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Linear stability analysis in a liquid layer with a surface velocity gradient
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A case of combined planar Couette-Poiseuille flow corresponding to vanishing horizontal flux has been
generalized by the introduction of a model for the surface velocity gradient. A relation corresponding to the
Orr-Sommerfeld equation has been derived for this model. The critical value of the surface velocity gradient
has been obtained. At the critical point, the corresponding critical Reynolds number equals infinity. Using an
approximated method we estimated the behavior of the critical Reynolds number for a slightly overcritical
surface velocity gradient.
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I. INTRODUCTION

This work is inspired by biomedical research for ma
transport across the liquid layer with a surfactant that is
panded or compressed by a moving barrier@1#. The horizon-
tal velocity of the surfactant is a linear function of the ho
zontal coordinate. Our aim is to investigate if the gradient
the velocity can influence the liquid stability. It should b
emphasized that we are not interested in the phenomena
nected to the inhomogeneous surface tension, for insta
the Marangoni effect, but our objective is to study the ins
bility due to a specific velocity profile across the liquid laye

The starting point is one of the simplest and also the b
known hydrodynamical systems, namely the combined p
nar Couette-Poiseuille flow. Its stability has been intensiv
researched since the beginning of the twentieth century u
different methods and miscellaneous approximations.
linear analysis for the planar Poiseuille flow gives the criti
Reynolds numberRc55772@2,3# and for the planar Couett
flow Rc5`, so that the latter flow is absolutely stable wi
respect to infinitesimal amplitude disturbances. For a com
nation of both flows, when the Couette component increa
from zero, the flow becomes more and more stable@4,5# and
the critical Reynolds number increases fromRc55772 to
infinity. Nonlinear analysis and numerical simulations rev
for both planar Couette and Poiseuille flows an undercrit
instability @6–8#. For the planar Poiseuille flow an instabilit
with respect to finite disturbances occurs whenR.RG
52645@3#. The linear stability analysis yields only sufficien
criteria for the instability occurrence and says nothing d
nite about the stability. In turn, the energy method pred
only the sufficient condition for the stability and says nothi
definite about the instability@9,10#. The energy analysis
shows that the planar Poiseuille flow is stable forR,RES
'81.5 @2# and the planar Couette flow is stable forR,RES
'82.6 @11#.

In this work the case of combination of Poiseuille a
Couette flows, corresponding to the vanishing total horiz
tal flux, has been generalized by introducing into the mod
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constant surface velocity gradient. It means that due to
boundary condition the velocity of the upper surface of l
uid is a linear function of the horizontal coordinate. Becau
our aim is to estimate the upper limit of critical instabilit
parameters, we use the linear analysis. In Sec. II our mod
defined. In Sec. III its characteristic equation correspond
to the Orr-Sommerfeld relation and applied approximatio
as well as numerical methods are described. In Sec. IV
sults of numerical computation are presented. In Sec. V
validity range for the employed approximation is estimate
Section VI contains a discussion of obtained results.

II. THE MODEL

We consider a two-dimensional incompressible homo
neous viscous fluid@12#. A dimensionless Cartesian coord
nate system is chosen with thez axis positive upwards. The
layer of fluid is infinite in x direction, z521 denotes the
bottom of the liquid layer, andz51 is the upper surface
Both the bottom and the upper surface are supposed to
rigid. For convenience, the origin of the coordinate system
chosen in such a way that fluid velocities at the bottom s
face vanish. It follows that the characteristic velocity is th
of the upper surface.

The starting point of our consideration is a combination
Poiseuille and Couette flows. In the coordinate system
fined above, the boundary conditions are

vx~x,z521!50, vx~x,z51!51,

vz~x,z521!50, vz~x,z51!50. ~1!

The condition for vanishing of the total horizontal flux is

E
21

1

vx~z!dz50. ~2!

The stationary velocityU has nonvanishing horizontal com
ponent that depends only on the vertical coordinatez;

U5„Ux~z!,0…. ~3!

It follows from the Navier-Stokes and the continuity equ
tions that the stationary velocity profile is given by functio
©2003 The American Physical Society11-1
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Ux50.75z210.5z20.25. ~4!

Changing the coordinate system to a new one~denoted by
asterisk! where fluid velocities of the bottom and upper su
faces possess the same absolute values and opposite
tions while the characteristic velocities are normalized
max@Ux(z)#51, solution~4! can be written as

Ux* 50.9~12z* 2!10.6z* . ~5!

Since the ratio of the Couette to Poiseuille compon
0.6/0.9 is greater than the critical ratio corresponding to
absolute stability 0.341/0.970@2#, the flow is absolutely
stable with respect to linear perturbations.

