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Mean-field approximation for structural balance dynamics in heat bath
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A critical temperature for a complete signed graph of N agents where the time-dependent polarization of
links tends towards the Heider (structural) balance is found analytically using the heat-bath approach and the
mean-field approximation as T c = (N − 2)/ac, where ac ≈ 1.716 49. The result is in perfect agreement with
numerical simulations starting from the paradise state where all links are positively polarized as well as with the
estimation of this temperature received earlier with much more sophisticated methods. When heating the system,
one observes a discontinuous and irreversible phase transition at T c from a nearly balanced state when the mean
link polarization is about xc = 0.796 388 to a disordered and unbalanced state where the polarization vanishes.
When the initial conditions for the polarization of links are random, then at low temperatures a balanced bipolar
state of two mutually hostile cliques exists that decays towards the disorder and there is a discontinuous phase
transition at a temperature T d that is lower than T c. The system phase diagram corresponds to the so-called
fold catastrophe when a stable solution of the mean-field equation collides with a separatrix, and as a result a
hysteresislike loop is observed.
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I. INTRODUCTION

Let i and j be persons and k be an object that could be
a third person, article, idea, event, etc. If the persons i and j
possess the same attitude towards the object k (e.g., they both
like or both dislike it), then the theory of structural balance
postulated by Heider [1] says that it is more probable there is
a positive relation between i and j. On the other hand, if there
is a disagreement between the attitudes of i and j towards k,
then it is more likely that there is a negative relation between i
and j. In the case where k is a person, the above propositions
can be formed as the following rules: a friend of my friend is
my friend, an enemy of my enemy is my friend, a friend of
my enemy is my enemy, and an enemy of friend is my enemy.

Structural balance theory met a lot of interest in so-
cial science and it was observed in many social groups
when friendships and antipathies could be detected (see, e.g.,
Refs. [2–12]). Antal, Krapivsky, and Redner [13,14] found a
way to use the master equation for a description of possible
dynamics of complex networks evolving toward the structural
balance when mutual attitudes are described by binary vari-
ables of corresponding links.

Nowadays there are several attempts at theoretical descrip-
tion and computational simulation of the Heider balance, for
example, when the attitudes are continuously changing vari-
ables [15–17] or when attitudes are link attributes following
from Hamming distances between nodes attributes [18]. Of-
ten, an interpersonal relationship between two agents evolves,
driven by the products of their relations (positive or negative)
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with their common neighbors. In this way, two friendly or two
hostile relations of two agents with their common neighbor
improve their mutual relation, while their different relations
with a neighbor drive their mutual relation to hostility. For
example, in Refs. [15,16], the relations are represented by real
numbers, and the system dynamics is represented by a set of
differential equations. In these papers, the network of relations
is a complete graph. In Refs. [19,20] the relations are either
positive or negative, and the dynamics is defined by a cellular
automaton deterministic or with a thermal noise and a local
neighborhood of different range. In Refs. [21,22] the relations
are also discrete, the automaton rule is deterministic and the
topology is a complete graph. In all these approaches, the
target is a balanced state, i.e., a partition of the graph into two
mutually hostile but internally friendly groups. When the sign
of the relation of a pair as in Ref. [22] is assumed to oscillate
with the sum of products of relations over their neighbors, this
target is reached immediately—in one time step—for each
initial state [23]. For other approaches see Ref. [24].

Recently [25–31], the Heider’s dynamics has been en-
riched with social temperature T [32]. In Ref. [25] authors
show that in the investigated system the first-order phase
transition from an ordered to a disordered state is observed.
A system of two coupled algebraic equations has been re-
ceived using a mean-field approximation for an average link
polarization and a correlation function between neighboring
links’ polarization. The critical temperature of the complete
graph consisting of 50 nodes has been estimated by numeri-
cal solutions of these equations and agent-based simulations
have confirmed the presence of the phase transition in such
a model. In this paper, we show a much simpler theoreti-
cal approach leading to the same conclusions. Similarly as
in Ref. [25] we use the mean-field approximation, but we
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FIG. 1. Heider’s triads corresponding to balanced (first and third)
and imbalanced (second and fourth) states

find the critical temperature Tc only from the average value
of link polarization and we show that Tc is proportional to
the number M of different triangles containing a given link
T c = M/1.716 49 · · · . If a network with all positive links is
heated, then the discontinuous phase transition takes place
when the mean link polarization decays to the critical value
xc = 0.796 388. Our analytical results are well supported by
computer simulations.

