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Linear stability analysis in a liquid layer with a surface velocity gradient
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A case of combined planar Couette-Poiseuille flow corresponding to vanishing horizontal flux has been
generalized by the introduction of a model for the surface velocity gradient. A relation corresponding to the
Orr-Sommerfeld equation has been derived for this model. The critical value of the surface velocity gradient
has been obtained. At the critical point, the corresponding critical Reynolds number equals infinity. Using an
approximated method we estimated the behavior of the critical Reynolds number for a slightly overcritical
surface velocity gradient.
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[. INTRODUCTION constant surface velocity gradient. It means that due to the
boundary condition the velocity of the upper surface of lig-
This work is inspired by biomedical research for massuid is a linear function of the horizontal coordinate. Because
transport across the liquid layer with a surfactant that is exour aim is to estimate the upper limit of critical instability
panded or compressed by a moving barfigr The horizon-  parameters, we use the linear analysis. In Sec. Il our model is
tal velocity of the surfactant is a linear function of the hori- defined. In Sec. Il its characteristic equation corresponding
zontal coordinate. Our aim is to investigate if the gradient ofto the Orr-Sommerfeld relation and applied approximations
the velocity can influence the liquid stability. It should be as well as numerical methods are described. In Sec. IV re-
emphasized that we are not interested in the phenomena cosilts of numerical computation are presented. In Sec. V the
nected to the inhomogeneous surface tension, for instancalidity range for the employed approximation is estimated.
the Marangoni effect, but our objective is to study the insta-Section VI contains a discussion of obtained results.
bility due to a specific velocity profile across the liquid layer.
The starting point is one of the simplest and also the best Il. THE MODEL
known hydrodynamical systems, namely the combined pla- ) ) ] ) _
nar Couette-Poiseuille flow. Its stability has been intensively We consider a two-dimensional incompressible homoge-
researched since the beginning of the twentieth century usin@eous viscous fluid12]. A dimensionless Cartesian coordi-
different methods and miscellaneous approximations. Theate system is chosen with taeaxis positive upwards. The
linear analysis for the planar Poiseuille flow gives the criticall2yer of fluid is infinite inx direction,z=—1 denotes the
Reynolds numbeR,=5772[2,3] and for the planar Couette bottom of the liquid layer, an@=1 is the upper surface.
flow R.=c°, so that the latter flow is absolutely stable with Both the bottom and the upper surface are supposed to be
respect to infinitesimal amplitude disturbances. For a combitigid. For convenience, the origin of the coordinate system is
nation of both flows, when the Couette component increasegnosen in such a way that fluid velocities at the bottom sur-
from zero, the flow becomes more and more sti)6] and face vanish. It follows that the characteristic velocity is that
the critical Reynolds number increases fraRg=5772 to  ©Of the upper surface. . o o
infinity. Nonlinear analysis and numerical simulations reveal 1 Nne starting point of our consideration is a combination of
for both planar Couette and Poiseuille flows an undercriticaP’0iseuille and Couette flows. In the coordinate system de-
instability [6—8]. For the planar Poiseuille flow an instability fined above, the boundary conditions are
with respect to finite disturbances occurs whBx» Rg _ _ A
=2645[3]. The linear stability analysis yields only sufficient vx(x2==1)=0, vux2z=1)=1,
criteria for the instability occurrence and says nothing defi- o v
nite about the stability. In turn, the energy method predicts v(X,2==1)=0, vix2=1)=0. @
only the sufficient condition for the stability and says nothinghe condition for vanishing of the total horizontal flux is
definite about the instabilityf9,10]. The energy analysis
shows that the planar Poiseuille flow is stable R Rgg 1
~81.5[2] and the planar Couette flow is stable R~ Rgg f
~82.6[11].
In this work the case of combination of Poiseuille andrpg stationary velocity) has nonvanishing horizontal com-
Couette flows, correspondmg to .the van|§h|ng total horlzongOnent that depends only on the vertical coordirmte
tal flux, has been generalized by introducing into the model

v,(2)dz=0. 2
1

U=(Uy(2),0). (€)
*Electronic address: bialecki@if.pw.edu.pl It follows from the Navier-Stokes and the continuity equa-
"Electronic address: jholyst@if.pw.edu.pl tions that the stationary velocity profile is given by function
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U,=0.752+0.52—0.25. (4)

Changing the coordinate system to a new ¢adenoted by

asterisk where fluid velocities of the bottom and upper sur-
faces possess the same absolute values and opposite dir
tions while the characteristic velocities are normalized as

maq{U,(2)]=1, solution(4) can be written as

UF=0.91-2*?)+0.6z*. (5)

Since the ratio of the Couette to Poiseuille component
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_OVx H? 1
V=X Ay (12)
whereV is the surface velocityX is the horizontal coordi-
ﬁgte, andH is the layer thickness, all measured in our dimen-
sional coordinate system.

