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Transitions between polarization and radicalization in a temporal bilayer echo-chamber model
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Echo chambers and polarization dynamics are, as of late, a very prominent topic in scientific communities
around the world. As these phenomena directly affect our lives, seemingly more and more as our societies and
communication channels evolve, it becomes ever so important for us to understand the intricacies of opinion
dynamics in the modern era. Here we extend an existing echo-chamber model with activity-driven agents to a
bilayer topology and study the dynamics of the polarized state as a function of interlayer couplings. Different
cases of such couplings are presented: unidirectional coupling that can be reduced to a monolayer facing an
external bias and symmetric and nonsymmetric couplings. We have assumed that initial conditions impose
system polarization and agent opinions are different for both layers. Such a preconditioned polarized state
can persist without explicit homophilic interactions provided the coupling strength between agents belonging
to different layers is weak enough. For a strong unidirectional or attractive coupling between two layers a
discontinuous transition to a radicalized state takes place when mean opinions in both layers are the same.
When coupling constants between the layers are of different signs, the system exhibits sustained or decaying
oscillations. Transitions between these states are analyzed using a mean field approximation and classified in the
framework of bifurcation theory.
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I. INTRODUCTION

It is not unheard of in the scientific community to at-
tempt to model how our societies form and function using
techniques and approaches familiar to physicists [1–5]. Of
particular interest lately has been the dynamics of opin-
ion formation, especially in light of recently better studied
phenomena such as echo chambers [6–9] and misinformation
[10–15]. One of the major effects that seems to be strongly
connected with echo chambers and misinformation is that of
polarization. While not every topic is polarizing [16,17], many
certainly can be [7,18–25]. It seems to have been recognized
by some that polarization is dangerous to the state of democ-
racy around the world and that there is a need for research on
this topic [26–32], especially in light of the possible event of
democracy backsliding [33,34].

We find that it is also of interest to study the possible
dynamics between two clearly defined groups, which often
can be found in politics (e.g., Democrats vs Republicans in
the United States) and particular topics (pro vs anti) and
has precedence in sociophysics [35–41]. In particular we felt
inspired by the work of Baumann et al. [6] in which the
authors introduced an echo-chamber and polarization model
on complex networks. In this paper we modify said model so
that it operates on a bilayer temporal network, as opposed to
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a monolayer, where each layer can represent a clearly defined
group of individuals (agents). This transformation is directly
driven by the fact that the physical properties of many systems
drastically change (e.g., phase transition type change) when
considered on a duplex (bilayer) topology [42,43]. We show
that several complex behaviors can be acquired by simply
changing the nature of the coupling between those layers.
Let us underline that the question of interacting layers is
an extremely vivid topic in the view of the COVID-19 epi-
demic (or infodemic [44]). Recent studies point to a pivotal
role played by the risk perception layer in the spreading of
a disease [45] or, explicitly, the attitude toward vaccination
[46]. In this scope examining the dynamics of two coupled
opposite groups (e.g., pro- and anti-vaccination [47]) seems
to be highly relevant.

Originally, in the work of Baumann et al., the system
consisted of N agents, each with a real, continuous opin-
ion variable xi(t ) ∈ R. The sign determines the nature of
opinion (for or against), while the value determines the con-
viction to it. The opinion dynamics is driven exclusively by
the interactions between agents and is described by the system
of coupled ordinary differential equations presented in [6]:

ẋi = −xi + K
N∑

j=1

Ai j (t ) tanh (αx j ), (1)

where K > 0 is the social interaction strength and α > 0
determines the degree of nonlinearity. The rationale behind

2470-0045/2022/105(2)/024125(13) 024125-1 ©2022 American Physical Society

https://orcid.org/0000-0003-3097-0131
https://orcid.org/0000-0003-2097-1499
https://orcid.org/0000-0003-2645-0037
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.105.024125&domain=pdf&date_stamp=2022-02-18
https://doi.org/10.1103/PhysRevE.105.024125


GAJEWSKI, SIENKIEWICZ, AND HOŁYST PHYSICAL REVIEW E 105, 024125 (2022)

FIG. 1. Illustration of the temporal bi-layer network model. At
any given moment an agent from either group can get activated and
impose its influence upon other (orange/light arrows) while in some
cases this influence can be reciprocated (blue/dark arrows). Each
arrow is labelled with an appropriate social influence coefficient later
on used in system of equations (3).

this very equation is built on the mechanism of informational
influence theory with guarantees of monotonic influence and
a cap on extreme opinions and is also not dissimilar to pre-
viously used nonlinear functions in chaotic systems [48–51].
The matrix A is an N × N adjacency matrix in an activity-
driven (AD) temporal network model [52–55] (see Fig. 1 for
our bilayer interpretation). This is a model without a statically
set social network, but in each time step an agent can become
active with propensity ai ∈ [ε, 1]. The propensities are drawn
from a power law distribution [52,54] defined as follows:

F (a) = 1 − γ

1 − ε1−γ
a−γ . (2)

Once the agent is activated, it makes m random connections
with other agents, and as is standard in AD models, the con-
nections are uniformly random. In [6] there is additionally an
element of homophily because it is expected to be necessary

to create polarization effects [56,57]; however, since we will
be considering a bilayer model later on, that is not the case for
us. A proper study of the effects of the homophily in the from
presented by Baumann et al. could turn out to be of interest,
yet we find it goes beyond the scope of this paper.

