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Discovering hidden layers in quantum graphs
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Finding hidden layers in complex networks is an important and a nontrivial problem in modern science. We
explore the framework of quantum graphs to determine whether concealed parts of a multilayer system exist
and if so then what is their extent, i.e., how many unknown layers are there. Assuming that the only information
available is the time evolution of a wave propagation on a single layer of a network it is indeed possible to uncover
that which is hidden by merely observing the dynamics. We present evidence on both synthetic and real-world
networks that the frequency spectrum of the wave dynamics can express distinct features in the form of additional
frequency peaks. These peaks exhibit dependence on the number of layers taking part in the propagation and thus
allowing for the extraction of said number. We show that, in fact, with sufficient observation time, one can fully
reconstruct the row-normalized adjacency matrix spectrum. We compare our propositions to a machine learning
approach using a wave packet signature method modified for the purposes of multilayer systems.
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I. INTRODUCTION

A plethora of contemporary dynamical systems and col-
lective phenomena can be expressed in terms of complex
networks and recently often with multilayer models. Whether
it is a transportation network (e.g., buses and trams) or a social
one (e.g., Twitter and Facebook), various forms of information
propagation or state dynamics can be described with multi-
layer networks [1–7].

However, it is not uncommon for certain parts of a system
to remain hidden from observers, and it can be crucial to be
able to discern what characteristics are unknown and then to
try to obtain them. Such inverse problems have been studied
in various settings in both topology and dynamics parame-
ters reconstruction in mono- and multilayer scenarios alike
[8–20]. Recently there have been some pivotal advances in
terms of determining whether one can detect hidden layers
in non-Markovian dynamics and even obtain how many of
these layers are there [21]. In the same manner hidden layers
can be detected in the case of epidemic like processes (e.g.,
SI—susceptible-infected or IC—independent cascades) [22].

Nevertheless, to our knowledge, there has not been much
done specifically for uncovering the multilayer structures in
quantum graphs and thus we address this issue. We present
two potentially viable approaches of establishing if hidden
layers exist, and in some scenarios to ascertain the exact count
of these layers.

Traditionally, graphs are discrete, combinatorial abstract
mathematical objects. If we supply them with a metric and
topology, then we call such objects metric graphs. Those in
turn equipped with a second-order differential operator acting

on its vertices and edges—a Hamiltonian—and appropriate
boundary conditions are called quantum graphs [23–26]. It
is worth underlining here that with this definition we do not
specify the exact nature of the Hamiltonian and while it is
often a quantum mechanical one it need not be so and thus
here we follow the interpretation of taut strings, fused together
at the vertices that can be seen as the “limiting case” of a
“quantum wire” [27,28]. The (most likely) first use of this
framework can be traced back to Pauling’s paper in 1936 [29];
however, for the most part quantum graphs have not been
widely used until more recently. Nowadays they see many
various applications in dynamical systems, nanotechnology,
photonic crystals, and many others [30–35]. Most recently
Aziz et al. established a method based on a wave packet
propagation on quantum graphs that allows to distinguish
between structures in complex networks [36] thanks to many
well studied properties of the Laplacian (e.g., a finite speed of
propagation [37] as opposed to a discrete Laplacian [38,39])
and its spectra in quantum graphs [40–46]. The idea of deter-
mining the shape of an object based on observable dynamics
on it goes back to the work of Kac in 1966 [47] in which he
asks whether it is possible to hear the shape of a drum. Giraud
and Thas showed that the eigenvalues of different shapes
can be identical and therefore answered Kac’s question in
the negative. Gutkin and Smilansky, however, showed that in
quantum graphs specifically, under certain conditions, one can
indeed “hear” the shape as the Hamiltonian uniquely defines
the connections and their lengths when the graph is finite
(and simple), the bond lengths are rationally independent and
the vertex scattering matrices are properly connecting. It is
also worth noting that this inverse spectral problem can be
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extended onto scattering systems as also stated in the same
paper (a so-called inverse scattering problem [48]). However,
in these scattering systems it appears that it is not always pos-
sible to uniquely find the structure [49,50], i.e., there is a way
to construct isoscattering pairs of graphs with identical polar
structure of their scattering matrices, which was also shown
experimentally via microwave networks by Hul et al. [51].
Wave packets specifically have also attracted some attention
in recent years but not for the purposes of what we aim for in
this paper [52,53]. Some work has been done in the context of
sufficient coverage with sensors [54]; however, in this case we
will not share all the assumptions and thus those methods are
not applicable to our problem.

In this paper we tackle the problem of determining whether
there are hidden layers in the complex system we are ob-
serving and if so then how many. We assume wave packet
propagation dynamics on a quantum graph as our model
for the dynamical system. Each edge e in the graph G has
an associated length le = 1 and a spatial coordinate vari-
able xe ∈ [0, le] along said edge. We use a special case of
a Hamiltonian—an edge-based Laplacian giving us an edge-
based wave equation on a graph in the form

utt dE = −�u, (1)

where E is a Lebesgue measure on the graph’s edges [27,56],
and u is a square integrable function defined on the graph.
Specifically, u(n) is the value of u at the node n, and u(e, xe)
is the value of u at the position xe along the edge e [36].

We use the Neumann boundary conditions stating that the
sum of the outward pointing gradients at every vertex must
vanish [27,36]:

∀v ∈ G,
∑
e�v

(−1)1−xe,v∇u(e, xe,v ) = 0. (2)

The initial condition for the wave equation is a Gaussian wave
packet:

u(e, x) = exp [−a(x − μ)2], (3)

which is fully contained within a single edge with the highest
betweenness centrality, i.e., such an edge that goes through as
many shortest paths in the graph as possible [57,58], following
the conventions of Aziz et al. [36]. We simulate the many-
layer system in a multiplex configuration, i.e., we consider
a system with a set of L � 1 interacting layers (monolayer
networks), where each of them has the same set of N nodes
but different topologies (set of connections), and each node
is connected to its reflection (also sometimes called a replica)
in a neighboring layer (see Fig. 1 for a real-world network
example and Fig. 2 for a wave propagation example on a
simple synthetic graph). In its simplest form a multilayer
system can be represented with a set of intra-layer adjacency
matrices {Cl} (∀lCl ∈ RN×N ), where Cl

i, j = 1 when nodes i, j
are connected in the layer l and 0 otherwise. Additionally we
need a set of interlayer adjacency matrices {B} (B ∈ RL×L),
where the elements Bl1,l2 signify whether the layers l1, l2 are
connected (i.e., each node from layer l1 is connected to its
replica in layer l2). {Cl} and {B} can then be combined into a
single adjacency matrix A ∈ RLN×LN . For an example of how
that can be done see Appendix G, and for a more elaborate
tensor formulation (unnecessary for our purposes here) see

FIG. 1. Three-layered multiplex representation of the Vickers
[55] data.

Ref. [1]. While the propagation simulations are computed on
full systems, for the detection purposes we always only use
information from a single layer, i.e., all but one layer are
hidden from the perspective of our methods at all times.

Although the idea of traveling waves in the network struc-
ture might seem to be academic and considered artificial as
being far from typically considered dynamics such as epi-
demic [59] or opinion spreading [60,61], it is essential to note
that the wave can simply model the information propagating
due to interdependences between these concepts [62]. Also in
the case of networks, certain propagation dynamics connected
to shock waves [63] or excitable nodes [64,65] have been suc-
cessfully undertaken. Therefore, our study brings very specific
applications for a variety of real-world systems.

