tc as

Tc ≈ 2J

kB [W (Ne) − 1]
, (7)

where W (...) is Lambert W function. Comparison between this
approximation and numerical solution of Eq. (4) is shown in
Fig. 5, providing evidence of good agreement for small values
of h as expected.

V. PHENOMENOLOGICAL DESCRIPTION

The striking difference between average spin values for
low and high fields h—as presented by Eqs. (4) and (5)—can
be explained as follows. For 0 < h < J [Fig. 6(a)] the four
states system of two last spins sn−1 and sn possess two
lowest-energy states corresponding to parallel ordering of both
spins sn−1 = sn = −1 and sn−1 = sn = +1. Such a system is
bistable and temperature causes a random switching between
clusters (domains) of opposite spin values. The average length
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FIG. 6. (Color online) Possible states of the last two spins of the
chain (the last is on the right of the pair) and the associated energies
En tied to the last spin n. Arrows show how adding new + (orange)
or − (blue) spin changes last two spin state (they are not the same
spins after such step). Note that energy of starting state is of no
importance, only relation between levels of possible destinations. The
first situation (0 < h = J/2 < J ) is bistable with two energy minima
corresponding to states sn−1 = sn = +1 and sn−1 = sn = −1, while
second h = 2 > J is monostable.
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l+ of a spin-up cluster is l+ = 1/(1 − p), while corresponding
length l− of spin-down cluster is l− = 1/(1 − q). Note that
in the thermodynamical limit Eq. (2) can be written as
〈s〉 = ( l+

l−
− 1)/( l+

l−
+ 1). The quotient l+/l− for |h| < J is

equal to e2β̃h, thus it is independent from J . Of course,
with increasing J lengths l+, l− of both types of clusters
increase but it does not influence the mean spin 〈s〉 of the
infinite chain. After crossing the critical value of the magnetic
field h = J > 0 the situation changes. The energy En for
sn−1 = sn = −1 is higher than the energy En for sn−1 = −1,

sn = +1, making system monostable—thus the temperature
mostly causes single spins sn = −1 to appear in the chain
dominated by the stable sn = +1 phase. It means that there
are no clusters of negative spins [Fig. 6(b)] for |h| > J and
the mean magnetization depends mainly on the density of
single-spin impurities. In fact, for h = J we have l− = 2
and l− further decays with the increase of h. However, the
density of single-spin impurities is a decreasing function of
an energy of interface between sn−1 = +1 and sn = −1 that
is dependent on the coupling constant J . This leads to a
profound difference between mean values of spins in the
chain in the case of the thermodynamical limit of Eqs. (4)
and (5). The first one takes the form of 〈s〉s = tanh β̃h, which
is independent of J . In fact, for a chain of a finite length
N there is always an influence of the boundary condition
that leads to the emergence of the first (boundary) cluster
with spins up or spins down. Due to the assumed symmetry
Pr(s0 = ±1) = 1/2, both types of these boundary clusters are
represented with the same probability. It follows that a short
chain possesses a zero-mean magnetization when one averages
it over an ensemble of initial and boundary conditions, which
can be observed in Fig. 3. While increasing the length N ,
the chain magnetization depends more and more on the ratio
between lengths l+/l− of positive and negative clusters. It
follows that the effect of the boundary condition disappears the
faster and the smaller is the coupling constant J responsible for
spin clustering. In the thermodynamical limit the presence of
the boundary cluster can be disregarded and the magnetization
does not depend on the coupling J . This phenomenological
picture can also justify a nonmonotonous dependence of mean
magnetization on the temperature when |h| < J . When the
temperature is low, the length of initial cluster tends to infinity,
thus mean magnetization can be close to zero even for large
systems because of a random, symmetric initial condition. If
the temperature increases both lengths l+,l− decay, and thus
the effect of boundary conditions becomes less important and
the mean magnetization increases toward magnetization of
infinite chain governed by l+/l−. However, the ratio l+/l−
decreases with T , thus for higher temperatures 〈s〉 decreases
toward 0. It follows there is a crossover temperature Tc

where the magnetization is maximal in the effect of interplay
between the initial condition and temperature fluctuations (see
Fig. 3). This crossover temperature decays with system size N

(see Fig. 5), since for larger systems the impact of the first
cluster is very small. Let us note that for |h| > J , when no
clusters are present in the system there is no crossover tem-
perature and the magnetization in the thermodynamical limit
depends on the coupling constant J : 〈s〉l ≈ sgn(h)(cosh β̃J −
eβ̃|h|)/(sinh β̃J − eβ̃|h|).

