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Noise-level estimation of time series using coarse-grained entropy
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We present a method of noise-level estimation that is valid even for high noise levels. The method makes use
of the functional dependence of coarse-grained correlation entropyK2(«) on the threshold parameter«. We
show that the functionK2(«) depends, in a characteristic way, on the noise standard deviations. It follows
that observingK2(«) one can estimate the noise levels. Although the theory has been developed for the
Gaussian noise added to the observed variable we have checked numerically that the method is also valid for
the uniform noise distribution and for the case of Langevin equation corresponding to the dynamical noise. We
have verified the validity of our method by applying it to estimate the noise level in several chaotic systems and
in the Chua electronic circuit contaminated by noise.
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I. INTRODUCTION

It is a common case that observed data are contamin
by a noise~for a review of methods of nonlinear time seri
analysis see@1,2#!. The presence of noise can substantia
affect invariant system parameters as a dimension, entrop
Lyapunov exponents. In fact Schreiber@3# has shown that
even 2% of noise can make a dimension calculation misle
ing. It follows that the assessment of the noise level can
crucial for estimation of system invariant parameters. Ev
after performing a noise reduction one is interested to ev
ate the noise level in the cleaned data. In the experimen
noise is often regarded as a measurement uncertainty w
corresponds to a random variable added to the system
porary state or to the experimental outcome. This kind
noise is usually called themeasurementor theadditivenoise.
Another case is the noise influencing the system dynam
what corresponds to the Langevin equation and can be ca
the dynamicalnoise. The second case is more difficult
analyze, because the noise acting at momentt0 usually
changes the trajectory fort.t0. It follows that there is no
clean trajectory and instead of it ane-shadowed trajectory
occurs@4#. For real data a signal~e.g., physical experimen
data or economic data! is subjected to the mixture of bot
kinds of noise~measurement and dynamical!.

Schreiber has developed a method of noise-level esti
tion @3# by evaluating the influence of noise on the corre
tion dimension of investigated system. The Schreiber met
is valid for rather small Gaussian measurement noise
needs values of the embedding dimensiond, the embedding
delay t and the characteristic dimensionr spanned by the
system dynamics.

Diks @5# investigated properties of correlation integr
with the Gaussian kernel in the presence of noise. The D
method makes use of a fitting function for correlation in
grals calculated from time series for different thresholds«.

*Electronic address: urbanow@if.pw.edu.pl
†Electronic address: jholyst@if.pw.edu.pl
1063-651X/2003/67~4!/046218~7!/$20.00 67 0462
ed

or

d-
e
n
u-
he
ich
m-
f

s,
ed

a-
-
d
d

s
-

The function depends on system variablesK2 ~correlation
entropy!, D2 ~correlation dimension!, s ~standard noise de
viation!, and a normalizing constantF. These four variables
are estimated using the least squares fitting. The Diks me
@6# is valid for a noise level up to 25% of signal variance a
for various measurement noise distributions. The D
method needs optimal values of the embedding dimensiod,
the embedding delayt, and the maximal threshold«c .

Hsu et al. @7# developed a method of noisereductionand
they used this method for noise-level estimation. The met
explored the local-geometric-projection principle and is u
ful for various noise distributions but rather small noise le
els. To use the method one needs to choose a numbe
neighboring points to be regarded, an appropriate numbe
iterations as well as optimal parameters valuesd andt.

Oltmanset al. @8# considered influence of noise on th
probability density functionf n(«) but they could take into
account only a small measurement noise. They used a fi
f n(«) to the corresponding function which was found f
small «. Their fitting function is similar to the probability
density distribution that we receive from correlation integr
1/N2Dn(«). The method needs as input parameters value
d, t, and«c .

Our method has its origin in recurrence plots~RPs! @9#
and it uses RPs quantities to characterize the data. Re
rence plots were originally introduced by Eckmann@9# as a
useful graphic way for data analysis. The plot is defined a
matrix N3N, where a dot (i , j ) is drawn wheniyW i2yW j i,«
(« is a given threshold!. By recurrence plots one can stud
data stationarity@10–12#, as well as their recurrence and d
terministic properties@13–15#. The approach was also ap
plied for parameter optimizing@16# in the local projection
method of noise reduction@17#. RPs can be easy to calcula
characteristic system parameters like the correlation entr
@18#, what will be performed in our case. Lines of black do
parallel to the main diagonal can appear in recurrence p
and their number can serve as a measure of determin
@10#. In our method we take into account a number of lin
Dn of the lengthn or longer by the embedding dimensio
©2003 The American Physical Society18-1
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d51. We use the fact that there is a straightforward relat
betweenDn and the correlation integral@18#.

The crucial point of our method is fitting of a prope
function to the estimated correlation entropyK2. In fact
similar considerations can be performed for Kolmogoro
Sinai entropy@19–21# K1 using, for example, the approac
given in Ref.@22#, but in such a case a much larger numb
of data is needed, since theK1 entropy is more sensitive to
regions of the phase space with small values of invar
measure. The method is not too time consuming, e.g., a
culation of entropy for 100 various thresholds andN53000
data points needed a few minutes@23#. Our method does no
demand any input parameters like the embedding dimen
d or the embedding delayt. The minimal and maximal val-
ues of the threshold parametere can be automatically esti
mated. In all considerations we use the maximum norm
save the computation time and to perform analytic exp
sions. It is known that in the limite→0 the behavior of
invariant system parameters does not depend on the typ
used norm. In our case features of coarse-grained entrop
considered and the value of the threshold parameter« should
be comparable to the noise level. It follows that one can
exclude that the type of applied norm affects the functio
dependence of the coarse-grained entropyK2(«) in the pres-
ence of noise of a large or medium value.