The rest of this paper consists of three main parts followed
by a discussion. First, we briefly outline the approach intro-
duced by Aziz et al. in Ref. [36] and show its viability for
the purposes of multilayer networks in the context described
above. Second, we introduce our own approach with the use
of a Fourier transform on the time evolution of the sum of
the amplitudes in the visible part of the system. Third, we
show that with sufficient resources (i.e., observation time)
one can fully reconstruct the spectrum of the row-normalized
adjacency matrix.

FIG. 2. Illustration of a wave starting at a specific edge (left, t =
0) and then propagating through the multiplex system (right, t > 0).
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FIG. 3. Wave packet signatures (left) for various realizations of a Barabási-Albert (N = 50, m = 3) graph with five and one layers
(measured on one layer only). WPS projected onto a 2D space with PCA (center) where colours and symbols distinguish the no. of layers.
Each point is a different BA graph. PCA transformation matrix (right) showing the contributions of given WPS bins into principal components.

II. GAUSSIAN WAVE PACKET SIGNATURE (WPS)

Gaussian wave packet signature (WPS) is a methodol-
ogy developed by Aziz et al. [36] that allows to distinguish
between various types of graphs. The procedure starts by ini-
tiating an edge with a Gaussian wave packet that is completely
contained on said edge (see the left panel in Fig. 2). The edge
is chosen to be the one with the highest betweenness centrality
to assure the fastest possible spread of the wave on the graph,
although this can, of course, be relaxed in general. The choice
of the edge from which the propagation starts does not impact
either of the presented methods performance (including our
own Fourier transform-based described later). All this does
is simply speed up our testing set up, while in practice it
would even be possible to apply the methods without knowing
(or choosing) the primary edge at all. Additionally this is the
choice presented in Ref. [36], and we follow that for the sake
of continuity and ease of comparison. Then, on each integer
time we measure the amplitude in the center of every edge
2|E | times in total, where |E | is the number of edges in the
known layer (see the right panel in Fig. 2 and Appendix A for
a detailed description of the way the amplitude is calculated).
Again, the number of measurements has been selected for
the sake of comparison with Ref. [36] where such a value
had been used. The difference here is that Aziz et al. assume
knowledge of the whole graph and |E | there refers to all edges
in the system, while for us it refers only to the visible layer. We
measure the center of each edge because at integer times the
highest value is in the center. Finally, we create a histogram
with 100 bins of these measurements—this is the WPS of the
graph. Aziz et al. show that particular graph types (such as the
evolving preferential attachment graph model of Barabási and
Albert (BA) [66] or the static random graph model of Erdős
and Rényi (ER) [67], etc.) will have similar WPSs yet different
in comparison to other types (so, e.g., one can differentiate
an ER from a BA). To actually do this differentiation one
must build a classifier. In their work, a K-nearest neighbors
(K-NN) classifier was chosen. From the perspective of the
machine learning tools we use in this paper (K-NN, PCA)
each histogram bin of the WPS is a dimension in the feature
space. For our purposes, we will deviate slightly from this
procedure. Namely, to us the whole graph is not known and
the graph itself is a multiplex. Additionally, we assume that
the wave propagation is an actual process ongoing through
some network. Thus, we assume we have access to a single
layer on which a certain spread has happened that can be

modelled with a Gaussian wave packet and we suspect there
may be hidden layers in the network. The question is, can we
detect their presence?

The rest of the procedure is similar, i.e., we create a WPS
and we train a classifier on a given type of a graph (e.g., BA)
and this time the classes are the number of layers. See Figs. 3
and 4 where we compare WPSs of a five-layer BA graph
versus one-layer, and a five-layer ER graph versus one-layer,
respectively. One can clearly see that the signatures are dis-
tinct. To further illustrate this we use the principal component
analysis (PCA, see Appendix B for details) to project the
WPSs onto a 2D space (see the center pieces of Figs. 3 and
4). There, one can see that each class takes a distinct region
of space and thus we should be able to discriminate between
them. However, it is worth noting that the more layers there
are the more tightly packed the observations become, i.e.,
discriminating between a mono-layer and a pentalayer graph
is fairly easy but between a tetra- and a penta- not as much. It
is also worth noting that through the PCA we can see that the
center bins carry the most variance in the feature space (see
panels on the right in Figs. 3 and 4) and that there are certain
distinct structures visible in the higher PCs for both BA and
ER graphs.

As mentioned before, we follow Aziz et al. and also choose
the K-NN for classification (see Appendix C for a description
of the K-NN method). We build the model on various graphs
with between 1 and 5 layers (with values measured only on
one of the layers each time as explained earlier) and then test
it to see if it can recognize how many layers there are in an
unknown graph. We conducted our tests for the BA and ER
graphs (see Fig. 5 for the results of classification). For each
type of graph we simulated 500 independent realizations (100
per each number of layers) with the mean degree 〈k〉 = 6
and network size N = 50. We take 100 randomly chosen,
in a stratified manner (i.e., classes are equally represented),
realizations out of the data set—this will be the test set. On
the training set we conduct 100 rounds of training and then
testing. That is, in each round we do the training/test split,
then a 10-fold cross-validation on the training set to find the
best K parameter of the K-NN model and then use that on the
test set. We present the results in a form of box plots. In Fig. 5
we show the accuracy of the classifier for both the BA and ER.
We can see that while for the ER the results are slightly lower
than for the BA, in both cases the accuracy is still fairly high
with medians of 92 and 89 for BA and ER, respectively.
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FIG. 4. Wave packet signatures (left) for various realizations of a Erdős-Rényi (N = 50, 〈k〉 = 6) graph with five and one layers (measured
on one layer only). WPS projected onto a 2D space with PCA (center) where colours and symbols distinguish the no. of layers. Each point is
a different ER graph. PCA transformation matrix (right) showing the contributions of given WPS bins into principal components.

To additionally illustrate the point made earlier that higher
numbers of layers are more difficult to be discerned amongst
one another, we show the diagonal values of the contingency
tables from all 100 rounds for the BA (center panel of Fig. 5)
and the ER (the right panel of Fig. 5). One can clearly see that
identifying monolayer systems is practically 100% accurate
and it is the more layered systems that cause trouble for the
classifier.

While the classification results seem very promising, it
is important to note the obvious major disadvantage of this
approach. One must build a training set for it to work. With
synthetic networks (such as BA or ER graphs) it is easy to
generate as many as one wants therefore creating an extensive
training set and the limitation is purely in the computing
power. When dealing with real-world networks one often does
not simply have the ability to obtain similar enough graphs to
the one currently under observation but with added layers—
each real-world network is unique. In such a circumstance
perhaps a combination of many different synthetic networks
obtained by introducing noise to a real-world network, i.e.,
rewiring some of the links, creating perturbed versions of
the original network could suffice and other, more advanced,
classification methods than K-NN could be utilized. That,
however, is beyond the scope of this study.

III. FOURIER TRANSFORM OF
THE AMPLITUDE SIGNAL

Here we introduce a new approach to detecting layers on
quantum graphs. This completely novel way does not share

the same issues as the previous one as it does not rely on
building a classifier. Therefore, there is no need to build a
training set and deal with all other aspects of the machine
learning approach (like the choice of the classifier, tuning
hyperparameters, etc.). While obviously not without its own
problems, we believe that it is a more powerful and ex-
plainable tool while using very similar measurements as the
previous method. Similarly to the previous case we assume we
can either produce or observe a wave propagation on the graph
initiated by a Gaussian wave packet. For efficiency’s sake in
the simulations we used the edge with the highest betweenness
centrality as before, and we also measure the amplitudes at
integer times in the centers of all edges for 2|E | times. While
in the WPS method we simply follow the advice of Aziz et al.
for the count of measurements, in the approach discussed here
it is usually rather clear if enough data was collected by a
straightforward visual inspection.