Inserting Eqs(9)—(11) into Eq.(8) we obtain the equation
for the stationary flow as

0.6/0.9 is greater than the critical ratio corresponding to the

absolute stability 0.341/0.97(2], the flow is absolutely
stable with respect to linear perturbations.

Now we extend the model by introducing the velocity

gradienty of the upper surface. The boundary conditi@h
changes to

V4(X,z=—1)=0, vy (X,z=1)=1+ yX,

v,(X,z=—=1)=0, v,(x,z=1)=0. (6)
Gradienty is assumed to be constant for allThe exis-
tence of the nonzero gradiemtensure that contrary to form
(3) the stationary fluid velocity vecto) consists of two

components that are functions of both coordinatesmd z
(7

In this model relatior(2) leads to appropriate boundary con-
ditions for a stream function.

U= (U,(x,2),U,(x,2)).

IIl. LINEAR STABILITY ANALYSIS

%(G'G"-GG")-G"=0 (13
with boundary conditions
G(-1)=G'(-1)=G(1)=0, G'(1H=1. (19

The second step is to examine the stability of the station-
ary solution against an infinitesimal disturbance. We assume
a disturbed stream functioy in the form

Pa(x,2,)=(1+ %R X)G(2) + ¢(2)e'**~), (15
where the second term on the right-hand side of (E§). is a
small perturbation. Let us point out that in spite of the lack of
translation symmetry along thedirection, we have assumed
a periodical disturbance. We do not consider a solution for
the wholex axis but only for a smalk district where the
surface velocity is almost constant. In the following, we
search for the critical Reynolds number only within the con-
sideredx district. The main role of the surface velocity gra-
dient is to change the undisturbed velocity profile. Inserting
Eq. (15) into Eq.(8) and collecting all terms of the first order
of perturbation¢(z) we obtain the equation

The first step in the linear analysis is to find the stationary _ o o ,
velocity field. It follows from the Navier-Stokes and the con- 0= —(iaR)" (D~ a%)“¢+(G'—c)(D*~a“)$p—G"¢

tinuity equations that the stream functiaf(x,z,t) fulfills
equation

d

ot

A
adld

Jdz odX

ap AN

_p-1 _
P RIAAy=0.

8

+ %R Y —iaGD-ia 'G"D+ia 'GD3¢

+‘yrR_:LX(GIDZ_GW_GIC!Z)(ﬁ, (16)

whereD = g/ 9z. Function¢ should obey the homogeneous
boundary conditions

For the stationary flow we can separate variables in the

stream functionys,

¥s(x,2)=F(x)G(2). 9

The form of functionF(x) must be chosen in accordance

with the boundary conditioK6);

F(x)=1+ yx. (10

¢(—1)=¢'(-1)=0, 17

$(1)=¢'(1)=0. (18
The first line of Eq.(16) is the Orr-Sommerfeld equation,
while the next two lines appear due to the surface velocity
gradient. One has to point out that the influence of this gra-
dient on stability properties of the considered model is also

Parametery possesses no intuitive interpretation becauséidden in functionG(z), following from Eq. (13) that cor-
in nondimensional coordinate system it is scaled by charagesponds to the undisturbed flow. In our model we assume
teristic velocity. To overcome this drawback we introducethat one can neglect the last line of E@6) proportional to

another nondimensional parametgras
=R, (12)

SO

¥R~ Ix. The validity of this approach, i.e., the accuracy
range of such an approximation will lzeposteriorichecked
in Sec. IV.

Because the disturbed problem is of the fourth order we
can choose four particular solutions
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FIG. 2. Critical Reynolds numbers vs the surface velocity

FIG. 1. Undisturbed stationary velocity profile. gradient.

¢o(—1)=1, $1(—1)=0, ¢o(—1)=0, ¢3(—1)=0,

look for parametec such that conditiori20) is fulfilled and
solutions¢, and ¢35 obey Eqs(16)—(18).

Po(—=1)=0, ¢1(=1)=1, ¢5(-1)=0, ¢3(~1)=0,
#o(—1)=0, ¢1(—1)=0, ¢3(—1)=1, %(_1)?1%) IV. RESULTS
First let us consider how the surface velocity gradient
$g(—1)=0, ¢7(—-1)=0, ¢5(—1)=0, affects undisturbed, stationary velocity profileig. 1). The
problem can be solved exactly. If the gradient vanishgs (
P53 (—1)=1. =0) the velocity profile is parabolic. For a negative gradient

_ ) o value (compression of surfagethe extreme of the profile
Functions¢, and ¢, vanish due to Eq(17), so nontrivial  pecomes deeper and an inflection point occurs. These two
solution consists only of, and ¢;. Fulfilling the boundary features suggest that for a negative gradient the flow be-
Cond|t|0n(18) IS eqU|Va|ent to Van|Sh|ng of the determinant comes unstable. For a positive value 'ﬂ‘f the extreme is
flatter and the inflection point does not appear to be what

$2(1)  ¢s(1) suggests a stable character of this solution.
dy(1)  P5(1) =0. (20 Solutions of the disturbed problem confirm this forecast.
The instability does appear for a negative value of the sur-

face velocity gradient wheny,<vy,c=-—4.21. Figure 2
shows that the critical Reynolds number is infinite fgi
and rapidly decreases beld®~ 100 when absolute value of
v, increases above 4.21.