II. MODEL

Consider a network of N agents, and let us assume that
the polarization of the links between two agents i and j is
xi j = ±1. The dynamics towards the Heider balance can be
written as

xi j (t + 1) = sgn

⎛
⎝ Mi j∑

k

xik (t )xk j (t )

⎞
⎠, (1)

where the summation goes through Mi j common nearest
neighbors of the connected nodes i and j; that is, Mi j is the
number of triangles that involve the link i j. It means that for
a single triangle system presented in Fig. 1, the first and the
third triangles are balanced in the Heider’s sense (as a friend
of my friend is my friend and an enemy of my friend is my
enemy), while the second and the fourth triangles are not. In
the latter case actors at triangles nodes either encounter the
cognitive dissonance—as they cannot imagine how his/her
friends can be enemies—or everybody hates everybody, which
should lead to the creation of a two-against-one coalition. Let
us stress that formally the sum

∑Mi j

k xik (t )xk j (t ) can be treated
as a local field acting on the link xi j and this field follows from
the Hamiltonian [13,25]

H = −
N∑

i> j>k

xi jx jkxki. (2)

III. MEAN-FIELD ANALYTICAL APPROACH

If one assumes that the link dynamics possesses a proba-
bilistic character, then a natural form of updating rule (1) as in
Heider dynamics can be the following:

xi j (t + 1) =
{

+1 with probability pi j (t ),

−1 with probability 1 − pi j (t ),
(3a)

where

pi j (t ) = exp(ξi j (t )/T )

exp[ξi j (t )/T ] + exp[−ξi j (t )/T ]
(3b)

and

ξi j (t ) =
Mi j∑
k

xik (t )xk j (t ). (3c)

Here, the positive variable T can be considered as a social
temperature [32] (or a measure of the noise amplitude) and
in the limit T → 0+ we have p → 1 so Eq. (3) reduces to
Eq. (1). Equation (3) is nothing else but the heat-bath algo-
rithm [33, p. 505] for a stochastic version of Eq. (1), and thus it
is ready for direct implementation in analytical investigations
and computer simulations.

The expected value 〈xi j (t + 1)〉 in this approach is equal to

〈xi j (t + 1)〉 = tanh

⎛
⎝T −1

Mi j∑
k

xik (t )xk j (t )

⎞
⎠, (4)

where 〈· · · 〉 stands for a mean value related to the stochastic
process defined by Eq. (3).

The mean 〈xi j (t + 1)〉 is a continuous variable that can
be negative or positive, and for T → 0+, Eq. (4) reduces to
Eq. (1).

Now in our mean-field approximation we write the cor-
relation function 〈xik (t )xk j (t )〉 as the product 〈xik (t )〉〈xk j (t )〉.
Let us note that such an approximation for the correlation
function of link polarization is similar to the mean-field as-
sumption used for the Ising model where correlations between
spins Si and S j are neglected, i.e., 〈SiS j〉 = 〈Si〉〈S j〉 (see, e.g.,
Ref. [34]). In fact, in Ref. [25] another mean-field approach
was proposed where link-link correlations were considered
but as we demonstrate in the Appendix they can be disre-
garded in the thermodynamical limit of the studied system.
Then instead of Eq. (4) we have

{〈xi j (t + 1)〉} ≈ tanh

⎛
⎝ 1

T

Mi j∑
k

{〈xik (t )〉}{〈xk j (t )〉}
⎞
⎠, (5)

where {· · · } denotes the average over all N (N − 1)/2 avail-
able nodes’ pairs.