Our proposition is as follows, at each integer time compute
the sum of all amplitudes in the visible part of the system
and treat it as a time-dependent signal S(t ). Transform the
signal into a frequency domain via a fast Fourier transform
(see Appendix D and [68])—Ŝ( f )—and look at the spectrum
of the signal—|Ŝ( f )|2.

A monolayer system will produce a “flat” signal S(t ),
while a multilayer one will exhibit periodic behavior due to
the energy leaking in and out of the visible layer from and
into other layers. At a sufficiently long measurement time the
signal should stabilise and become stationary as long as no
perturbation is introduced to the overall network. This transfer
of energy induces oscillations in the amplitude sum on the

FIG. 5. K-nearest-neighbors classification accuracy of the layer count for a BA and ER graph as box plots (left) based on single-layer
WPSs. Contingency table diagonal values as box plots for a BA (center) and ER (right). We simulated 400 independent realizations of a
given graph type (BA, N = 50, m = 3; ER, N = 50, 〈k〉 = 6). For each type of graph we conducted 100 rounds of a 10-fold cross-validation
to determine the K parameter in K-NN withdrawing 100 realizations (25%) for the purposes of the final evaluation. The train/test split was
random and stratified.
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FIG. 6. Sum of the amplitudes time evolution as measured on the only visible layer (left column). A fast Fourier transform of this signal
(center column) and its power spectrum (right column). Each row represents a different number of layers (1 to 5, going top to bottom).
Simulations were conducted on 20 independent realizations of a BA graph (N = 50, m = 3) per row, overlaid with transparency. Note: for the
purposes of the Fourier analysis we use signals of length 103 s.

visible layer which in turn create clear peaks in the power
spectrum, see Fig. 6 for the results from the BA graphs (and
Fig. 13 for the ER, presented in Appendix H). The left column
shows the signal S(t ), center |Ŝ( f )|2, and right |Ŝ( f )|2 in
decibels and a log-log scale. Each row has 20 independent
realizations plotted on top of each other, with transparency,
to show that these peaks are fairly consistent, and different
number of layers (first row are monolayer systems, second
row bilayer, etc.). It is quite apparent that there are visible
peaks and their count strictly corresponds to the number of
layers in the system.

These results already show the advantage of FFT over WPS
as it is simpler and does not seem to suffer from struggling to
differentiate between highly layered systems as much. Addi-
tionally, it does not require any prior knowledge or learning of

the model. It is far from flawless, however. As it is much easier
to test on real networks than WPS we applied it to three real-
world networks [55,69,70]—see descriptions in Appendix E.
The results are in Fig. 7 where one can see that while we do get
peaks in the spectrum and therefore can confidently state that
there are hidden layers, it is much less clear how many of them
there are. This is most likely due to the fact that these networks
are not as clear-cut multiplexes as the synthetic systems we
discussed earlier. These networks here have various mean
degrees in each layer and that also implies varied coupling
strength between the layers. Moreover, real-world networks
can have other characteristics that differ between the layers
such as clustering coefficients or degree distributions, and the
synthetic systems tested simply do not have this property.
However, we show in the next section that it is possible to
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FIG. 7. Sum of the amplitudes time evolution as measured on the only visible layer (left column). A fast Fourier transform of this signal
(center column) and its power spectrum (right column). Each row represents a different real-world network (as indicated by the labels—
(a) Vickers [55], (b) C. elegans [70], (c) Krackhardt [69]). Each graph is a three-layered multiplex. Note: for the purposes of the Fourier
analysis we use signals of length 103 s.

reconstruct the full spectrum of the row-normalized adjacency
matrix with this method and therefore determine the number
of layers for any system.

IV. SPECTRUM RECONSTRUCTION

In this section we show that with a sufficiently long obser-
vation it is possible to completely recover all eigenvalues of
the row-normalized adjacency matrix of the full system and
thus trivially determine the number of hidden layers.

We shift slightly from the previous sections as we no longer
take the measurements on the edges but only on the nodes.
This makes the problem less computationally intensive and
also, in our opinion, makes for a more practical case as it
might be sometimes easier to observe just the nodes’ states
(see Appendix A for details). However, the same analysis

here can be applied using edge measurements and the one
in the previous sections could be done with the node values
only—we chose otherwise as we are stemming from the work
of Aziz et al.

Similarly as before we observe the sum of amplitudes;
however, in this case it is important to have enough samples of
the signal to provide sufficient resolution in the power spec-
trum. How long one needs to observe a system will of course
depend on the intricacies (and mostly size) of the system
in question. As the propagation process is not stochastic the
time needed for observation is finite and in our experience
not unattainable. The goal is simply to have the complete
power spectrum of the signal. Then one takes note of the peaks
present—we opted for an automated approach using a wavelet
transform [71] (see Appendix F). These peaks in the power
spectrum correspond to the eigenvalues of the Hamiltonian
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FIG. 8. Eigenvalues reconstruction from the Fourier spectrum of the nodes’ amplitudes sum signal. (Left) an example of a complete graph
multiplex with a layer size N = 20 and number of layers K = 9. As it is a special case of an extremely symmetric adjacency matrix there
are only as many eigenvalues as there are layers. (Center) a Barabási-Albert graph with N = 50, m = 3, K = 4 has a much more complex
spectrum and so does a real-world network (right)—Vickers [55]—for both of which we attain an almost perfect match between the recovered
and actual eigenvalues. The dashed diagonal line is a visual aid showing “y = x.”

(divided by 2π ) which in turn directly relate to the eigenvalues
of the row-normalized adjacency matrix—Â—such that each
eigenvalue λ /∈ {−1, 1} of Â has the corresponding Hamilto-
nian eigenvalues arccos(λ) and 2π − arccos(λ). This leads us
to two important results, (i) the number of frequencies present
in the power spectrum # f is two less than the count of eigen-
values of the adjacency matrix and since we know the layer
sizes (i.e., node count per layer—N) as a multiplex structure
was assumed, the number of layers K = (# f + 2)/N ; (ii) we
can, in fact, recover almost exactly all eigenvalues of Â as
cos(2π fi ) for each frequency peak fi in the power spectrum.

We present the result of the full spectrum reconstruction in
Fig. 8 for a complete, BA and real-world graph. We chose the
complete graph as it has a special case due to the extreme sym-
metries of the multiplex adjacency matrix and thus the number
of peaks directly corresponds to the number of layers unlike
more complex cases where the eigenvalues’ multiplicities be-
have differently. Of course, this does imply that if due to some
particular structures in a given system some eigenvalues have
high multiplicity, the simple formula K = (# f + 2)/N will
not hold and system specific adjustments would be needed.
The reconstructed eigenvalues give an almost perfect match
with those of the row-normalized adjacency matrix. Note that
the performance here is mostly limited by the peak detection
method and the resolution in the frequency domain, i.e., the
information is there in the spectrum, the only challenge is to
recover it efficiently.

FIG. 9. Full graph duplex with N = 100 nodes in each layer:
(left) the sum of amplitudes over time in a single layer; lines are
guidance to eye connecting theoretical predictions from Eq. (G29)
that are exactly covered with points obtained from numerical sim-
ulations, (right) the power spectrum of the signal shown in the left
panel [the series consists of 10 000 elements]. The vertical line is the
frequency equal to ω2N−1/2π = (N − 2)/(2πN ).