Interactions on social media can often be asymmetric, so it
is not always true that Ai j = Aji. However, in this model there
is a mechanism of reciprocity in which each agent j that has
received a connection from an active agent i can reciprocate
the connection with probability r.

Following the terminology from the paper [6], we
will name three specific opinion distributions as follows:
(i) a neutral consensus (or, simply, consensus) will correspond
to a phase when agents’ opinions in both layers are similar
and, on average, are close to zero; (ii) a one-side radical-
ization (OSR; or, simply, radicalization) will be the opinion
distribution when in both layers either a positive or a negative
opinion is overwhelming and is the same in both layers; and
(iii) a polarization will be the opinion distribution when in
one layer a positive opinion is overwhelming but in the other
layer the negative opinion is overwhelming. Using the lan-
guage of magnetic systems the neutral consensus corresponds
to the paramagnetic phase, the radicalization is the ferro-
magnetic phase, and the polarization is the antiferromagnetic
phase [58].

II. MODEL DESCRIPTION

We modify the scenario described by Baumann et al. by
considering a system of two (potentially) opposing groups
represented by layers X and Y such that NX agents belong
to group X and NY belong to Y . With this (1) becomes

ẋi = −xi + Kxx

NX∑
j

Axx
i j (t ) tanh(αxxx j ) + Kxy

NY∑
j

Axy
i j (t ) tanh(αxyy j ),

ẏi = −yi + Kyy

NY∑
j

Ayy
i j (t ) tanh(αyyy j ) + Kyx

NX∑
j

Ayx
i j (t ) tanh(αyxx j ). (3)

This is the most general formulation of the model we propose,
and we will now appropriately simplify it and later on discuss
its various regimes and the scenarios that emerge from it.

Let us further assume that Kxx = Kyy = K , αxx = αyy =
αxy = αyx = α, NX = NY = 1

2 N , and both r and a are the same
for both groups, within as well as without. Average activity is
given by

〈a〉 = 1 − γ

2 − γ

1 − ε2−γ

1 − ε1−γ
. (4)

Like in [6], we assume that processes related to topology
changes as described by matrices Ai j (t ) are much faster than
changes of opinions xi(t ) and yi(t ), and we shall insert into (3)
mean values of these matrices 〈Ai j (t )〉t,a = 1

2 m(1 + r)〈a〉 (see
the section “Approximation of the Critical Controversialness”
in the Supplemental Material of [6] for a detailed derivation).
When Kxy = Kyx, then the Jacobian of (3) calculated at the

point xi = yi = 0 possesses two special eigenvectors, e+ =
[1, 1, 1, . . . , 1, 1, 1]T and e− = [1, 1, 1, . . . ,−1,−1,−1]T ,
and the corresponding eigenvalues λ+ = cα[K (Nx − 1)/Nx +
Kxy] and λ− = cα[K (Nx − 1)/Nx − Kxy].

Then we can write the mean field equations for the ex-
pected values of opinions in X and Y . For simplicity let us
set c = m

2 (1 + r)〈a〉, and then

˙〈x〉 = −〈x〉 + Kc tanh(α〈x〉) + Kxyc tanh(α〈y〉),

˙〈y〉 = −〈y〉 + Kc tanh(α〈y〉) + Kyxc tanh(α〈x〉). (5)

We show that in our bilayer variant of the echo-chamber
and polarization model [6], when initial conditions impose
a polarized state and there are opposite agents’ opinions in
different layers, depending on the type of interlayer coupling,
various patterns are observed. For a weak attractive coupling
the polarized state is preserved, but when the coupling reaches
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a critical value a discontinuous transition to a radicalization
phase [6,59,60] takes place, and opinions in both layers are
similar and biased towards a positive or negative value. An
asymmetric (attractive or repulsive) coupling between agents
in both layers induces oscillations of opinions.

Let us stress that when the coupling between layers is
weak, the layers operate independently, and each of them
becomes an analog to the system studied in [6] when the
homophily is neglected. Thus, each given layer can be radical-
ized, but the composite bilayer system can also be polarized
when each layer has its own radicalized state opposite to
the other layer’s (this opposition state depends on the initial
conditions, however).