Now let us assume—also in agreement with the spirit of
mean-field approximation—that all averages are the same:

{〈xi j〉} = {〈xik〉} = {〈xk j〉} = x. (6)

The above approximations are justified in the neighborhood
of the paradise1 state where the majority of triangles of the
type shown in Fig. 1(a) are present. However, as we show in
further numerical simulations, the approach also works well
in states far from paradise (x ≈ 0).

It follows that we get

x(t + 1) = tanh[ax2(t )], (7)

where

a = M/T, (8)

and M = {Mi j} is the average number of common neighbors
of agents i and j (M also indicates the number of different
triads containing the edge i j).

1For paradise states, all relations are friendly [13].
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FIG. 2. Solutions for mean values of links polarizations in Heider
balance resulting from the mean-field approximation x = tanh(ax2).
At the point T c/M = 1/ac ≈ 0.582 584 · · · (xc ≈ 0.796 388 · · · ), a
discontinuous transition between the upper branch and the solution
x = 0 takes place.

We immediately recognize x0 = 0 as a stable fixed point
for any value of the a parameter, and for a � 1 this is the
only fixed point of Eq. (7). However, for a � 1 there are two
other fixed points, xu < xs corresponding to unstable xu(a)
and stable xs(a) solutions. In fact, xu is a separatrix between
the domain of attractions of fixed points x0 and xs. When
a � 1 then xu ≈ 1/a. When the parameter a decreases from
high values (this means that the temperature T increases), then
the fixed points xu and xs coincide together with the point xc

for a certain value of a = ac (see Fig. 2).
This means that for a > ac the system is bistable and for

a < ac the system is mono-stable. The above values ac and xc

can be received from a pair of transcendental algebraic rela-
tions that describe the fixed point and its tangency condition,
namely,

xc = tanh[ac(xc)2] (9a)

and

2acxc = cosh2[ac(xc)2]. (9b)

The solutions (see Fig. 2) are

xc
th ≈ 0.796 388 · · · (10a)

and

ac
th = tanh−1(xc

th)/
(
xc

th

)2 ≈ 1.716 49 · · · . (10b)

Let us note that since xc
th > 0 a system can express the phe-

nomenon of hysteresis. It also means that we should not
observe the values 0 < x < xc

th as stable solutions.

IV. NUMERICAL ESTIMATION OF SYSTEM
CRITICAL TEMPERATURE

To verify the analytical results in a computer simulation,
we directly apply Eq. (3) to the time evolution of xi j for
the complete graph with N nodes. For the complete graph
the average number of pair neighbors of nodes i j is equal to

TABLE I. The numerically obtained values of T c
nu and ac

nu cal-
culated based on Eq. (11a) together with their estimated expanded
uncertainties U (ac

nu). The uncertainty of T c
nu is u(T c

nu) = 1/
√

3, while
U (ac

nu) is calculated based on Eq. (11b). Note that the differences
between numerically estimated values and analytical results (values
in the last column) are smaller than the uncertainties U (ac

nu).

N T c
nu ac

nu U (ac
nu) ac

nu − ac
th

25 11.5 2.00 0.30 0.28
50 26.5 1.811 0.118 0.095
100 55.5 1.766 0.055 0.049
200 114.5 1.7293 0.0262 0.0128
400 320.5 1.7267 0.0130 0.0102
800 463.5 1.7217 0.0064 0.0052

M = {Mi j} = N − 2, and thus according to Eq. (8) one should
expect

ac
nu = (N − 2)/T c

nu. (11a)