To explicitly show the correspondence between the eigen-
values of the Hamiltonian and the peaks of the power
spectrum we follow in detail the full graph case, considering
the simplest configurations—a monoplex and a duplex net-
work (see Appendix G). Our exact analytical solutions prove
that for the duplex network of N nodes on each layer, among
2N eigenvalues that characterize the system we have only four
distinct ones λ = {− 2

N , 0, N−2
N , 1}, the first two having multi-

plicity of N − 1. Figure 9 shows that in such a system one
recovers just one eigenvalue, i.e., λ = N−2

N directly connected
to periodicity of the sum of observed amplitudes on the nodes.
However, observing a single node allows for the recovery of
the full spectrum (see Appendix G and Fig. 12 for details).

V. DISCUSSION

In this paper we explore the paradigm of quantum graphs as
a potential tool for studying multilayer networks. The particu-
lar problem we are interested in is determining whether there
are hidden layers of communication in the system, that we
cannot fully observe, by taking measurements of the ongoing
dynamics in a single layer that we can observe. We proposed
and tested two methods—one based upon a Gaussian wave
packet signature (WPS) that was introduced previously by
Aziz et al. to discriminate between various types of monolayer
systems, and the other on observing the power spectrum of the
wave amplitudes.

WPS is a method where a Gaussian wave packet, either
observed or purposefully produced, initiates the propagation
from a single edge and we take the measurements of the
amplitudes at every edge at integer times for a sufficiently
large number of times. Such data is then histogrammed to
produce the signature. This signature has the property of being
similar within a category of graphs while varied without.
That is, e.g., signatures of the ER graphs are similar to one
another but different from the BA graphs, or for our purposes,
monolayer graphs have different signatures than multilayer
ones etc. This in turn can be utilized by machine learning
models, such as K-nearest neighbors, to build a model capable
of discriminating between graphs with different numbers of
layers. This approach suffers from several issues, however.
Most prominently, it requires a training sample. This can be
very difficult to obtain in real-world scenarios and while per-
haps a well varied synthetic data set could suffice, at this point
it is mere speculation. The choice of an appropriate machine
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learning scheme and its construction is also a nontrivial task.
Additionally, as the number of layers grows, differentiating
between such networks becomes increasingly difficult since
the signatures become less varied.

We also introduce an approach that utilizes a discrete
Fourier transform (DFT) instead of a machine learning model.
Instead of histogramming the measurements as before, one
computes the sum of the amplitudes on the visible layer at
each integer time. This constitutes a signal that at sufficient
timescales should become stationary. In a monolayer system
the signal will simply be a constant value due to energy
conservation. However, should other layers be present in the
system, from the perspective of the monolayer there will be
oscillations as the energy will flow out and back into it. We
can inspect those oscillations with the use of the DFT and look
at the power spectrum. The spectrum will exhibit characteris-
tic peaks absent in the monolayer networks. The number of
these peaks strictly corresponds with the number of layers in
the synthetic scenarios tested. This approach is significantly
advantageous over the WPS as it does not require building
a learning sample and is in general much simpler. Further-
more, it does not really suffer in terms of differentiating, e.g.,
tetra- from pentalayer systems, etc. Although it shows much
promise in synthetic scenarios, it does not perform as well in
real-world networks. It does indeed indicate clearly that there
are hidden layers but the number of them can be rather tricky
to discern. This is perhaps not that surprising considering that
real-world networks are much more “messy” in some way
than synthetic examples. Layers vary in size, degree distri-
bution, clustering coefficients and so on and so forth, while,
e.g., a pentalayer BA graph shares all characteristics between
layers even though the exact connections are different. Those
and other features of real-world systems could also affect the
coupling amongst the layers that most certainly will affect the
nature of the amplitude signal.

In such cases (i.e., where peak count after a brief observa-
tion is not enough) we show that simply a longer observation
time is required. As the signal is not stochastic and oscilla-
tion periods are finite it does not seem unfeasible to observe
enough of the signal to determine its power spectrum with
sufficient resolution. Then each peak in the spectrum corre-
sponds to the Hamiltonian eigenvalues that in turn are related
to the eigenvalues of the row-normalized adjacency matrix
via a simple formula. With this we showed that it is indeed
possible to recover all these eigenvalues and thus trivially
determine the number of layers in the system.

It is worth underlining here that a row-normalized adja-
cency matrix is, in fact, the so-called right stochastic matrix
of a given graph and while it goes beyond the scope of this
paper, there exist methods of reconstructing the whole matrix
from its spectrum [72–76] which we suspect should be quite
feasible considering we already assume knowing part of it
(one layer and interlayer structure). That in turn could also
open the door to the adjacency matrix itself. Recovering all
the connections exactly may not be possible; however, hav-
ing a matrix isospectral to the adjacency matrix is also very
valuable as having this spectrum allows for determining many
important properties of the system [77,78].

The issue of—how long the observation time should be—
still remains, however. In the experiments presented in this

paper we needed more observation points using the Fourier
approach than with the machine learning one. In the real-
world example used in this article the necessary measurement
time to get the almost perfect match seen at the right panel
of Fig. 8 is fairly substantial—we simulated the system for
11 520 time steps to be exact. While lower values would not
mean no match at all, the low power components do become
less discernible. This is due to the fact that some frequencies
may be difficult to observe because of the particular intricacies
of a given system, while some eigenvalues are going to be
detectable more easily since more power is associated with
them. To observe all frequencies, in an idealised scenario, we
should observe at least two periods of the signal (one could
also possible suffice but we shall assume two). Therefore,
the total observation time should be 4π/ arccos(λ2), where
λ2 is the eigenvalue with the second largest magnitude of
the stochastic matrix. In general, i.e., for any system, for any
stochastic matrix, it is not possible to give one formula for the
behavior of λ2 [79]. In special cases it is possible to provide
an analytical expression and, e.g., for a full graph duplex
we would need 4π/ arccos[(N − 2)/N] measurements which
is clearly much fewer than in case of the machine learning
approach—N (N − 1) (note that it does not hold for networks
like Vickers). The latter has also been rather arbitrarily chosen
by Aziz et al., and furthermore, one could also ask how
big the training test must be to achieve a certain level of
accuracy. This, similarly to assessing the necessary number
of measurements, is rarely, if ever, possible to be known a
priori. This points to an another possible advantage of our
Fourier approach (despite requiring more observation time in
some systems), which is that since we do not require training
of the model we can, in fact, start recovering the spectrum
“online,” i.e., with very few measurements and simply keep
adding them and improving the results as the time passes. As
we continue our measurements it will also usually become
clear which frequency peaks are stable and whether all of them
are already expressed via a visual inspection of the signal or
the spectrum.

We find that both methods presented in this paper—the
WPS and FFT—show enough success in these simple sce-
narios we tested to merit further study, such as in noisy (or
stochastic) systems, for instance. They each have their pros
and cons that we hopefully managed to outline clearly as well
as the potential room for improvement of their applicability
and understanding of waves on quantum graphs alike.