VI. COMPARISON WITH CLASSICAL 1D ISING MODEL

It is of use to compare and contrast the obtained results with
the classical one-dimensional Ising model (e.g., Ref. [13]).
The most noticeable difference undoubtedly regards the
foundations of the model—in the classical case the length
of the chain is fixed and each node n is initially filled with
a spin sn = ±1. All spins can repeatedly change in time and
their dynamics involve energy coupling with both neighbors.
In our model, the chain grows, and only the newest spin
added is subject to dynamics for a single time step, taking
only its predecessor into account, after which it is quenched
and unchanging. This equates the system size N to time t .
This equivalence is the main reason for the existence of the
crossover temperature in our model—investigating a chain of
finite length is therefore the same as observing a system after
a finite time. In fact, if we observe a classical Ising chain
after a finite time, it is also possible to detect the crossover
temperature. To show it, let us consider a normal Ising model,
with a chain of length N and a normal spin dynamics, where
the spins change in each step according to interactions with
both their neighbors and an external field |h| < J . We will
observe the mean spin 〈s〉 of the chain during a finite time
t . Since the effect appears due to boundary conditions, the
detailed condition affects the results.

We shall study two different boundary conditions that could
mimic the random +1 or −1 spin in our model: (a) a chain
initially fully ordered with equally probable +1 and −1 state,
and (b) a chain with one spin pinned as +1 or −1 throughout
the dynamics. In the first case, we consider the dynamics
across time, thus we look at different dynamics time t ,
while in the second we consider dynamics across space,
looking at different chain lengths N . As seen in Figs. 7(a)
and 7(b) (the letter corresponds to the type of boundary
conditions), the behavior of 〈s〉 versus T is different in those
two approaches—in the first case it is similar to our growing
chain model. This is because the one-directional nature of
the interactions, explicit in our growing chain model, and
implied by causality in the normal Ising chain over time, is
crucial for the appearance of the crossover temperature. In
the first case, the one-directional interactions mean that the
initial condition creates an ordered cluster of limited size. In
the second case, the cluster does not form, because following
spins interfere with the process—a spin is very unlikely to
order opposite to both external field and following spin. In
fact, even if such a cluster does emerge at random, it will
quickly shrink. This means that the size of our growing chain
model behaves more like time than chain length in normal
Ising model. The difference in behavior, decided by one- or
two-directionality of interactions, can be also explained by
how the system size N influences the properties of the system.
As shown below, the one-directional interactions lead to a
slow relaxation toward system equilibrium, which allows for
an observation of crossover temperature at a finite time, while
two-directional interactions lead to a very fast convergence
to limit behavior. The fast convergence for two-directional
interactions means that only very short chains can display any
effects related to boundary condition (as seen in Fig. 7).

The magnetization per spin for J > 0 (ferromagnetic
case)—an equivalent of 〈s〉 in the case of the classical
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(a) (b)

FIG. 7. (Color online) The mean spin 〈s〉 vs temperature T in the normal Ising model, when: (a) the chain is initially ordered and observed
over different times t with N = 20, (b) the chain has one pinned spin and is observed for different lengths N for t = 100. In both cases the
external field h = 0.3 is smaller than interaction strength J = 1 and the results are averaged over 10 000 realizations. The behavior for the
case (a) is very similar to the one observed for our growing chain model (Fig. 3).

one-dimensional Ising model—is given by

m(h,T ,N ) = sinh βh√
sinh2 βh + e−4βJ

1 −
(

λ−
λ+

)N

1 +
(

λ−
λ+

)N
, (8)

where

λ± = e
1
T (cosh βh ±

√
e−4βJ + sinh2 βh) (9)

are the eigenvalues of the transfer matrix [13]. The mag-
netization is a strictly monotonous decaying function of T

starting from m = 1 for h > 0 and it rapidly converges with
system size N to its asymptotic value. On the other hand,
from Eq. (7) it can be concluded that for our model, this
convergence is much slower. The dependence of Tc is even
slower, as 1/ ln N [see Eq. (7) and Fig. 5]. A comparison of the
influence of the chain size in both models is presented in Fig. 8,