To find the value of T c
nu we start the simulation with T = 0

and scan the temperature T with step �T and look for a value
of T ∗ for which 〈xi j〉 is positive but for T ∗ + �T is zero.
The true value of T c

nu is hidden somewhere in the interval
[T ∗, T ∗ + �T ]. We assume that the T c value is uniformly
distributed in the interval [T ∗, T ∗ + �T ] which allows us to
estimate its uncertainty as u(T c

nu) = �T/
√

3. The estimated
value of T c

nu = (T ∗ + T ∗ + �T )/2. Based on Eq. (8) we cal-
culate the value of ac

nu and we can estimate its expanded
uncertainty as

U
(
ac

nu

) = k

∣∣∣∣ ∂a

∂T

∣∣∣∣
T =T c

u
(
T c

nu

) = k
N − 2(
T c

nu

)2 u
(
T c

nu

)
, (11b)

with the coverage factor k = 3 [35].
In Fig. 3 the time evolution of {xi j} for various values of

social temperature T and various system sizes N is presented.
The starting point of the simulation is the homogeneous state
(paradise) with {xi j} = +1 and the scanning temperature step
is set to �T = 1. The solid red line corresponds to xc

th given
by Eq. (10a).

The obtained critical temperatures T c
nu and their uncer-

tainties U (T c
nu) are collected in Table I. The obtained values

of ac
nu coincide nicely with those obtained analytically [see

Eq. (10b)], even under very crude assumptions given by
Eq. (7). The values of ac

nu agree within expanded uncertainties
U (ac

nu) with its analytical partner ac
th.

In Figs. 4(a) and 4(c), the dependencies of {xi j} vs T for
N = 200 and N = 50 are presented. The averaging symbol · · ·
represents the time average in the last τ = 100 time steps of
the simulation, and this time average should be approximately
equal to the average 〈· · · 〉 used in Eq. (5), which comes
from the ergodic theorem. Solid symbols correspond to the
starting point ∀i, j : xi j = +1, while open symbols represent
a random initial state {xi j} = 0. The latter recovers x0 = 0
mentioned earlier.
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FIG. 3. The time evolution of the average values of all links’ polarization {xi j} for various social temperatures T and various system sizes
N . The starting point of simulation is the homogeneous state (paradise) with {xi j} = +1 and the scanning temperature step is �T = 1. When
the temperature T = T ∗ then averages {xi j} oscillate around values that are close but always larger than the critical solution xc [the solid red
line given by the mean-field approach (10a)]; however, when the temperature T is slightly above T ∗ the system evolves towards the state
{xi j} ≈ x0 = 0.

In Figs. 4(b) and 4(d), dependencies of the system energy
density [average value of the Hamiltonian (2) per triangle]

E = −
∑

i> j>k xi jx jkxki(N
3

) (12)

are presented. There is a discontinuous change in the mean
system energy at the critical temperature; this corresponds to
Fig. 4(b) in Ref. [25]. According to the mean-field approxi-
mation, Eq. (6), we expect E = −x3, and this approximation
is marked by a solid blue line in Figs. 4(b) and 4(d). Similarly
to the numerically obtained values of {xi j}, also values of E
agree fairly with the proposed mean-field approximation.

V. INFLUENCE OF MUTUALLY HOSTILE CLIQUES
ON CRITICAL BEHAVIOR

In previous sections we estimated analytically and numer-
ically the value of the system critical temperature T c when
initial conditions were close to the paradise state. We ob-
served, however, that when a random initial state {xi j (t =
0)} = 0 was used in our numerical simulations a transition to a
phase with a higher energy E = 0 took place at a temperature
T d that was lower than T c. Below we discuss the nature of
this transition (see also Ref. [27]).

For random initial conditions the observed average {xi j}
fluctuates around zero in time but the mean energy density
is E = −1 (see Fig. 4) in low temperatures. In other words,
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FIG. 4. . Panels (a) and (c) show the averages {xi j} and panels (b) and (d) show E as functions of the temperature T for the complete
graphs with N = 50 nodes [panels (a) and (b)] and N = 200 nodes [panels (c) and (d)]. The averaging symbol · · · stands for time average over
the last τ = 1000 time steps of simulation. The solid symbols correspond to the paradise state as the starting point. The open symbols stand
for the random initial state {xi j} = 0. The solid blue lines indicate the mean-field approximation predictions {xi j} = x [panels (a) and (c)] and
E = −x3 [panels (b) and (d)]. The solid black or dashed green arrow marks the position of the critical temperature T c or T d (see Sec. V).

this energy is the same as the system energy corresponding
to the paradise state (with only positive links) {xi j} = 1. This
means that the ground state of the system is degenerated [36].
Although the fact that the state {xi j} = 0 is stable in time
follows from Eq. (7), its nature can be seen to be strange, since
naively one would expect a picture of a disordered system
corresponding to many unbalanced triangles with E = 0 and
not E = −1.