While we find our approach to be very promising it is also
important to outline the potential further study areas as we
could not possibly have covered everything in this article. It
would be of substantial interest to investigate how the de-
scribed system behaves when distinct community structures
(as in, e.g., a stochastic block model [80]) are present. We sus-
pect that it is feasible to detect the communities themselves,
however, discerning these communities from layers can pose
an additional challenge. Furthermore, we have tested a par-
ticular form of multilayer networks with distinct symmetries,
yet other, more complicated types exist, such as networks of
networks [81] and multilayer graphs with complex interlayer
connections [5]. These are especially interesting and consider-
ably more difficult as the interlayer structures themselves can
vary wildly. Finally, there is also a matter of node membership
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in specific layers. Depending on the particulars of the studied
real-world scenarios it can be of interest to be able to ascertain
where a given node belongs. We suspect that this may also be
possible, as from our experience single-node time series can
also contain a substantial amount of information. We hope to
address these issues in our future work.
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APPENDIX A: CALCULATION OF THE WAVE
AMPLITUDE

1. Overall description

The general solution of the wave equation on a graph G,
provided that the initial condition is a Gaussian packet fully
localised on a given edge f is derived and presented in detail
by Aziz et al. in Ref. [36]. Here, we rewrite it in terms
of integer times, i.e., t = 0, 1, 2, . . . so that it fits the case
examined in the main text. We additionally assume that the
graph is unweighted, undirected and nonbipartite. In such a
setting, we consider an arbitrary edge e = {u, v} that connects
two vertices u and v, and can be associated with a variable
xe ∈ [0, 1] that represents the coordinate along such an edge.
Then the amplitude u of the wave in the middle of the edge e

can be expressed as

u(e, f , t ) = u1(e, f , t ) + u5(e, f , t ) + 1

|E | , (A1)

where |E | is the number of edges in the graph and u1 and u5

are defined as follows:

u1(e, f , t ) =
∑
ω∈�

C(e, ω)C( f , ω) cos

(
B(e, ω) + 1

2
ω

)

× cos

[
B( f , ω) + ω

(
1

2
+ t

)]
,

u5(e, f , t ) = 2 cos(πt )
∑

i

Cπ (e, i)Cπ ( f , i). (A2)

In the above equations ω, C(e, ω), and B(e, ω) come from
the edge-based eigenvalues and eigenfunctions, which are,
respectively, ω2 and φ(e, xe) = ±C(e, ω) cos(B(e, ω) + ωxe)
of the row-normalized adjacency matrix Â of the graph
G. Assuming that we know the vertex-based eigenvector-
eigenvalues pairs (g(v), λ) of the matrix Â we can express
C(e, ω) and B(e, ω) as

C(e, ω)2 = g(v, ω)2 + g(u, ω)2 − 2g(u, ω)g(v, ω) cos ω

sin2 ω
,

tan B(e, ω) = g(v, ω) cos ω − g(u, ω)

g(v, ω) sin ω
, (A3)

while ω = arccos λ. The sign of C(e, ω) needs to chosen to
match the phase, in practice it can be achieved by calculating
sgn[g(v)]|C(e, ω)|. It is always true that one of the eigenvalues
is equal to 1 (consequently, ω = 0): this value is responsible
for the constant term 1/E in Eq. (A2) so it is not included in
further calculations, i.e., it does not belong to the � set in the
function u1. Although φ(e, xe) are orthogonal, they still need
to be normalized. To fulfill this condition for each ω ∈ � we
calculate the normalization factor ρ(ω),

ρ(ω) =
√∑

e

C(e, ω)2

{
1

2
+ sin[2ω + 2B(e, ω)] − sin[2B(e, ω)]

4ω

}
, (A4)

where e runs over all edges in the graph G. Then, to obtain a
properly normalized value of C(e, ω) one needs to divide it by
ρ(ω).

For calculations of Cπ one first needs to transform the
original undirected graph G into a directed one D(G) by
simply replacing each edge e = {u, v} with two arcs (u, v)
and (v, u). In the next step we create a structure called the
oriented line graph (OLG), constructed by substituting each
arc of D(G) by a vertex (such vertices are connected if the
head of one arc meets the tail of another arc). Using the
adjacency matrix Aolg of the OLG we solve the eigenproblem

Aolggolg = λolggolg and then restrict ourselves to λolg = −1
and the corresponding eigenvectors (there should be exactly
|E | − |V | linearly independent solutions) that form Cπ .

Let us note that if we decide to measure the wave amplitude
on the nodes instead of the edges the formula is particularly
simple as then

un(e, f , t ) = u1(e, f , t ) + 1

|E | , (A5)

and

u1(e, f , t ) =
∑
ω∈�

C(e, ω)C( f , ω)

{
cos

[(
t − 1

2

)
ω − B(e, ω) + B( f , ω)

]
+ cos

[(
t + 3

2

)
ω + B(e, ω) + B( f , ω)

]}
. (A6)
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FIG. 10. (a) An example of a simple graph consisting of |V | = 4
nodes and |E | = 5 edges. (b) Oriented line graph obtained from the
graph depicted in panel (a).

It follows that in such a case we do not have to create OLG,
and thus the calculations are both less time and resources
consuming.

2. An example

To make the above concise description clear, let us follow
a very simple example of a graph shown in Fig. 10(a). In such
a case, knowing the adjacency matrix A where Ai j = 1 if the
nodes i and j share a link and Ai j = 0; otherwise, we can write

the row-normalized adjacency matrix Âi j = Ai j/
∑

k Ak j as

Â =

⎛
⎜⎜⎜⎝

0 1
3

1
3

1
3

1
2 0 0 1

2
1
3

1
3 0 1

3
1
2 0 1

2 0

⎞
⎟⎟⎟⎠. (A7)

Solving the eigenproblem Âg = λg one obtains in this case
the following eigenvectors

g =

ω1 ω2 ω3 ω4

1

2

3

4

⎛
⎜⎜⎜⎜⎜⎝

√
2
13

√
2

2 0 − 1
2

− 3√
26

0 −
√

2
2 − 1

2√
2
13 −

√
2

2 0 − 1
2

− 3√
26

0
√

2
2 − 1

2

⎞
⎟⎟⎟⎟⎟⎠

(A8)

and the related eigenvalues λ = (− 2
3 ,− 1

3 , 0, 1). Each column
of g corresponds to a different ω and the consecutive rows are
the node numbers. As mentioned before, λ = 1 is not taken
into account in further calculations, so ω = {ω1, ω2, ω3} =
{arccos(− 2

3 ), arccos(− 1
3 ), π

2 }. Now, having calculated g and
ω we are able to obtain C(e, ω and B(e, ω) as described in
Eq. (A3). To simplify the outcome we show it as matrices with
rows denoted by the graph edges and columns—by ω values:

C =

ω1 ω2 ω3

e12

e13

e14

e21

e23

e31

e32

e34

e41

e43

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 3
√

26
26 − 3

4

√
2

2

− 1
13

√
6
√

26 −
√

3
2 0

− 3
√

26
26 − 3

4

√
2

2

3
√

26
26

3
4 −

√
2

2

3
√

26
26

3
4 −

√
2

2

− 1
13

√
6
√

26
√

3
2 0

− 3
√

26
26

3
4

√
2

2

− 3
√

26
26

3
4

√
2

2

3
√

26
26

3
4

√
2

2

3
√

26
26

3
4

√
2

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

B =

ω1 ω2 ω3

e12

e13

e14

e21

e23

e31

e32

e34

e41

e43

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

arctan
√

5
2 − arctan

√
2

4
π
2

− arctan
√

5 arctan
√

2
2 0

arctan
√

5
2 − arctan

√
2

4 −π
2

0 −π
2 0

0 π
2 0

− arctan
√

5 arctan
√

2
2 0

arctan
√

5
2 − arctan

√
2

4
π
2

arctan
√

5
2 − arctan

√
2

4 −π
2

0 −π
2 0

0 π
2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(A9)

Each column of the matrix C needs to by divided by a corresponding value of ρ(ω) given by Eq. (A4), i.e., in the case of the
exemplary graph ρ = { 15

13 , 3
2 , 1}. In this way we possess the full information needed to evaluate values of u1.