Now we extend the model by introducing the veloc
gradientg of the upper surface. The boundary condition~1!
changes to

vx~x,z521!50, vx~x,z51!511gx,

vz~x,z521!50, vz~x,z51!50. ~6!

Gradientg is assumed to be constant for allx. The exis-
tence of the nonzero gradientg ensure that contrary to form
~3! the stationary fluid velocity vectorU consists of two
components that are functions of both coordinatesx andz.

U5„Ux~x,z!,Uz~x,z!…. ~7!

In this model relation~2! leads to appropriate boundary co
ditions for a stream function.

III. LINEAR STABILITY ANALYSIS

The first step in the linear analysis is to find the station
velocity field. It follows from the Navier-Stokes and the co
tinuity equations that the stream functionc(x,z,t) fulfills
equation

]

]t
Dc2

]c

]x

]Dc

]z
1

]c

]z

]Dc

]x
2R21DDc50. ~8!

For the stationary flow we can separate variables in
stream functioncs ,

cs~x,z!5F~x!G~z!. ~9!

The form of functionF(x) must be chosen in accordanc
with the boundary condition~6!;

F~x!511gx . ~10!

Parameterg possesses no intuitive interpretation beca
in nondimensional coordinate system it is scaled by cha
teristic velocity. To overcome this drawback we introdu
another nondimensional parameterg r as

g r5gR, ~11!

so
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g r5
]VX

]X

H2

4n
, ~12!

whereV is the surface velocity,X is the horizontal coordi-
nate, andH is the layer thickness, all measured in our dime
sional coordinate system.

Inserting Eqs.~9!–~11! into Eq.~8! we obtain the equation
for the stationary flow as

g r~G8G92GG-!2G+50 ~13!

with boundary conditions

G~21!5G8~21!5G~1!50, G8~1!51. ~14!

The second step is to examine the stability of the stati
ary solution against an infinitesimal disturbance. We assu
a disturbed stream functioncd in the form

cd~x,z,t !5~11g rR
21x!G~z!1f~z!eia(x2ct), ~15!

where the second term on the right-hand side of Eq.~15! is a
small perturbation. Let us point out that in spite of the lack
translation symmetry along thex direction, we have assume
a periodical disturbance. We do not consider a solution
the wholex axis but only for a smallx district where the
surface velocity is almost constant. In the following, w
search for the critical Reynolds number only within the co
sideredx district. The main role of the surface velocity gra
dient is to change the undisturbed velocity profile. Insert
Eq. ~15! into Eq.~8! and collecting all terms of the first orde
of perturbationf(z) we obtain the equation

052~ iaR!21~D22a2!2f1~G82c!~D22a2!f2G-f

1g rR
21~2 iaGD2 ia21G9D1 ia21GD3!f

1g rR
21x~G8D22G-2G8a2!f , ~16!

whereD5]/]z. Functionf should obey the homogeneou
boundary conditions

f~21!5f8~21!50, ~17!

f~1!5f8~1!50 . ~18!

The first line of Eq.~16! is the Orr-Sommerfeld equation
while the next two lines appear due to the surface veloc
gradient. One has to point out that the influence of this g
dient on stability properties of the considered model is a
hidden in functionG(z), following from Eq. ~13! that cor-
responds to the undisturbed flow. In our model we assu
that one can neglect the last line of Eq.~16! proportional to
g rR

21x. The validity of this approach, i.e., the accura
range of such an approximation will bea posteriorichecked
in Sec. IV.

Because the disturbed problem is of the fourth order
can choose four particular solutions
1-2
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f0~21!51, f1~21!50, f2~21!50, f3~21!50,

f08~21!50, f18~21!51, f28~21!50, f38~21!50,

f09~21!50, f19~21!50, f29~21!51, f39~21!50,
~19!

f0-~21!50, f1-~21!50, f2-~21!50,

f3-~21!51.

Functionsf0 and f1 vanish due to Eq.~17!, so nontrivial
solution consists only off2 andf3. Fulfilling the boundary
condition ~18! is equivalent to vanishing of the determina

Uf2~1! f3~1!

f28~1! f38~1!U50. ~20!

A solution of the undisturbed problem~13! with the
boundary condition~14! has been found using the shootin
method@14# where the differential equation has been in
grated using the fourth order Runge-Kutta method.

Equation ~16!, representing the disturbed problem, is
stiff equation, so similar to the undisturbed problem~13! that
one cannot simply integrate it for the boundary conditio
~17! and ~18!. The problem is solved as follows. We intro
duce function

F~z!5Uf2~z! f3~z!

f28~z! f38~z!U . ~21!

Using the method of compound matrix@13# we integrate
functionF(z) overz, and applying the shooting approach w

FIG. 1. Undisturbed stationary velocity profile.
06631
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look for parameterc such that condition~20! is fulfilled and
solutionsf2 andf3 obey Eqs.~16!–~18!.