FIG. 8. (Color online) Factors f (for our model, empty symbols)
and fI (for the classical Ising model, filled symbols) versus the size
of the chain N for h = 0.1. Symbols (squares for T = 0.1, circles
T = 0.2, triangles for T = 0.3) come from Eqs. (10) and (11), while
straight lines are from Eq. (12). The inset magnifies the results for
the Ising model for N ∈ [1; 100].

where

f = 1 + 1

N
− 1 − (1 − e−β̃J cosh β̃h)N+1

Ne−β̃J cosh β̃h
(10)

and

fI =
1 −

(
λ−
λ+

)N

1 +
(

λ−
λ+

)N
(11)

are the factors in, respectively, 〈s〉s [see Eq. (4)] and m(h,T ,N )
[see Eq. (8)], that are dependent on the chain size N . Factor
fI quickly converges to 1, e.g., for J = kB = 1, h = 0.1 and
T = 0.1 one needs as little as Nc = 10 to have |fI (N → ∞) −
fI (Nc)| < 0.001, while the factor f , depending on the value
of T and h, can need a large chain length in order to reach
the thermodynamic limit. In fact, for small T , Eq. (10) can be
approximated by

f ≈ 1
2 (N + 1)e−β̃J cosh β̃h, (12)

shown as straight lines in Fig. 8, which in turn can be used to
estimate the critical value of N for which f is equal to one as
Nc ≈ 4eβ̃(J−h). Thus, for J = kB = 1, T = 0.1, and h = 0.1,
we get Nc ≈ 2.6 × 108.

VII. COMPLETE THERMALIZATION
OF INDIVIDUAL SPINS

If instead of performing a single Metropolis update of the
newly attached spin we allow it to fully thermalize, then our
newly added spin n is essentially drawn from the canonical
ensemble. Therefore, the probabilities p and q can be derived
by using Boltzmann factors.

The probability p = Pr(+|+) is

p = e−βEn(+1)

e−βEn(+1) + e−βEn(−1)
, (13)
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where En(sn) = −J sn−1sn − hsn. If we put it into our formula,
we obtain

p = Pr(+|+) = eβ(J+h)

eβ(J+h) + e−β(J+h)
, (14)

which further implies that

1 − p = Pr(−|+) = e−β(J+h)

eβ(J+h) + e−β(J+h)
. (15)

Similarly, the probabilities q and 1 − q can be written as

q = Pr(−|−) = eβ(J−h)

eβ(J−h) + e−β(J−h)
, (16)

1 − q = Pr(+|−) = e−β(J−h)

eβ(J−h) + e−β(J−h)
. (17)

Using the Markov chain approach [Eq. (2)], we can
determine the mean spin 〈s〉 and finally write it as

〈s〉 = sinh β̃h

cosh β̃h + e−β̃J

[
1 + 1

N
− 1 − uN+1

N (1 − u)

]
, (18)

where

u = sinh β̃J

2 cosh β̃(h+J )
2 cosh β̃(h−J )

2

. (19)

The behavior of the model with spin thermalization, while
somewhat different quantitatively from the single-update ap-
proach, is still qualitatively the same, exhibiting the maximum
of 〈s〉(T ). One notable difference is the absence of the
threshold h = J where the probabilities p and q change their
forms, and subsequently a fully smooth transition between
h < J and h > J regimes. Figure 9 presents a comparison
between single-update (solid line) and spin -thermalization
approaches (dotted line) for h < J supported with numerical
simulations. The plot proves that although there is a difference

FIG. 9. (Color online) Chain magnetization 〈s〉 versus tempera-
ture T for single-step update [dotted line, given by Eq. (4)] and
single-spin thermalization [solid line, given by Eq. (18)] with h = 0.1
and J = 1. Points represent numerical simulations for chain of
length N with L steps of update procedure averaged over M = 105

realizations.

in the crossover temperature as well as in the peak height, the
character of the curve is kept the same.

VIII. REAL DATA

The developed method can be compared with the real
data on emotional interactions in online media: BBC Forum
[30,31] and Digg [32,33]. Those data sets (see Table I for their
properties) contain several messages whose emotional content
had first been in small part annotated by humans and then those
results served as an input to an automatic sentiment detection
classifier software [34]. Owing to the supervised, machine-
learning approach [35] it was then possible to detect the level
of emotional valence [27] (negative ei = −1, neutral ei = 0,
or positive ei = +1) for each comment with a reasonable
accuracy rate [22,33].