Now let us consider the shape of the disturbance. The
spatial distribution of the stream functidonly its real part
ghas the physical meaningan be easily found by putting the
computed functionG(x) into the last term of Eq(15). Of

course, this term describes only the disturbance possessing
an infinitesimally small amplitude. An example of such a

A solution of the undisturbed problertii3) with the
boundary conditior(14) has been found using the shooting
method[14] where the differential equation has been inte-
grated using the fourth order Runge-Kutta method.

Equation (16), representing the disturbed problem, is a
stiff equation, so similar to the undisturbed problé&iB) that
one cannot simply integrate it for the boundary condition
(17) and (18). The problem is solved as follows. We intro-
duce function

$2(2)  P3(2) disturbance is depicted in Fig. 3. One can see that the distur-
F(2)=| 4 NG (21)  bance possesses the shape of a chain of skewed vortexes.
$2(2)  ¢3(2) The wave number of the critical disturbancéFig. 4)

starts from zero fory,=v,c; while the gradienty, is de-
Using the method of compound matrj43] we integrate creasing, the critical wave number is gowing up. This behav-
functionF(z) overz, and applying the shooting approach we ior is similar to the instability of combined planar Poiseuille

FIG. 3. The real part of the
stream function of the critical dis-
turbance fory,=6.
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FIG. 4. Phase velocitg and wavelengthw of the critical dis- FIG. 5. Functiond, andD, vs surface velocity gradient.
turbance vs surface velocity gradient.
o Y R*lGr ‘

and Couette flow2] that starts from the infinite wavelength D,=ma r _ (24)
when Couette component is increased over the critical value. —2iaR 1+ G- c\

The phase velocitg of the critical disturbancéFig. 4)
starts fromc=0.44 for y,=y,c, monotonically decreases

with decreasingy,, and crosses zero gt=—17.2. It fol- . - A :
lows that fory,c>y,>—17.2 the phase velocity of the dis- g:'r?éis?én\tNh'Ch indicates that our approximation is self

turbance possesses the opposite direction to the surface Ve- Another parameter that can be used for the estimation of

Iocnyr,] while for y,<—17.2 the directions of both velocities correctness of our approach is a change of surface velocity
are the same. Av at the distance of one wavelength of critical disturbance.
The approximation is valid wheAv<1. Figure 6 shows
V. VALIDITY OF USED APPROXIMATION that it occurs in the neighborhood ¢f-. Comparing Figs.

o o (5) and(6) we see that the validity of our approach is limited
One has to check at leaatposteriorithe validity of our ly,|<10
. .

approach since we have neglected terms proportional to

¥R~ Ix in Eqg. (16). One can easily see that the value of

critical surface velocity gradieng, ¢ is exactbecause for the VI. CONCLUSIONS
infinite Reynolds number the omitted term and other terms
proportional toy,R™ ! disappear. It follows that the whole
influence of the velocity gradient at, = y,c on the system
stability is due to changes of tretationaryvelocity profile
described by functio®G(z) given by Eq.(13). The results for
v, <v,c are approximated but it is easy to compare coeffi-

Both functionsD, and D, converge to zero whew,— y,c

Existence of the surface velocity gradient can have a sub-
stantial destabilizing effect for the shear flow. In the consid-
ered case of combined planar Couette and Poiseuille flows,
positive values of gradienexpansion of surfagedo not

cients of appropriate derivatives gfin the neglected part of 164
Eqg. (16) to the corresponding coefficients in the nonne- ]
glected part. Let us define functioby as
1.2+
N, . 1.0
Di—mza M—ix , (22 . 08
0.6 4
whereN; is a coefficient of theth derivative of¢ standing 04
by the neglected part of E¢L6) andM; is the corresponding 02,
coefficient of the non-neglected part of Ed6). In the omit- |
ted third line of Eq.(16) there are only zeroth and second 09+
derivatives of¢, so we have 48 6 44 42 40 8 8 4
Y

(23 FIG. 6. Changes of surface velocity gradient along one wave-
length of critical disturbance vs surface velocity gradient.

DO:ma
z

y,R_l(—G”’—G’aZ) ‘
ia®R 1= a?(G—c)-G"|
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cause instability at all. However, if the value of the surface

velocity gradient is negativeeompression of the surfacthe

instability is possible. The instability begins when the abso-
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