The truth is that the stochastic evolution equation, Eq. (3),
starting from the unordered state {xi j} = 0 can lead to a po-
larized phase consisting of two paradises [cliques containing
only friendship triangles of the type shown in Fig. 1(a)] of
similar sizes (for entropic reasons) connected by hostile tri-
angles of the type shown in Fig. 1(c)—see Fig. 5. Such a
balanced state composition has already been predicted for
systems driven by the structural balance by Cartwright and
Harary [3] in the middle 1950s. The phase was observed also
in the model of constrained triad dynamics (CTD) introduced
by Antal et al. [13,14] when a randomly selected link flips
its temporal polarization xi j only if the total number of im-
balanced triad decreases (see also Ref. [19]). Such a case
corresponds to Eq. (1) and it is equivalent to the T → 0+ limit
of the heat-bath equations, Eqs. (3).

Let us assume that the size of the entire group is an even
number N = 2h and that each hostile group has the size h.

Such a partition is the most probable division of the entire
group [13,14] and it is then easy to show that the mean of
{xi j} is zero in such a bipolar phase. In fact, every node
possesses (h − 1) positive links to agents in the own group and
h negative links to the second group. It follows that the mean
link polarization {xi j} is equal to −1/(2h − 1) and vanishes
in the thermodynamic limit (h → ∞). Then, the number of
triangles of the type shown in Fig. 1(a),

n�(+3) = 2

(
h

3

)
= 1

3
h(h − 1)(h − 2), (13)

FIG. 5. An example of a bipolar state with two mutually hostile
cliques of sizes h = 4. Each node possesses (h − 1) positive links to
agents in the own clique and h negative links to the second clique.
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FIG. 6. Frequencies f of the triangles presented in Fig. 1 for
N = 50 and various initial states. In the first row the histograms
for initial states are presented. In left (right) column histograms for
random (paradise) initial states are presented. In rows 2–4 the his-
tograms of frequencies of various triangles types in the final state of
the system are presented. The assumed temperatures T are indicated
for each figure part. The numbers on the abscissa axis are the sum of
polarizations xi j in a given triangle presented in Fig. 1.

and the number of triangles of the type shown in Fig. 1(c),

n�(−1) = 2h

(
h

2

)
= h2(h − 1), (14)

may be calculated with combinatorial analysis due to the com-
plete graph symmetry. It follows that, in the thermodynamic
limit, there is a special ratio between the numbers of triangles
of the type shown in Fig. 1(c) and the number of triangles of
the type shown in Fig. 1(a) in this phase,

lim
h→∞

n�(−1)

n�(+3)
= 3, (15)

and due to the absence of unbalanced triangles of the types
shown in Figs. 1(b) and 1(d) in this phase, the frequencies of
triads presented in Fig. 1 are ( 1

4 , 0, 3
4 , 0).

To verify our picture, we numerically investigated the fre-
quencies f of different triangles in the network when we
started the evolution of the system from various initial con-
ditions. These frequencies are presented in Fig. 6. When we
start from {xi j} = 0 then for low temperatures [see Fig. 6(b)]

the observed fraction f (+3) of triangles of the type shown in
Fig. 1(a) is three times lower than the fraction f (−1) of trian-
gles of the type shown in Fig. 1(c) as predicted by Eq. (15).
The fractions of triangles presented in Fig. 1 change abruptly
from ( 1