In order to obtain the values of h and T we proceed
as follows: (i) we choose discussions (threads) possessing
only negative and positive comments and we put them in a
chronological order (see values N+−

d and N+−
c in Table I);

(ii) for each set of threads we calculate a fraction of negative
and positive comments [respectively, p(−) and p(+)] and
conditional probabilities p(e|e) that two consecutive messages
have the same valence, defined as p(e|e) = p(ee)/p(e), where
p(ee) is the joint probability of the pair ee measured as the total
number of occurrences of the two consecutive messages with
the same valence e divided by the number of all appearing
pairs; (iii) we aggregate all threads of the same length
N by calculating average values of p(−|−) and p(+|+);
(iv) finally, we identify p(−|−) and p(+|+) with the prob-
abilities Pr(−|−) and Pr(+|+) given by Eq. (3). Then, using
Eq. (3) one is able to get the values of h and T . When h < −1
then ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

T = 4

ln Pr(+|+)
1−Pr(−|−)

h = ln {4 Pr(+|+) [1 − Pr(−|−)]}
ln Pr(+|+)

1−Pr(−|−)

, (20)

when |h| � 1 then⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
T = − 4

ln 4 [1 − Pr(+|+)] [1 − Pr(−|−)]

h =
ln 1−Pr(+|+)

1−Pr(−|−)

ln 4[1 − Pr(+|+)][1 − Pr(−|−)]

, (21)

when h > 1 then⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
T = 4

ln Pr(−|−)
1−Pr(+|+)

h = − ln {4 Pr(−|−) [1 − Pr(+|+)]}
ln Pr(−|−)

1−Pr(+|+)

. (22)

It is important to notice here that because of the above given
conditions (h < −1, |h| � 1, and h > 1) as well as the overall
assumption T � 0, the conditional probabilities Pr(−|−) and
Pr(+|+) are not independent and they are bound with the
condition

Pr(−|−) � 1 − Pr(+|+). (23)
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TABLE I. Properties of two real-world datasets BBC Forum and Digg used as validation cases for the model: Nd , Nc are the total number
of discussions and comments in the original datasets; p(−), p(0), and p(+) are, respectively, probabilities that a randomly chosen comment
is negative, neutral, or positive (i.e., the fractions of negative, neutral, and positive comments); 〈e〉 = p(+) − p(−) stands for the average
emotional value of the dataset; p(−|−), p(0|0), p(+|+) are conditional probabilities of negative (respectively, neutral and positive) comment
followed by a comment of the same valence; N+−

d is the number of discussions consisting only of negative and positive and N+−
c gives the

summed number comments in such discussions; M stands for the number of data points seen in Fig. 10 and Mv is number of data points
fulfilling the condition Eq. (23).

Data set Nd Nc p(−) p(0) p(+) 〈e〉 p(−|−) p(0|0) p(+|+) N+−
d N+−

c M Mv

BBC Forum 97 946 2 747 781 0.65 0.16 0.19 −0.44 0.69 0.20 0.27 3373 53 664 49 15
Digg 129 998 1 646 153 0.48 0.21 0.31 −0.16 0.56 0.27 0.37 742 10 123 28 10

Figure 10 presents conditional probability Pr(+|+) versus
Pr(−|−) for BBC Forum and Digg data (left panel) together
with some examples of discussions in those media (right
panel). Around 70% of the data lays in the area prohibited by
relation Eq. (23), which could suggest that the simplifications
assumed in our model regarding the short-range memory of
users could be inappropriate for this system. On the other
hand, it is essential to notice that in the real-data analysis the
probabilities of drawing the spins before the update procedure
are unknown as they are a priori values. The other difficulty
comes from the fact that the data are aggregated over the dis-
cussion size by calculating the average values of probabilities.
Nonetheless, the presented examples of discussions show that
for |h| < 1 we can observe similar structures as postulated in
Fig. 6(a) [case (d) on the right panel of Fig. 10]. Moreover, it
seems that the majority of the discussions are located in the area
of high temperature and high negative field, which coincides
with the average emotional value of the data (see Table I) and
suggests both tendency to follow the overall sentiment in the
medium as well as a significant level of uncertainty about one’s
emotion.