Figure 10(b) presents an oriented line graph obtained from the graph shown in Fig. 10(a), its adjacency matrix Aolg being
simply

Aolg =

e12 e13 e14e21 e23 e31 e32 e34 e41 e43

e12

e13

e14

e21

e23

e31

e32

e34

e41

e43

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 1
0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 1 0 0
1 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0
1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(A10)
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We deliberately refrain from showing the full matrix golg of eigenvectors of Aolg as in our case |E | − |V | = 1 so there is exactly
one eigenvector corresponding to λ = −1, namely,

Cπ =
e12 e13 e14 e21 e23 e31 e32 e34 e41 e43(√

2
4 0 −

√
2

4

√
2

4 −
√

2
4 0 −

√
2

4

√
2

4 −
√

2
4

√
2

4

)
. (A11)

It is now easy to check that if we substitute Eq. (A2) with
the calculated matrices C, B, ω and Cπ , and assume that the
wave is initially localised on the edge f = {1, 2}, and t = 0,
the amplitude u = 1 for e = f = {1, 2} and u = 0 in any other
case, as expected. The first 10 steps of the propagation can be
depicted in Fig. 11 (the wave moves toward v = 2), showing
both the amplitudes on the edges [Fig. 11(a)] as well as the
nodes [Fig. 11(b)].

APPENDIX B: PRINCIPAL COMPONENT ANALYSIS

The principal components are a sequence of projections of
the set of data in Rp, mutually uncorrelated and ordered in
variance in Rq where q � p [82]. In other words we trans-
form the feature space such that it becomes orthogonal and
each consecutive feature is aligned in the direction maximis-
ing the variance of the data and has more variance than the
last. We do that by minimising the reconstruction error, i.e.,
solving

min
Vq

N∑
i=1

∥∥(xi − x̄) − VqVT
q (xi − x̄)

∥∥2
, (B1)

where Vq is a p × q matrix with q orthogonal unit vectors
as columns. A p × p matrix VqV T

q is the transformation ma-
trix that maps each p-dimensional observation into its q-rank
reconstruction. In our case specifically p = q = 100 and the
examples of transformation matrices are represented as heat-
maps in Figs. 3 and 4. In general the PCA is known to be a
quick and easy method to (i) perform dimensional reduction,

FIG. 11. Wave propagation on a graph shown in Fig. 10(a) for the
first 10 time steps (initial condition: Gaussian wave fully contained
on the edge f = {1, 2} moving toward the vertex v = 2): (a) the
amplitudes on the edges, (b) the amplitudes on the nodes.

(ii) help to visualise high-dimensional data, and (iii) aggregate
high-dimensional data into a possibly single measure (see,
e.g., Refs. [83–85]).

APPENDIX C: K-NEAREST NEIGHBORS

In the K-NN classification method the class estimation
ŷ(x) of a given sample x is taken as a majority vote amongst
the members of NK (x)—the neighborhood of x defined as K
points closest to x [82,86]. To determine which points are
closest a metric must be chosen and for the purposes of this
paper a Euclidean distance was used. In our case specifically,
each observation is a graph represented by its WPS, i.e., each
graph is a point in a 100-dimensional space.

APPENDIX D: FOURIER ANALYSIS

Fourier analysis allows us to convert a given time-
dependent signal f (t ) onto a frequency domain, into f̂ (ω),
via a Fourier transform and thus acquire the frequency dis-
tribution of said signal as it becomes a linear combination of
the trigonometric functions, each corresponding to a particular
frequency. A discrete Fourier transform is, as name suggests, a
discrete version where the integration is replaced by a summa-
tion [87]. Therefore, we consider a problem where one wants
to express f (t ) as a complex Fourier series:

f̂ (ω) =
N−1∑
k=0

f (k)e2π iω/N . (D1)

This procedure, as it stands, would require N2 operations
(where each operation is a complex multiplication followed by
a complex addition), however, Cooley and Tukey in Ref. [68]
presented a method known as the fast Fourier transform that
allows us to do it in less than 2N log2 N .

APPENDIX E: REAL-WORLD NETWORKS

We use three real-world networks to test the Fourier trans-
form approach.

Vickers et al. [55] collected data from 29 seventh-grade
students from Victoria, Australia. Students were asked to
nominate classmates in several categories, three of which were
used to construct this 3-layer network. These three categories
were determined by questions—Who do you get on with in
the class? Who are your best friends in the class? Who would
you prefer to work with? The graph has 29 nodes and 740
edges in total.

Krackhardt [69] took a record of relationship between
managers in a high-tech company. The graph has 21 nodes
and 312 edges in a three-layer form. Each layer represents a
relationship (advice, friendship, “reports to”).
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Chen et al. [70] presented a Caenorhabditis elegans multi-
plex connectome network with 3 layers, 279 nodes and 5863
edges. Each layer corresponds to a different synaptic junction:
electric, chemical monadic, and polyadic.

APPENDIX F: PEAK DETECTION USING
A WAVELET TRANSFORM

A wavelet transform is an analogous procedure to the
Fourier transform in the sense that we represent a given signal
as an orthonormal series [88]. In case of Fourier those are
sine and cosine, while in the wavelet those are the eponymous
wavelets. A wavelet is a particularly chosen function that is
localised, i.e., it has a finite width, and its family can compose
an orthonormal basis for the signal—s(t ):

C(a, b) =
∫
R

s(t )
1√
a
ψ

(
t − b

a

)
dt, a ∈ R+, b ∈ R.

(F1)
In our case the wavelet—ψ—was a Morlet (also known as the
Mexican hat) one as per the procedure described in Ref. [71]
which (simplified) is as follows: perform a continuous wavelet
transform (CWT) on the signal, identify the ridge lines by
linking local maxima of CWT at each scale level, identify
the peaks based on the ridge lines with three rules (quoted
verbatim): “(1) The scale corresponding to the maximum am-
plitude on the ridge line,which is proportional to the width
of the peak, should be within a certain range; (2) the SNR

should be larger than a certain threshold; (3) the length of
ridge lines should be larger than a certain threshold.” Here
SNR is a signal-to-noise ratio.

APPENDIX G: EXACT ANALYTICAL SOLUTIONS OF
WAVE AMPLITUDES IN MONOPLEX AND DUPLEX

FULL GRAPHS

1. Monoplex full graph

Here we will consider a wave propagation on the nodes of
a full graph (monoplex) topology, i.e., each node is connected
to any other in the network, therefore forming a clique of N
nodes. In such a case the adjacency matrix A is a constant
matrix filled with ones except for the diagonal which is filled
with zeros.

It is well known that the spectrum of the full graph consists
of N − 1 with multiplicity 1 and −1 with multiplicity N −
1. As we consider the row-normalized matrix which can be
characterized as Â = 1

N−1 A we have

λ = {λ1, . . . , λN−1, λN } =
{
− 1

N − 1
, . . . ,− 1

N − 1
, 1

}
,

(G1)
and, consequently, ωi = arccos(− 1

N−1 ) for i = 1, . . . , N − 1.
As the full graph is (N − 1)-regular then e, i.e., all-ones vec-
tor, is an eigenvector of A corresponding to λN , while the
other vectors can be written as ei − e j for i 	= j, where ei is
the vector with 1 in position i and 0 elsewhere, e.g.,

g =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 −1 −1 ... −1 −1 1

0 0 0 ... 1 0 1
...