Later on, we provide agent-based simulations and detailed
mathematical analysis that makes use of the mean field ap-
proximation and catastrophe theory and fits well to results of
agent-based numerical simulations.

Our work is also distinctly different from the recent publi-
cation of Baumann et al. [26], in which the authors considered
a multidimensional version of the echo-chamber model. In
their work the coupling occurs via a correlated topic space,
whereas we establish a variant with interacting groups, quite
naturally leading to very different phenomena being observed.

III. METHODOLOGY

All simulations were conducted, unless stated otherwise,
with parameter values: network size N = 1000, γ = 2.1,

ε = 0.01, m = 10, r = 0.5, K = 1, α = 1, Kxy = Kyx = −1
(or 1,−1 accordingly in the asymmetric, oscillating case and
1,1 in the positive symmetric, weak coupling case). Note that
as a consequence of these values, the parameter c ≈ 0.306.
The systems of equations in the agent-based simulations were
integrated using an explicit fourth order Runge-Kutta method
with a time step dt = 0.05. The temporal adjacency matrix Ai j

is computed at each integration step. Mean field equations for
which no analytical solution was possible were integrated
using an embedded Runge-Kutta 5(4) [61,62]. Following
the rationale in [6,63], the AD network is updated in each
integration step to separate the timescales of connections and
opinion dynamics.

IV. RESULTS

In this section we present the results of agent-based simula-
tions and the mean field approximation for the three scenarios
described before. The scenarios are (i) unidirectional coupling
(this case will be equivalent to an external bias), (ii) symmetric
coupling, (iii) nonsymmetric coupling.

A. Unidirectional coupling

We can study the cumulative effect of a bilayer environ-
ment via the addition of external bias to a monolayer system.
This bias can represent the cumulative effect of another group
(Y ) or just the medium in which the system operates.

In essence, stemming from Eq. (3), we set Kyx = 0,
Kxx = K �= Kyy, αxx = α �= αyy �= αyx �= αxy. If Kyyαyyc > 1,
then layer Y is radicalized, and agents’ opinions yi in
this layer are centered around a certain nonzero value 〈y〉
that is constant in time. In such a case the whole term

Kxy
∑NY

j Axy
i j (t ) tanh(αxyy j ) = Bi can be “hidden” behind a cu-

mulative effect: an external bias Bi that can be, in general,
dependent on the site i and can either support a local opinion
xi in layer X or work in opposition to xi.

Therefore, we can write

ẋi = −xi + K
N∑
j

Ai j (t ) tanh(αx j ) + Bi, (6)

and by averaging xi we get

˙〈x〉 = −〈x〉 + Kc tanh(α〈x〉) + B, (7)

where B = 〈Bi〉. The dynamical system described by (7) ex-
hibits a cusp catastrophe [64,65]. If Kcα < 1, then there is
only one steady state solution of (7). However, if Kcα >

1, then two scenarios are possible. When the modulus of
the external bias B is smaller than some critical value Bc,
Eq. (7) possesses two stable and one unstable fixed points.
This means the mean opinion in layer X is in agreement or
in disagreement with the external bias B. When B is larger
than some critical Bc, Eq. (7) possesses only one solution,
and the mean opinion in group X directed against the external
bias B is not possible. This means that at some critical Bc a
discontinuous transition takes place [see Fig. 2(a)]. Values of
Bc can be found from the stability analysis of (6) or (7).

In the case of (7) we get the Lyapunov exponent [66] at
point xc, which corresponds to a steady state solution whose
stability is examined,

λ = −1 + Kcα sech2(αxc). (8)

In the case of (6) the Jacobian becomes

J|xi=xc =
⎡
⎣ −1 Kcα sech2(αxc) . . .

Kcα sech2(αxc) −1 . . .
...

⎤
⎦, (9)

with the largest eigenvalue being

λmax = −1 + N − 1

N
Kcα sech2(αxc). (10)

When N → ∞, solutions (8) and (10) coincide. Combining
the condition for the steady state of (7) and the condition
for changing the sign of the eigenvalue λmax (10), we get a
solution for the critical value of the external bias Bc:

xc = 1

α
cosh−1

(√
N − 1

N
Kcα

)
N→∞∼ 1

α
cosh−1(

√
Kcα),

Bc = xc − Kc tanh(αxc). (11)

In order to explore the behavior of Eq. (6) we can examine
the effective potential

V (x) = −
∫ x

−∞
F (u)du, (12)

where F (x) is the so-called effective force, which is the right-
hand side of Eq. (6). Thus, in our case

V (x) = x2

2
− Kc

α
ln cosh(αx) − Bx. (13)