IX. CONCLUSIONS

In summary, we have demonstrated that the finite system
size and initial conditions can lead to the emergence of a
nonmonotonous dependence of the mean magnetization on
the system’s temperature in a growing one-dimensional Ising
model with quenched spins. The effect exists only for magnetic
fields smaller than the value of the spin coupling constant and
the crossover temperature decays to zero very slowly with the
system size. Using Markov chain theory we have developed an
analytical approach to this phenomenon that well fits numerical
simulations. The effect can be understood as a competition
between thermal fluctuations and the influence of the initial
condition that fixes orientation of spins in the first cluster. The
crossover temperature can be explained as the point where the
initial ordered cluster (domain) is no longer dominant thanks
to thermal fluctuations, yet the temperature did not lower much
the average magnetization toward zero. The effect exists also
when spins are not quenched but fully thermalized after the
attachment to the chain. The absence of the effect for the higher
magnetic field is the result of a transition from a bistable to a
monostable energy landscape of a pair of neighboring spins.

FIG. 10. (Color online) (left panel) Conditional probability Pr(−|−) versus conditional probability Pr(+|+) for BBC Forum (circles) and
Digg (triangles) data; the size of the symbol is proportional to the logarithm of the number of aggregated discussions. The borders of the
shaded regions represent isolines of constant magnetic field h while the solid black lines are isotherms—in both cases the values were obtained
from Eqs. (20)–(22). The white region represents the area where there are no solutions provided by Eqs. (20)–(22) if assumed that T � 0.
(right panel) Examples of actual chronologically ordered discussions from BBC Forum and Digg data; orange (blue) discs symbolize positive
(negative) comments and the letters (a)–(e) can be used to localize the discussion in the left panel.
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We think that, although directly inspired by the clustering phe-
nomena observed in the online emotional discussions [22,23],
the model can open an interesting playground for all systems
where initial conditions and finite-size effects are relevant.
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APPENDIX: DERIVATION OF
THE MEAN MAGNETIZATION

Let us calculate the probability that a spin-up follows
another spin-up. We assume the presence of external field
h � 0. First, we set s0 = +1. Then, with equal probabilities
Pr(s1 ± 1) = 1/2, spin in the next node is chosen to be up or
down. Next, we calculate the change of function E , given by

�E = E ′
1 − E1 = −(J s0 + h)(s ′

1 − s1), (A1)

which follows
(1) if s1 = +1 and s ′

1 = −1, then �E = 2(h + J ) > 0, so
the change is accepted with probability equal to e−β̃(h+J ) and
not accepted with probability equal to 1 − e−β̃(h+J ), where
β̃ = 2/(kBT ),

(2) if s1 = −1 and s ′
1 = +1, then �E = −2(h + J ) < 0,

so the change is always accepted.
As a consequence, the probability p++ of a spin-up following
another spin-up is equal to p++ = 1

2 (1 − e−β̃(h+J )) + 1
2 × 1 =

1 − 1
2e−β̃(h+J ). Then, for h � 0 we have⎧⎨⎩p++ = Pr (+|+) = 1 − 1

2e−β̃(h+J )

p+− = Pr (−|+) = 1 − p++
. (A2)

Now let us calculate the probability that a spin-down
follows another spin-down. Contrary to the previous case we
set s0 = −1 and then, with equal probabilities Pr(s1 ± 1) =
1/2, spin in the next node is chosen to be up or down. Next,
we calculate the change of function E

(1) if s1 = −1 and s ′
1 = +1 then �E = −2(h − J ),

(2) if s1 = +1 and s ′
1 = −1 then �E = 2(h − J ).