...
...

...
...

... 1

0 0 1 ... 0 0 1

0 1 0 ... 0 0 1

1 0 0 ... 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (G2)

After orthnormalizing g with the Gram-Schmidt procedure and renumbering the matrix so that the first row becomes the last
one we obtain the following N − 1 × N eigenvector matrix gM :

gM =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0
√

N−1
N

...
...

...
...

... 0
√

N−2
N−1 − 1√

(N−1)N

...
...

...
... 0

√
j

j+1 · · · ...

...
...

... 0 ... − 1√
j( j+1)

· · · ...

...
... 0 ... · · · ... · · · ...

... 0
√

3
4 · · · ... − 1√

j( j+1)
· · · − 1√

(N−1)N

0
√

2
3 − 1√

3·4 · · · ... − 1√
j( j+1)

· · · − 1√
(N−1)N√

1
2 − 1√

2·3 − 1√
3·4 · · · ... − 1√

j( j+1)
· · · − 1√

(N−1)N

− 1√
1·2 − 1√

2·3 − 1√
3·4 · · · ... − 1√

j( j+1)
· · · − 1√

(N−1)N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (G3)
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TABLE I. Coefficients C and B for the full graph case; in the third row k = 2, . . . , N .

Edge e C(e, ωN−2 ) B(e, ωN−2) C(e, ωN−1) B(e, ωN−1)

e12

√
N−1

N − π

2

√
N−1

N 0

e1k

√
N−1

N
1

N−2
π

2

√
N−1

N 0

e21

√
N−1

N − arctan[ 1√
N (N−2)

] −
√

N−1
N arctan[

√
N (N − 2)]

Note that we deliberately omit the eigenvector correspond-
ing to ωN which consists of N values 1/

√
N gathered in the

column vector

CM =
(

1√
N

, . . . ,
1√
N

)T

, (G4)

as it does not play any role in further calculations.
Let us now assume, that the wave is initially contained on

edge f = euv . We are bound to obtain two expressions: one
showing the amplitude of the wave at the node v which can be
simply calculated as un( f , f , t ) and the other one, showing the
sum of the amplitudes for all nodes which can be expressed as

uall = un(evu, f , t ) +
∑

i=1,..,N,i 	=u

un(eui, f , t ). (G5)

We will further assume, without losing any generality, that
f = e12. Such a setting greatly simplifies further calculations
of un as in this case the only nonzero inputs come from eigen-
values ωN−2 and ωN−1. For any other ωi with i = 1, . . . , N −
3 we have C( f , ωi ) = 0. Respective coefficients C and B for
ωN−2 and ωN−1 are gathered in Table I

As mentioned in Appendix A, to have a proper form of
the eigenfunction φ one needs to calculate the normalization
factor ρ(ω). Next we show how to obtain ρ(ωN−1): Eq. (A4)
states that it is necessary to sum of over all the edges in the
networks; however, in the case of ωN−1 there are only two

different terms. The first one ρ1 comes from (N − 1) pairs
e12, e13, . . . , e1N , the second one ρ2 from all the other 1

2 (N −
1)(N − 2) pairs, i.e., e23, . . . , e2N , e34, . . . , eN−1N , so

ρ(ωN−1) =
√

(N − 1)ρ1 + 1
2 (N − 1)(N − 2)ρ2. (G6)

The values of C and B for ρ1 are shown in Table (I)—taking
into account that B = 0, the value of ρ1 simplifies to

ρ1 = N − 1

N

[
1

2
+ sin

[
2 arccos

(− 1
N−1

)]
4 arccos

(− 1
N−1

)
]
. (G7)

Substituting sin(2 arccos x) with 2x
√

1 − x2 we arrive at

ρ1 = N − 1

N

[
1

2
−

2
√

N (N−2)
(N−1)2

4 arccos
(− 1

N−1

)
]
. (G8)

In the case of ρ2 the values C and B can be written as

C(eik, ωN−1) = −
√

2

N (N − 2)
, (G9)

B(eik, ωN−1) = − arctan

√
N

N − 2
, (G10)

for i = 2, . . . , N − 1 and k = i + 1, . . . , N which results in
the following form of ρ2:

ρ2 = 2

N (N − 2)

⎧⎨
⎩1

2
+

sin
[
2 arccos

(− 1
N−1

)− 2 arctan
√

N
N−2

]+ sin
(
2 arctan

√
N

N−2

)
4 arccos

(− 1
N−1

)
⎫⎬
⎭. (G11)

Here, making use of the fact that arccos x = 2 arctan
√

1−x2

1+x we arrive at

ρ2 = 2

N (N − 2)

[
1

2
+ 2

√
N (N−2)
N−1

4 arccos
(− 1

N−1

)
]
. (G12)

After substituting Eq. (G6) with ρ1 and ρ2 given by Eqs. (G8) and (G12), and performing some short algebra we arrive simply at

ρ(ωN−1) =
√

N − 1

2
. (G13)

With similar calculations it possible to show that ρ(ωN−2) = ρ(ωN−1) (in fact, this the case for any ωi other than ωN ).
We can now use the above calculated values of C, B, and ρ to express the wave amplitude at the nodes of the full graph by

the means of Eq. (A6) [note that to simplify the equation we use the transformation of time t → t + 1
2 , thus t = 0 means that
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TABLE II. Coefficients C and B for the duplex full graph case; in the third row k = 2, . . . , N .

Edge e C(e, ωN−2) B(e, ωN−2 ) C(e, ωN−1) B(e, ωN−1)

e12
N√

2(N−1)(N+2)
π

2 −
√

N2−2
2(N−1)(N+2) − arctan( 1

N−1

√
N−2
N+2 )

e1k
N

N−2
1√

2(N−1)(N+2)
− π

2 −
√

N2−2
2(N−1)(N+2) − arctan( 1

N−1

√
N−2
N+2 )

e21 − 1√
2(N−1)(N+2)

− arctan( 2√
N2−4

)
√

N2−2
2(N−1)(N+2) arctan[(N + 1)

√
N−2
N+2 ]

the wave has arrived at the first node]. We shall start with un(e12, e12, t ) as the simplest case:

un(e12, e12, t ) =
∑

i={N−2,N−1}

C2(e12, ωi )

2ρ2(ωi )
{cos(ωit ) + cos[(t + 2)ω + 2B(e12, ωi )]} + 1

E

= 1

2ρ2(ωN−2)

N − 1

N
{cos tωN−2 + cos[(t + 2)ωN−2 − π ]}

+ 1

2ρ2(ωN−1)

N − 1

N
{cos tωN−1 + cos[(t + 2)ωN−1]} + 2

N (N − 1)
. (G14)

Making use of Eq. (G13) and the fact that cos(x − π ) = − cos(x) as well as denoting ωN−2 = ωN−1 = ω we arrive simply at

un(e12, e12, t ) = 2

N
cos(tω) + 2

N (N − 1)
, (G15)

with ω = arccos(− 1
N−1 ). In the same manner one can show that

un(e1k, e12, t ) = 1

N (N − 2)
{(N − 3) cos(tω) + (N − 1) cos[(t + 2)ω]} + 2

N (N − 1)
(G16)

for k = 3, . . . , N and

un(e21, e12, t ) = − 2

N (N − 1)
{cos(tω) +

√
N (N − 2) sin[(t + 2)ω]} + 2

N (N − 1)
. (G17)

In this way, Eq. (G15)–(G17) fully determine the wave am-
plitude at every node in the considered monoplex full graph.
They can now be put into Eq. (G5) to show that

uM
all(t ) = 2

N − 1
, (G18)

which proves that the sum of the node amplitudes is constant
for any value of t .