If B = 0 [Fig. 2(b)], then the potential V (x) is a symmetric
function possessing two minimum values and one maximum,
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FIG. 2. (a) Bifurcation and hysteresis loop in the system of external bias: for α > 1/(Kc) ≈ 3.27 the system can be bistable, and once a
critical value of Bc is reached, there is a switch of opinion majority from a state against the field to a state towards it (and vice versa for −Bc).
Also in such a case, we cannot reach a neutral solution (x = 0) for any B > 0. For α < 1/(Kc) we have only one stable solution, and such
effects do not take place. (b)–(e) Shape of the potential V (x) given by Eq. (13) for Kcα = 2 and (b) B = 0, (c) B = 0.04, (d) B = 0.0815, and
(e) B = 0.12.

corresponding to, respectively, stable and unstable solutions,
as long as α > 1/(Kc) or one minimum at x = 0 if this condi-
tion is not fulfilled. However, if B �= 0, the potential becomes
asymmetric [Fig. 2(c)], and for B � Bc the second minimum
is no longer observed [see Figs. 2(d) and 2(e)]. Let us note
that if Kcα � 1 in Eq. (11), then Bc → −Kc.

The above results mean that a discontinuous phase tran-
sition in the temporary network (6) should occur from a
system’s steady state to another one that is directed towards
the external bias. For example, if the system converges on a
negative (average) opinion and we set the bias to a positive
and sufficiently large value, the system will suddenly jump
to the opposite side. In Fig. 3(a) we present an example of
that. We wait until the system reaches its steady state and
then activate the bias with an opposite sign. If the value is

below the critical one, the system merely shifts slightly to-
wards zero; however, if |B| > Bc, a sudden jump occurs. In
Fig. 3(b) we show this in the B − α phase space: yet again,
the mean field approach [Eq. (11)] allows us to predict this
behavior.

We consider this case study to be illustrative of how, for
example, propaganda may or may not be successful. We use
“propaganda” here as a neutral term, without concerning our-
selves with whether it is good or bad. One can easily imagine
situations that are either. Such a scenario boils down to the
strength of the campaign in question since the dynamic of
change is nonlinear and the transition can be very sudden. One
of the significant implications of this is that it may be rather
difficult to react to the propaganda machine in time to stop
society from drastically shifting its stance.

FIG. 3. Phase transition for the temporary network described by (6) under the influence of an external bias. (a) Two examples of an average
opinion of the system as a function of time. One trajectory is for a value of external bias above the critical threshold, and the other is for external
bias below it. The solid vertical line signifies the moment we enable the external bias. (b) The B − α phase space, where color is 〈|opinion|〉,
with a visible phase transition to an opposite opinion and the mean field approximation for the critical line [Eq. (11)].
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FIG. 4. Illustrations of the phase transition in a weakly coupled scenario for different values of δ in the (a) X, δ and (b) X − Y, δ planes;
see the text for detailed description of points 1–10 and 1′ − 10′. (c) and (d) Comparison of analytical predictions with ABM simulations.
Dots show 20 independent realizations of an agent-based simulation, while the mean field solution is shown by open circles (with α = 10). In
(c) only the average opinion of layer X is shown (Y is omitted for clarity as it would simply be symmetrically opposite).

B. Symmetric coupling

Here we consider a variant of the model in which the
two layers are positively but weakly coupled via the coupling
parameter δ. We introduce this weak coupling parameter 0 <

δ < 1 to the variant where both Kxy and Kyx are positive, and
for simplicity let us assume Kxy = Kyx = δK . Note that for
large positive coupling δ > 1 the system functionally reduces
to the scenario already described by Baumann et al. and there-
fore will not be discussed by us. The mean field equations for

the expected values can be written as

˙〈x〉 = −〈x〉 + Kc tanh(α〈x〉) + δKc tanh(α〈y〉),

˙〈y〉 = −〈y〉 + Kc tanh(α〈y〉) + δKc tanh(α〈x〉). (14)

With positive coupling the two groups ought to merge
for some critical value δc. However, before that happens the
coexistence of two groups with opposite opinions is possible.
In such a case xc = −yc in the steady state, and by writing out
the Jacobian of the system (14)

J|〈x〉=−〈y〉=xc =
[−1 + Kcαsech2(αxc) δKcαsech2(αxc)

δKcαsech2(αxc) −1 + Kcαsech2(αxc)

]
, (15)

from which we get both eigenvalues as

λ1,2 = Kcαsech2(αxc)(1 ± δ) − 1, (16)

and by looking at the largest eigenvalue and the steady state
solution, it is easy to find that

δc = 1

Kcα
cosh2(αxc) − 1,

0 = −xc + Kc(1 − δc) tanh(αxc), (17)

which must be solved numerically.
We find that there exists a critical value δc for which a phase

transition occurs from a polarization (denoted POL) state
to a non-neutral consensus state (or the so-called one-side
radicalization).