4 , 0, 3
4 , 0) to ( 1

8 , 3
8 , 3

8 , 1
8 ) at a critical temperature T d

(see Figs. 6(c) and 6(d); cf. also Fig. 10 in Ref. [30]). The
latter distribution of various types of triads is also kept in high
temperature when we start the temporal system evolution from
the paradise state [see Fig. 6(h)] and it corresponds to the
probabilities of three, two, one, and zero successes in three
Bernoulli trials when the probability of success is equal to 1

2 .
The above results mean that the polarized state with two

hostile cliques exists only at low temperatures and disappears
abruptly at T = T d . Let us stress that cliques emerge from
random initial conditions in our numerical simulations. A
similar discontinuous transition was observed in CTD dynam-
ics in Refs. [13,14] when the initial density of positive links
and the average {xi j (t = 0)} were changed in a continuous
way. The analytical approach developed in Ref. [14] shows
that the critical value of {xi j (t = 0)} for this transition should
be equal to zero. When this average is smaller, then the system
reaches an equilibrium in the two cliques state, and above this
threshold the system evolves towards the paradise. Numerical
simulations for the CTD model show a slightly higher value
of this threshold [14]. This discontinuous transition can be un-
derstood using our mean-field approach developed in Sec. III
as a result of the multistability of the system presented in
Fig. 2. In fact, the unstable solution xu of Eq. (7) in Fig. 2
divides the set of initial conditions into two basins of attrac-
tion [37]. When {xi j (t = 0)} is below xu the system evolves
towards the solution x0 = 0 and for an initial condition above
this curve the system evolves towards xs. Since our model
at T = 0 corresponds to the CTD model and the separatrix
xu in Fig. 2 approaches zero at this limit, the discontinuous
disappearance of the polarized two-clique phase observed in
Ref. [14] can be explained by crossing the separatrix curve.
This critical behavior is equivalent to the bifurcation dia-
gram corresponding to the so-called fold catastrophe [38] and
similar discontinuous phase transitions resulting from system
bistability have been observed in many systems, including
pairs of weakly interacting Ising networks [39], a majority
model of a network with communities [40], and an activity-
driven temporal bilayer echo-chamber system [41].

VI. CONCLUSIONS

In this paper we present a simple analytical approach which
describes the first-order phase transition observed in thermal-
ized Heider’s balance systems on the complete graphs. The
proposed mean-field approximation predicts that the critical
temperature of the system is equal to T c = (N − 2)/ac, where
N is the number of graph nodes, and ac ≈ 1.716 49. This
temperature corresponds to a discontinuous transition from
a critical state {xi j} = xc ≈ 0.796 388 (that is close to the
paradise state) to an unbalanced state with the same number
of positive and negative links {xi j} = x0 = 0. At the critical
point (T c, xc) the upper stable solution xs(T ) for a fixed point
of Eq. (8)—corresponding to a state of paradise dressed with
thermal fluctuations at a given temperature T —coincides with
the unstable branch xu(T ) that is a separatrix, i.e., a boundary
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between initial conditions leading to the “nearly paradise”
solution xs(T ) or to the disordered solution x0. For T > T c

the solution xs(T ) does not exist anymore and the system is
always evolving towards x0. This bifurcation scenario cor-
responds to the well-known fold catastrophe [see Figs. 4(a)
and 4(c)].

At the critical point, the system energy density changes
from E = −(xc)3 to the value E = 0 [see Figs. 4(b) and 4(d)].
The results of computer simulations agree within the esti-
mated uncertainties with our analytical calculations providing
that initial conditions are close to the paradise state {xi j (t =
0)} = 1.

On the other hand, at any temperature T when starting from
a randomly selected state xi j = ±1—when {xi j (t = 0)} =
0—we reach in the simulation only the solution {xi j} = 0
corresponding to the stable fixed point x0. The solution can
correspond to various patters of polarizations xi j . At low
temperatures, there is a phase consisting of two cliques of
similar sizes that possess only positive internal links, but all
interclique links are negative. It follows that there are triangles
consisting of all positive links or triads of one positive link and
two negative links. This means that all the triads are balanced
and that the energy density of the system is the same as that in
the paradise state, E = −1; that is, degeneration of the ground
is observed. The signatures of such system division—i.e., the
ratio f (−1)/ f (+3) = 75%/25%—for low-temperature noise
level limit were also observed for diluted and densified trian-
gulations (see Fig. 10 in Ref. [30]) and classical (Erdős-Rényi)
random graphs (see Fig. 7 in Ref. [31]).