2. Duplex full graph

In this part we consider a full graph duplex, i.e., a net-
work consisting of two cliques (full graphs) of N nodes each
connected in such a way that the node i from the first clique
links with the node i + N from the second one (i = 1, . . . , N).
Assuming that AN is an N × N adjacency matrix of a full
graph (as in the previous section) and IN is an N × N identity
matrix, we can describe the topology of a full graph duplex
with its 2N × 2N adjacency matrix Ad ,

Ad =
(

AN IN

IN AN

)
. (G19)

Owing to the symmetry of the system (each node has
exactly N neighbors—N − 1 in the layer it belongs to and one
that connects it to the second layer) the row-normalized matrix
can be characterized simply as Âd = 1

N Ad .

In such a setting we can obtain the following orthonor-
malized 2N × 2N matrix of the eigenvectors for the duplex
network

gD = 1√
2

(−gM gM CM CM

gM gM −CM CM

)
, (G20)

where gM and CM are the matrices given by Eqs. (G3) and
(G4), and the corresponding set of 2N eigenvalues is

λ = {λ1, . . . , λN−1, λN , . . . , λ2N−2, λ2N−1, λ2N }

=
{
− 2

N
, . . . ,− 2

N
, 0, . . . , 0,

N − 2

N
, 1

}
,

(G21)

and, consequently, ω1 = · · · = ωN−1 = arccos(− 2
N ), ωN =

· · · = ω2N−2 = π
2 , ω2N−1 = arccos( N−2

N )
As in the previous case we assume that the wave is ini-

tially placed on the edge f = e12 and our goal is to find the
wave amplitudes on each of the nodes 1, · · · , N , as well as
the total amplitude on a given layer. Again, the choice of
the initial edge is a direct consequence of the structure of
gD as it restricts the set of eigenvalues needed to calculate
un to ωN−2, ωN−1, ω2N−3, ω2N−2, and ω2N−1—all others re-
sult in C( f , ω) = 0. The values of C and B necessary to
compute un(e12, e12, t ), un(e1k, e12, t ) for k = 2, . . . , N and
un(e21, e12, t ) obtained from gD are summed up in Tables II
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TABLE III. Coefficients C and B for the duplex full graph case (cntd).

Edge e C(e, ω2N−3) B(e, ω2N−3) C(e, ω2N−2) B(e, ω2N−2) C(e, ω2N−1) B(e, ω2N−1)

e12

√
N−2

2(N−1) − π

2

√
(N−1)2+1
2N (N−1) arctan( 1

N−1 ) −
√

1
2(N−1) − arctan[

√
1

(N−1) ]

e1k

√
1

2(N−2)(N+1)
π

2

√
(N−1)2+1
2N (N−1) arctan( 1

N−1 ) −
√

1
2(N−1) − arctan[

√
1

(N−1) ]

e21

√
N−2

2(N−1) 0 −
√

(N−1)2+1
2N (N−1) arctan(N − 1) −

√
1

2(N−1) − arctan[
√

1
(N−1) ]

and III. Following similar calculations as in the monoplex case
one can show that the normalization factor is

ρ(ωN−2) = ρ(ωN−1) = ρ(ω2N−3)

= ρ(ωN−2) = ρ(ω2N−1) =
√

N

2
. (G22)

Using the above-calculated values of C, B, and ρ it is
possible to give exact solutions for the amplitude at any node
v as

un(euv, e12, t ) = 1

N2

[
1 +

∑
i

(
cuv

i cos ωit + suv
i sin ωit

)]
,

(G23)
where

ω = {ω1, ωN , ω2N−1}

=
{

arccos

(
− 2

N

)
,
π

2
, arccos

(
N − 2

N

)}
, (G24)

and the respective coefficients for un(e12, e12, t ) are given by

c12 = {N − 1, N − 1, 1},

s12 =
{
−
√

N − 2

N + 2
, 1,− 1√

N − 1

}
, (G25)

while in the case of un(e1k, e12, t ), k = 2, . . . , N they are

c1k = {−1,−1, 1},

s1k =
{√

N + 2

N − 2
, 1,− 1√

N − 1

}
, (G26)

and for un(e21, e12, t ), k = 2, . . . , N we have

c21 = {−1,−1, 1},

s21 =
{
−(N + 1)

√
N − 2

N + 2
,−(N − 1),− 1√

N − 1

}
. (G27)

Finally, by calculating

uD
all(t ) = un(e12, e12, t ) + (N − 2)un(e1k, e12, t )

+ un(e21, e12, t ), (G28)

we arrive at the expression giving the sum of amplitudes over
all nodes in a single layer in the duplex full graph which reads

uD
all(t ) = 1

N

[
1 + cos (tω2N−1) − 1√

N − 1
sin (tω2N−1)

]
.

(G29)

Equation (G23) indicates that in the case of a single node
all three eigenvalues arccos(− 2

N ), π
2 and arccos( N−2

N ) can be
recovered by observing the wave amplitude over time at such
a node. Indeed the outcomes of the power spectrum of numer-
ical implementation of the wave propagation algorithm shown
in Fig. 12 confirm this claim. It should be noted, though, that
once N is sufficiently large, two eigenvalues arccos(− 2

N ) and
π
2 will tend to merge and N−2

N shall approach 1, giving in
result two frequencies: 1/4 and 0. However, Eq. (G23) clearly
shows that if the sum of the amplitudes in a single layer is
observed then we are able to recover only one eigenvalue,
namely ω = arccos( N−2

N ), this fact is depicted in Fig. 9 in the
main text.

APPENDIX H: AMPLITUDE SIGNAL ON ER GRAPH

As discussed in detail in the main text, it is possible to
observe the oscillations in the known layer induced by the
existence of other (unknown) layers. The exact nature of
these oscillations depends on the underlying structures of the
whole graph and while there is some visible variation on the
ER graph as compared to the BA model (see Fig. 13 below
and Fig. 6 in the main text). This is similar to the case of
WPS—see Figs. 3 and 4 in the main text. Qualitatively these
results only further support what can already be seen in Fig. 6,
i.e., that clear, discernible, and consistent peaks in the power
spectrum can be detected.

FIG. 12. Full graph duplex with N = 100 nodes in each layer:
(left) the amplitude at the node v = 2 over time; lines are guidance
to eye connecting theoretical predictions from Eq. (G23) with the
coefficients c12 and s12 that are exactly covered with points obtained
from numerical simulations; (right) the power spectrum of the signal
shown in the left panel (the series consists of 10 000 elements). The
vertical lines are drawn for frequencies equal to ω1/2π , ωN/2π , and
ω2N−1/2π .
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FIG. 13. Sum of the amplitudes time evolution as measured on the only visible layer (left). A fast Fourier transform of this signal (center)
and its power spectrum (right). Each row represents a different number of layers (1 to 5 going top to bottom). Simulations were conducted
on 20 independent realizations of an ER graph (N = 50, 〈k〉 = 6) per row, overlaid with transparency. Note: for the purposes of the Fourier
analysis we use signals of length 103 s.
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