IV. RESULTS

First let us consider how the surface velocity gradie
affects undisturbed, stationary velocity profile~Fig. 1!. The
problem can be solved exactly. If the gradient vanishesg r
50) the velocity profile is parabolic. For a negative gradie
value ~compression of surface! the extreme of the profile
becomes deeper and an inflection point occurs. These
features suggest that for a negative gradient the flow
comes unstable. For a positive value ofg r the extreme is
flatter and the inflection point does not appear to be w
suggests a stable character of this solution.

Solutions of the disturbed problem confirm this foreca
The instability does appear for a negative value of the s
face velocity gradient wheng r,g rC524.21. Figure 2
shows that the critical Reynolds number is infinite forg rC
and rapidly decreases belowR5100 when absolute value o
g r increases above 4.21.

Now let us consider the shape of the disturbance. T
spatial distribution of the stream function~only its real part
has the physical meaning! can be easily found by putting th
computed functionG(x) into the last term of Eq.~15!. Of
course, this term describes only the disturbance posses
an infinitesimally small amplitude. An example of such
disturbance is depicted in Fig. 3. One can see that the dis
bance possesses the shape of a chain of skewed vortex

The wave numbera of the critical disturbance~Fig. 4!
starts from zero forg r5g rC ; while the gradientg r is de-
creasing, the critical wave number is gowing up. This beh
ior is similar to the instability of combined planar Poiseuil

FIG. 2. Critical Reynolds numbers vs the surface veloc
gradient.
FIG. 3. The real part of the
stream function of the critical dis-
turbance forg r56.
1-3
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and Couette flow@2# that starts from the infinite wavelengt
when Couette component is increased over the critical va

The phase velocityc of the critical disturbance~Fig. 4!
starts fromc50.44 for g r5g rC , monotonically decrease
with decreasingg r , and crosses zero atg r5217.2. It fol-
lows that forg rC.g r.217.2 the phase velocity of the dis
turbance possesses the opposite direction to the surfac
locity, while for g r,217.2 the directions of both velocitie
are the same.

V. VALIDITY OF USED APPROXIMATION

One has to check at leasta posteriori the validity of our
approach since we have neglected terms proportiona
g rR

21x in Eq. ~16!. One can easily see that the value
critical surface velocity gradientg rC is exactbecause for the
infinite Reynolds number the omitted term and other ter
proportional tog rR

21 disappear. It follows that the whol
influence of the velocity gradient atg r5g rC on the system
stability is due to changes of thestationaryvelocity profile
described by functionG(z) given by Eq.~13!. The results for
g r,g rC are approximated but it is easy to compare coe
cients of appropriate derivatives off in the neglected part o
Eq. ~16! to the corresponding coefficients in the nonn
glected part. Let us define functionsDi as

Di5max
z
UNi

Mi
Ux21, ~22!

whereNi is a coefficient of thei th derivative off standing
by the neglected part of Eq.~16! andMi is the corresponding
coefficient of the non-neglected part of Eq.~16!. In the omit-
ted third line of Eq.~16! there are only zeroth and secon
derivatives off, so we have

D05max
z
U g rR

21~2G-2G8a2!

ia3R212a2~G2c!2G-
U , ~23!

FIG. 4. Phase velocityc and wavelengtha of the critical dis-
turbance vs surface velocity gradient.
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z
U g rR

21G8

22iaR211G2c
U . ~24!

Both functionsD0 andD2 converge to zero wheng r→g rC
~Fig. 5!, which indicates that our approximation is se
consistent.

Another parameter that can be used for the estimation
correctness of our approach is a change of surface velo
Dv at the distance of one wavelength of critical disturban
The approximation is valid whenDv!1. Figure 6 shows
that it occurs in the neighborhood ofg rC . Comparing Figs.
~5! and~6! we see that the validity of our approach is limite
to ug r u,10.

VI. CONCLUSIONS

Existence of the surface velocity gradient can have a s
stantial destabilizing effect for the shear flow. In the cons
ered case of combined planar Couette and Poiseuille flo
positive values of gradient~expansion of surface! do not

FIG. 5. FunctionsD0 andD2 vs surface velocity gradient.

FIG. 6. Changes of surface velocity gradient along one wa
length of critical disturbance vs surface velocity gradient.
1-4
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cause instability at all. However, if the value of the surfa
velocity gradient is negative~compression of the surface! the
instability is possible. The instability begins when the ab
lute value of the dimensionless surface velocity gradien
larger thanug r u.4.21. When the instability starts the corr
sponding critical Reynolds numberRc is infinite, but for in-
creasingug r u it rapidly decreases to valuesR'100.
06631
-
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