At a certain temperature T = T d [for {xi j (t = 0)} = 0] or
T = T c > T d [for {xi j (t = 0)} = 1], another discontinuous
phase transition occurs when the number of unbalanced triads
[Figs. 1(b) and 1(d)] abruptly increases, and as a result the
system energy density becomes zero [see dashed arrows con-
necting open symbols in Figs. 4(b) and 4(d)]. This transition
is not seen at a value of {xi j}, which is 0 below and 0 above
T d when {xi j (t = 0)} = 0.

We stress that for T d < T < T c—depending on the initial
conditions—the system energy is either close to the ground
state or equal to 0 [see Figs. 4(b) and 4(d)]. Assuming ini-
tial conditions {xi j (t = 0)} = 1 and heating the system from
T = 0 to T = T c decreases the mean value of {xi j} along
the curve xu(T ) to the critical point xc, but above T c we can
only reach {xi j} = 0. The observed transition is irreversible,
and cooling the system from T > T c towards T → 0+ will
never reproduce positive values of {xi j} > 0, and in this sense
the hysteresislike loop can be observed in the system; thus,
(Tc, xc) is a tipping point of our phase diagram [38].

The critical temperature T c = 26.2 for the complete graph
with N = 50 nodes estimated in Ref. [25] is roughly in agree-
ment with our estimate of T c for N = 50. Finding analytically
the value of a lower critical temperature T d —where, starting
with {xi j (t = 0)} = 0, a special mixture of only balanced tri-
angles of the types shown in Figs. 1(a) and 1(c) disappears—is
beyond predictions of our approach, and it remains a
challenge.

The most interesting result of these investigations for real
social networks could be the observation that, if such networks
are driven by structural balance dynamics, then the balanced
bipolar state seems to be the only possible state when the ini-

tial configuration of social links is completely random and the
strengths of social interactions increase over time. To prohibit
the emergence of such a polarized state, one could consider
introducing additional attributes of interacting agents [42].

Finally, we note that Heider’s theory may be applied for
studies of international relations. In Ref. [13], the authors
presented the evolution of relations between countries as a
prelude to World War I. Further analysis of historical data is
in progress [43].
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APPENDIX: LINK-LINK CORRELATIONS

In the mean-field approximation developed in Ref. [25] the
mean polarization of links is given as

p = 〈xi j〉 = tanh(β(N − 2)q), (A1)

where β = 1/T and q = 〈xikxk j〉 is a correlation between links
and

q = e2(N−3)βq − 2e−2βp + e−2(N−3)βq

e2(N−3)βq + 2e−2βp + e−2(N−3)βq
. (A2)

Then the values p and q were found numerically as func-
tions of the temperature T from Eqs. (A1) and (A2) in
Ref. [25]. In our case, we receive the mean-field solution
from the fixed point of Eq. (7), that is, 〈xi j〉 = tanh(β(N −
2)〈xi j〉2). However, one can easily find that when N � 1 then

p2 ≈ q. (A3)

In fact, in the thermodynamic limit, the difference between
q and p2 is due to the second term of the nominator of
Eq. (A2), which is z = 2 exp(−2βp) and should be equal
to 2 if Eq. (A3) is valid. However, one can write z =
2 exp[−(2p/T c)(T c/T )], where T c is a critical temperature,
and since every link is influenced by many triangles in the
Hamiltonian (2), thus T c � 1. Thus, when the system is in
the critical region and T ≈ T c, and since p/T c � 1, thus
z ≈ 2 and p ≈ q2. The approximation also works well in the
low-temperature region T → 0+ since in such a case the terms
z and 2 are much smaller than the first term in the nominator
of Eq. (A2) and q = 1.
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