Figure 4 illustrates this behavior via plots of the (x, δ)
and (x − y, δ) planes with points 1–10 and, equivalently,
1′ − −10′ referring to specific states of the system. The two
layers start in opposition, i.e., in a polarized state (for δ = 0,
either point 1 or 1′, depending on the setting); then we enable
a positive but weak 0 < δ < 1 coupling between them. As
δ increases, the groups’ final average opinions slowly and
smoothly approach each other until the critical value of δPOL

c
(2 or 2′) corresponds to a bifurcation point, where two groups
merge into one with a radicalized opinion (3 or 3′). Further
increasing δ results in stronger radicalization (4 or 4′). On
the other hand, if we follow the path of decreasing δ, the
average opinion value drops (5 or 5′), and we arrive once
again at δ = 0 (6 or 6′). Although the value of x at point 6
is the same as at point 1, it is a different state, as confirmed
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FIG. 5. Solutions of Eq. (3) for different values of α (in each case K = 1 and c = 0.306); the left column shows x as a function of δ, while
the right one shows x, y as a function of δ. Solid lines represent stable solutions, and dotted lines represent unstable solutions. Red and blue
curves denote radicalization and polarization (as in Fig. 4); black dashed lines show auxiliary solutions, and black solid lines show neutral
consensus.

by Fig. 4(b). We might then keep on decreasing δ, switching
to negative values (weak negative coupling) until we reach
δOSR

c = −δPOL
c at point 7 or 7′, which once again corresponds

to a bifurcation point, this time leading to a separation of the
groups (8 or 8′), i.e., to a POL state. A further decrease of δ

strengthens group polarization (9 or 9′), while by increasing
it we go through point 10 or 10′ to close the loop, reaching

point 1 or 1′. We also see a decent match of the mean field ap-
proach with agent-based model (ABM) simulations [Figs. 4(c)
and 4(d)].

We can interpret these results by posing the following
question. Imagine that we can somehow influence the attitudes
of the layers such that we soften the animosities towards a
more amicable, and maybe even eventually slightly cordial,
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FIG. 6. Example trajectories of the groups’ average opinions as they change in time. Dashed lines represent agent-based simulations, and
20 independent realizations are shown. Solid lines are the result of the mean field approximation (MF). (a) The behavior below the critical
value with α = 0.84; both groups converge on a neutral opinion. (b) The behavior above it with α = 4.0; groups remain in their respective
opinions in opposition to each other.

point of view. Would that be enough to settle a conflict of
some sort? Or do we need to completely flip peoples’ atti-
tudes to make consensus possible? Our model suggests that
softening attitudes can be enough, indeed. This implies that
while prejudice can cause society to split, there is also room
for hope because changes to attitudes that are not as drastic as
one would, perhaps, expect can cause the layers to converge
on an opinion, albeit not a neutral one.

Figure 5 presents solutions of Eq. (14) for different values
of α. It is essential to note here that in this system we also
face other critical behavior: in order to observe bistability for
POL and OSR it is necessary that α > 1/(Kc) [see Figs. 5(a),
5(c) and 5(e)]. Otherwise, if starting from a polarized state
for δ < 0, the average opinion in both groups decreases with
increasing δ, and when δ = − 1

Kcα + 1, a state of neutral
consensus is achieved, characterized by x = 0 and y = 0.
The system stays in this state until δ = 1

Kcα − 1, where both
groups simultaneously acquire the same nonzero opinion (the
OSR state). When α > 1/(Kc), we also obtain an auxiliary
solution [marked by black dashed lines in Figs. 5(a)–5(d)],
which is, however, always unstable and therefore plays no role
in the dynamics.

Let us consider now in detail the case of symmetrically
and negatively coupled opposing layers with small values
of α [i.e., the setting shown in Figs. 5(e)–5(h)] and check
it against the outcomes of the ABM. With the use of the
mean field theory we expect a phase transition from a neutral
consensus, where both groups converge at zero, to a polarized
state where the layers remain in their respective opinions in
opposition to one another, as the control value cα is increased.
We choose not to use a single control parameter as the behav-
ior of the system slightly changes depending on whether we
modulate c or α.