Here, the issue of the spin change being accepted or not
depends on the value of external field:

(i) if 0 � h < J , then
(1) for s1 = −1 and s ′

1 = +1 we have �E > 0, so
the change is accepted with probability eβ̃(h−J ) and not
accepted with probability equal to 1 − eβ̃(h−J )

(2) for s1 = +1 and s ′
1 = −1 we have �E < 0, so the

change is always accepted,
(ii) if h � J , then the character −1 → +1 and +1 → −1

changes since signs of energy difference �E rearrange

(1) for s1 = −1 and s ′
1 = +1, we have �E < 0, so the

change is always accepted,
(2) for s1 = +1 and s ′

1 = −1, we have �E > 0, so
the change is accepted with probability e−β̃(h−J ) and not
accepted with probability equal to 1 − e−β̃(h−J ).
As a consequence, the probability p−− of a spin-down fol-

lowing another spin-down is equal to p−− = 1
2 (1 − eβ̃(h−J )) +

1
2 × 1 for 0 � h < J and p−− = 1

2 × 0 + 1
2 × e−β̃(h−J ) for

h � J . Thus, we have{
p−− = Pr (−|−) = 1 − 1

2eβ̃(h−J )

p−+ = Pr (+|−) = 1 − p−−
, (A3)

for 0 � h < J , and{
p−− = Pr (−|−) = 1

2e−β̃(h−J )

p−+ = Pr (+|−) = 1 − p−−
, (A4)

for h � J .
For simplicity of the further calculations we use the

following notation: the probability to stay in +1 state is
p++ = p; the probability to move from state +1 to state −1 is
p+− = 1 − p. Similarly, we denote the probability to stay in
−1 as p−− = q and the probability to move from state −1 to
+1 is p−+ = 1 − q. In effect we obtain the transition matrix P
given by Eq. (1), which defines probabilities evolution of both
states Pr(sn = ±1),

sn+1 = snP, (A5)

where sn = [Pr(sn = +1) Pr(sn = −1)]. Thus, the evolution
of sn is in fact an equivalent of a two-state Markov chain [29]
governed by the transition matrix P. Appropriate elements of
the nth power of matrix P give the probabilities that the chain
that started with a specific spin has a certain spin in its nth
node [e.g., (Pn)11 is the probability that after starting s0 = +1
the spin in the nth node will also be also sn = +1]. A short
algebra leads to

Pn =
{ q−1+(p−1)(q+p−1)n

q+p−2
(p−1)[1−(q+p−1)n]

q+p−2

(q−1)[1−(q+p−1)n]
q+p−2

p−1+(q−1)(q+p−1)n

q+p−2

}
. (A6)

Subtracting the second column from the first one in matrix
Pn leads to equations describing the average spin values 〈sn〉±
in the nth node, assuming that the first node contained a specific
spin orientation (s0 = +1 or e0 = −1):

(Pn)11 − (Pn)12 = 〈sn〉+ = p − q − 2(p − 1)(p + q − 1)n

2 − p − q

(A7)

(Pn)21 − (Pn)22 = 〈sn〉− = p − q + 2(q − 1)(p + q − 1)n

2 − p − q
.

(A8)

Calculating the average value of 〈sn〉+ and 〈sn〉− leads to the
average spin in the nth node:

〈sn〉 = 〈sn〉+ + 〈sn〉−
2

= (p − q)[1 − (p + q − 1)n]

2 − p − q
. (A9)

The plots of 〈sn〉+, 〈sn〉−, and 〈sn〉 versus n for selected values
of the external field h and temperature T are shown in Fig. 11.
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(a) (b) (c)

(d) (e) (f)

FIG. 11. (Color online) Average spin 〈sn〉 in the nth node and average spin if the nth node starting from an up-spin 〈sn〉+ and down-spin
〈sn〉− for selected parameters h and T . Symbols are numerical simulations and solid lines come from Eqs. (A7), (A8), and (A9).

One can easily observe the convergence of 〈sn〉 to a constant
value for a sufficiently large value of n. In fact, as p+q−1< 1,
we have limn→∞〈sn〉 = (q − p)/(p + q − 2).

Finally, performing the sum of 〈sn〉 over all nodes in the
chain gives the average spin:

〈s〉 = 1

N

N∑
n=1

〈sn〉. (A10)

Similar calculations can be performed for ranges h ∈
(−∞; −J ] and h ∈ (−J ; 0]. The symmetry of the problem
results in swapping all the indices “+” to “−” and likewise as
well as putting “−” sign in front of h in Eqs. (A2)–(A4). As
an outcome we obtain a rotated matrix P that leads again to
Eq. (A9). In effect, by applying exact values of the probabilities
p and q given by Eqs. (A2)–(A4), we obtain the average spin
for |h| < J as Eq. (4) and for |h| � J as Eq. (5).
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