We arrive at that prediction in the same way as before; that
is, from the Jacobian matrix (15) of the system (14) we can
acquire the eigenvalues λ+,−,

λ+,− = cαK (1 ± δ) − 1. (18)

We can then find a steady state solution in the polarized
phase (xt→∞ = −yt→∞) by numerically solving the following
relation:

xt→∞ = (1 − δ)Kc tanh αxt→∞, (19)

FIG. 7. Phase transition (a pitchfork bifurcation) from the symmetric consensus to the opposite values of opinions in different layers X and
Y under different parameter modulations in both agent-based simulations and the mean field approximation. The transition takes place at the
point K (1 − δ)cα = 1. (a) The transition as we increase α and keep c ≈ 0.306. (b) The case when we keep α = 1 and change c by increasing
the parameter m. The agent-based results are averaged over 20 independent realizations with a 95% confidence interval present in the form of
the error bands. Asymptotic behaviors observed in both panels for cα � 1 are in very good agreement with Eq. (20).
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FIG. 8. (a) Phase diagram of the system given by Eq. (14) for
c = 0.306 and K = 1. (b) Numerical simulations of the ABM model,
where color shows |〈x〉 − 〈y〉|, with a visible transition from oppos-
ing opinions to a non-neutral consensus. In both panels solid lines
come from the MF solution given by Eq. (17).

which can be written in the normalized form u = K (1 −
δ)αc tanh(u) when u = αxt→∞. Since the solution u of the last
equation increases from zero to K (1 − δ)αc when the product
K (1 − δ)αc increases from 1 to ∞, for K (1 − δ)αc � 1 the
equation

xt→∞ ≈ K (1 − δ)c (20)

explains the difference in the behavior we mentioned (c vs α

modulation) and observe in Fig. 6.
In Fig. 7 we present examples of trajectories of the system

where we arbitrarily chose groups to start with all their agents
with opinion +1 (X ) or with −1 (Y ); however, the results do
not depend on this choice. There we can see the two afore-
mentioned phases, consensus and polarization. Plots show the
mean opinion of each layer as a function of time. The agent-
based simulations are not deterministic, and therefore, we
show 20 independent realizations and compare them against
the mean field prediction. It is apparent that below the critical
value of cα the whole system converges at zero: both layers
reach a neutral consensus [Fig. 7(a)]. As the control parameter
is increased, the situation changes, and a polarization phase

occurs [Fig. 7(b)]. The two layers now stand in opposition to
one another, and no consensus is possible.

Using the mean field theory, we estimate the critical value
of cα and present the test of our predictions in Fig. 6. As
mentioned before, it depends on whether we modulated α or
c, and we show that in Figs. 6(a) and 6(b), respectively. When
c = const, the system reaches a plateau; however, when c is
increased, the final opinion value of the system also increases
indefinitely. In both scenarios we see a phase transition (a su-
percritical pitchfork bifurcation [67]) at a certain critical value
and a reasonably decent fit from the mean field approximation.

We find this setting to be representative of a typical echo-
chamber situation in the context of two rivalling groups such
as political parties. If the animosity of one for the other or of
both mutually is strong enough, then no consensus is possible;
while the groups may not be as radical as they were initially,
they will always persist in their view opposite to the other.
This essentially shows that prejudice has the potential to lock
society into a predetermined antagonistic state.

The outcomes of this analysis can be summarized in a
concise way with the δ − α phase diagram shown in Fig. 8(a),
where the predictions of different states of the systems (i.e.,
neutral consensus, polarization, radicalization, and bistability)
are presented. We also see a decent match of the ABM results,
but only for relatively small values of α and δ; see Fig. 8(b),
where we show a heat map of the δ − α phase space in which
the color denotes the distance between averages.

C. Nonsymmetric coupling

Let us now make a bridge between the systems (14) and (5)
by formulating predictions in the mean field approach for the
case when the coupling between layers is not symmetrical.
At first we shall look at a scenario in which the coupling
has the same sign but (possibly but not necessarily) different
magnitudes; that is, we consider the system as described by
(5) with the omission of the external bias. The procedure for
the analysis of this system is, of course, analogous to what we
already did before.

The Jacobian matrix of (5) is

J|〈x〉=〈y〉=0 =
[−1 + cαK cαKxy

cαKyx −1 + cαK

]
, (21)

from which we get both eigenvalues:

λ1,2 = cαK ∓ cα
√

KxyKyx − 1. (22)

When Kxy = Kyx, eigenvalues λ1,2 reduce to λ+,−,

λ+,− = cα(K ± Kxy) − 1, (23)

calculated directly from the agent-based model (3) in the limit
N → ∞, and in such a case the corresponding eigenvectors of
Jacobian (21) are e+ = [1, 1]T and e− = [1,−1]T .

In general the product KxyKyx can be positive or nega-
tive; if it is positive, then either Kxy > 0 ∧ Kyx > 0, and the
system falls into what was described by Baumann et al.
(unless we consider the weak coupling δ < 1 introduced in
Sec. IV B), or Kxy < 0 ∧ Kyx < 0, and new behavior in the
system emerges, accompanied by a phase transition occurring
when λmax = λ− changes sign. Since the eigenvector e− is
asymmetrical, the case λmax > 0 means that the consensus
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FIG. 9. The coupling parameter phase space |Kxy| − |Kyx|, when Kxy, Kyx < 0, in the form of a heat map, where the color represents the
average (1/2)(|〈xi〉| + |〈yi〉|), with a visible transition from neutral consensus to polarization. MF is Eq. (24). (a) Results for initial conditions
corresponding to the opposite radicalization in each layer. (b) The initial conditions for all agents were drawn randomly from a uniform
distribution (−1, 1), showing that this result does not depend on initial conditions.

phase x = y = 0 loses its stability, and the systems are po-
larized; that is, opinions in groups X and Y split into opposite
directions. From λmax changing its sign we get the following
relationship between Kxy and Kyx:

Kyx =
(

1 − cαK

cα

)2 1

Kxy
. (24)

If Kyx = Kxy < 0 and the system is in the polarized phase,
then its steady state is xt→∞ = −yt→∞, which can be found
by solving numerically for xt→∞ in the following relation:

xt→∞ = (K − Kxy)c tanh(αxt→∞). (25)

Equation (25) can be again written in a normalized form,
as earlier u = (K − Kxy)αc tanh(u) when u = αxt→∞. Since
the solution u of the last equation increases from zero to
(K − Kxy)αc when the product (K − Kxy)αc increases from
1 to ∞, for (K − Kxy)αc � 1,

xt→∞ ≈ (K − Kxy)c, (26)

which also explains the difference in the behavior we observe
in Fig. 6, albeit in a more general context.

We also present a heat map (Fig. 9) of the coupling param-
eter phase space with Kcα ≈ 0.306. The color there shows the

absolute value of the mean opinion of the system. Again, we
see a transition from consensus to polarization, with a good
match to the mean field approach and, specifically, Eq. (24).

Another interesting case is that of an asymmetric or per-
haps even antisymmetric coupling in which one group “likes”
the other but the feeling is not mutual; that is, the signs of
the coupling parameters are opposite. According to the mean
field theory, we ought to see two possible behaviors of the
system: dampened or sustained oscillations depending on the
values of the control parameter. As before the behavior does
depend on whether we change c or α. In Figs. 10 and 11 we
show time and phase trajectories, respectively. In both cases it
is apparent that the two aforementioned behaviors are present.
Namely, the system has two possible attractors: a point or an
orbit. While there is a slight shift in when the transition occurs
when comparing agent-based simulations and the mean field
approximation, we find the analytical approach is qualitatively
successful.

This effect is due to the product KxyKyx being negative and
then the eigenvalues being complex, and the system exhibits
a supercritical Hopf bifurcation [67]. When Kcα < 1, the at-
tractor of dynamical system (5) is the point (0,0); that is, there
is a consensus among the groups. When Kcα > 1, this trivial
fixed point loses its stability, and we expect to see oscillations

FIG. 10. Example trajectories in the asymmetric coupling parameter scenario for (a)–(c) α = 1, 3, 3.5, respectively. Results of 20
independent agent-based simulations are shown as dashed lines, with solid lines representing the MF approximation. Two distinct behaviors
are visible: sustained and dampened oscillations.
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FIG. 11. Y (X ) trajectories in the asymmetric coupling scenario for (a)–(d) α = 1, 3, 4, 10, respectively, with dashed lines representing
20 independent realizations of the agent-based simulation and solid lines showing the mean field solution. We observe in detail that the system
has two possible attractors: a point and an orbit. For Kcα > 1 the point (0,0) becomes unstable, and trajectories starting from it would also end
in an orbit.

in the system corresponding to a limit cycle attractor [the
trajectory cannot diverge to infinity since the function tanh(x)
is bounded].

What is also interesting in this case is how the sustained
oscillations change as we modulate α or c. Like before, we
choose to modulate c via the parameter m. In Fig. 12 we
show both frequencies and amplitudes as functions of cα with
either α or m modulation. A supercritical Hopf bifurcation
takes place at the point Kcα = 1, and the frequency of the
emerging periodic orbit at the critical point should be equal
to fcrit = ca

√
KxyKyx/2π ≈ 0.1592. Although the oscillations

are highly nonlinear [due to the tanh(x) term], the mean field
predictions show a good qualitative match to agent-based
simulations. The frequency f is slightly different in the over-
critical region compared to the critical value fcrit that is in
agreement with the theory of Hopf bifurcation [68]. For large
values of cα the amplitude of oscillations saturates as the
function of the parameter α and is a linear function of the
parameter c. This behavior is similar to plots in Fig. 6, and
it is related to the scaling observed for the asymptotic steady
state solution xt→∞ [see Eq. (26)].

While this scenario might be slightly less obvious to in-
terpret, we do believe there are certain parallels to be drawn
here. It may seem as though one group is a trend setter, while
the other group contains followers. In such a case there is a
sort of feedback dynamic very similar to what we observe in
our model. One group, the followers, is positively oriented
towards the other, the trend setters, as they look up to them
and would like to be, act, and think like them. On the other

hand, the trend setters share a negative attitude towards the
followers in this context. While they might appreciate the
following, they would very much want to move away from it
in terms of the opinion in question. This leads to this chasing
and oscillating behavior. However, if the magnitudes of the
attitudes within the groups are not strong enough, the dynamic
simply dies down because the followers are not interested
in following and the trend setters are not interested in trend
setting.

V. CONCLUSIONS

In this paper we considered a temporal bilayer echo-
chamber and polarization model on complex networks in-
spired by the monolayer model introduced by Baumann et al.
We recognize that there is both a precedent and apparent value
in studying scenarios in which two clear-cut groups—or layers
in a network—interact with one another. Understanding how
layered complex networks evolve in various environments in
the context of opinion dynamics can help us better prepare for
studying in detail such prominent real-world social phenom-
ena as misinformation campaigns and echo chambers.

We formulated the dynamics equations for the bilayer
system (3) and then provided a mean field analysis that un-
covered interesting possible scenarios. The nature of system’s
behavior is different depending on the coupling between the
layers. We categorized those couplings as symmetric and non-
symmetric with the special case of added external bias also
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FIG. 12. The oscillation frequencies and amplitude dependence on the parameter modulation in the asymmetric coupling case. The top
row is for α modulation, and the bottom one is for m. Dashed lines represent an average over 20 independent realizations of agent-based
simulations, with the 95% confidence interval present as the error bands. Solid lines show the mean field solution. Differences in asymptotic
behaviors of amplitudes in (a) and (c) are similar to differences observed for values of the steady-state solutions xt→∞ in Figs. 6(a) and 6(b).

considered. In more detail there are a negative symmetric case
in which the groups do not like each other; opinion oscilla-
tions in which one group likes the other but the feeling is not
mutual; the aforementioned external bias, where we consider
the other group to be an external bias acting upon a monolayer
system; and, finally, a weak positive coupling in which there
is an attraction between the groups that is, however, not as
strong as the attraction within them.

When the two layers were weakly yet positively coupled,
we saw that a critical value of the coupling parameter that
causes the system to experience a sudden shift in the opinions
exists. In this case we observed that there is a transition from
a polarized state to a one-sided consensus (or a radicalized
state) in which all agents (from both layers) share a similar
and nonzero opinion. Similar to the previous case, the match
between the mean field theory and simulations is qualitatively
satisfying; however, for larger values of the control parame-
ter the predictions about when the transition should happen
diverge from the results for numerical experiments.

In the opposite polarization scenario, i.e., negative sym-
metric, we observed that the coexistence of two groups with
different (opposite) opinions is possible. The system under-
goes a phase transition from a neutral consensus, in which
the two layers’ opinions merge at zero, to a polarized state,
in which the two groups coexist, each of them having their
own opinion that is the opposite of that of the other group.

The details of this pitchfork bifurcation and the asymptotic
behavior of the system depend on whether we modulate the
nonlinearity parameter α or the combined social influence pa-
rameter c or the coupling parameters Kxy and Kyx; however, in
both cases the mean field approximation gives us a satisfying
fit to agent-based simulations.

In the case of a single layer with an external bias present
we postulated that it might be possible to model either a
background of some sort or the second layer for that matter
as simply a cumulative effect in the form of such an external
bias. We found that the behavior here is not very dissimilar
to the weak positive coupling scenario. Namely, there exists a
critical value of said bias at which, when the system is subject
to it, a sudden change to the opposite opinion is possible
and the cusp catastrophe is apparent. For small values of
the control parameter we found a decent match between the
mean field approach and agent-based simulations; however,
for larger values the two diverge in the prediction about when
the transition should occur, most likely due to the finite size
of the simulated system.

Finally, when the coupling parameters were set antisym-
metrically, in the sense that one is positive and one is negative,
we detected a transition from dampened to sustained oscilla-
tions of the layers’ opinions: a supercritical Hopf bifurcation.
In a way one might say that one group is “chasing” the other
with their opinions, while the other is trying to get away.
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We additionally found that the oscillations are highly non-
linear as the frequency decreases with the control parameter
as opposed to increasing as one would expect from a linear
oscillator. At the same time the amplitude increases with the
control parameter. We believe the amplitude here plays the
role of a sort of barrier for the system to overcome, so the
higher the barrier is, the longer it takes to overcome it; thus,
the frequency of the oscillations increases.

With each scenario we have drawn parallels to the real
world to illustrate what these results could mean for un-
derstanding the dynamics of our societies. We understand
that there are limitations with both the model and the
approach in general because it can often be difficult to

construct reproducible experiments in a sociological context;
however, we firmly believe that seeing where certain assump-
tions can lead us is an important and crucial building block of
science.
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