We stress here that our method is provided for a no
level estimation. The method is not equivalent to noise filt
that allow to extract an original nondisturbed signal fro
noisy time series@4,24,25#.

II. ENTROPY ESTIMATION FOR A TIME SERIES IN THE
NOISE ABSENCE

Let $xi%, where i 51,2, . . . ,N, be a time series andyW i
5$xi ,xi 1t , . . . ,xi 1(n21)t% a correspondingn-dimensional
vector constructed in the embedded space, wheren is an
embedding dimension andt is an embedding delay. The co
relation integral calculated in the embedded spaceyW i is

Cn~«!5
1

N2 (
i

N

(
j Þ i

N

u~«2iyW i2yW j i !, ~1!

whereu is the Heaviside step function. Ifi . . . i is the maxi-
mum norm, the correlation integralCn(«) is proportional to
the numberDn(«) of lines of the lengthn or longer in the RP
constructed from the data set$xi% @18#

Cn~«!5
1

N2 (
i

(
j Þ i

u~«2uxi2xj u!u~«2uxi 1t

2xj 1tu!•••u~«2uxi 1(n21)t2xj 1(n21)tu!

5
Dn~«!

N2
. ~2!

The correlation entropy@26,27# can now be calculated as
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K25 lim
«→0

lim
n→`

ln
Dn~«!

Dn11~«!
'2

d ln@Dn~«!#

dn
. ~3!

We assume that Eq.~3! is approximately valid forn>2 thus

Dn5D 2e2(n22)K2. ~4!

Let us introduce the following convention for lines countin
if there is a line of the lengthn then it includes one line of
the lengthn21, one line of the lengthn22, etc. Using Eq.
~4! one can easily find the average line length^n&,

^n&5

(
n52

`

~Dn1Dn1222Dn11!n

(
n52

`

~Dn1Dn1222Dn11!

>
(
n52

`

ne2(n22)K2

(
n52

`

e2(n22)K2

5
22e2K2

12e2K2
. ~5!

The above formula neglects all lines of the lengthn51.
Now the entropy can be approximated as

K2' ln
^n&21

^n&22
. ~6!

The relation between the entropy, dimension, and correla
integral is given by the well-known formula@28,29#

lim
n→`

lim
«→0

ln
1

N2
Dn~«!5D2ln «2ntK2 , ~7!

thus the logarithm of the correlation integral is a linear fun
tion of entropyK2 and system dimensionD2. On the other
hand the correlation dimensionD2 is independent of the em
bedding dimensiond if the latter is large enough. We use th
fact and in the following section we will estimate the noi
effect on the dimensionD2 as well as on the lengthn of the
line in RP where the line length corresponds to the emb
ding dimension. Finally, we will incorporate both effects in
Eq. ~7! to reproduce the complete influence of noise on
correlation integral.

III. INFLUENCE OF NOISE ON CORRELATION
INTEGRAL

Let us modify the definition ofDn in such a way that the
influence of noise on entropy can be analytically estimat
First we change Eq.~1! to the equivalent form

Dn~«!5(
i

N

(
iÞ j

N

uS (
k50

l

u~«2uxi 1k2xj 1ku!2nD , ~8!

wherel is the length of the recurrence line beginning at t
point (i , j ). Equation~8! is valid provided that one assume
u(0)51 for the Heaviside function. The functionu in Eq.
~1! is called a kernel function@30#, and it can be written in a
8-2
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general way asr«(r ). Now let us use the fact@30# that the
kernel function can be replaced by any monotonically
creasing functionr«(r ) with a bandwidth « such that
limr→0r 2pr«(r )50 for «.0 and anyp>0. The bandwidth
« of the kernel function corresponds to the threshold«. It
follows that we can replace the inneru(«2r ) function in Eq.
~8! by a new linear continuous function

u~«2r !⇒r«~r !5H «2r

«
, for 0<r<«

0, for r .«,

~9!

and simultaneously we lower the threshold in outeru func-
tion by the constantb51/Ap. We have checked that othe
choices ofb bring similar results. Now instead of Eq.~8! we
have

Dn8~«!5(
i

N

(
iÞ j

N

uS (
k50

n
«2uxi 1k2xj 1ku

«
2bnD . ~10!

We use the above expression to calculate the mean
length^n&. Practically the length of each line is calculated
the maximal value of the parametern in Eq. ~10! provided
that theu function equals to 1. Havinĝn& we calculate the
system entropyK2 using the Eq.~6!.

Now let us consider the influence of uncorrelated Gau
ian noiseh i added to the observed system variablexi . Eq.
~10! is replaced by the following approximation:

Dn8~«!5(
i

N

(
iÞ j

N

uS (
k50

n
«2uxi 1k1h i 1k2xj 1k2h j 1ku

«

2bnD ,

>(
i

N

(
iÞ j

N

uS (
k50

n
«2uxi 1k2xj 1ku

«
2n

Aa2«212s22a«

«

2bnD , ~11!

wheres is the standard noise deviation anda is a constant
of order 1 that depends on the distribution ofuxi2xj u. One
can easily derive Eq.~11! assuming thatsx'a«, wheresx
stands for a standard deviation ofuxi2xj uP(0,«). When the
differencesuxi2xj u are uniformly distributed in the region
(0,«), thena51/A3.

Comparing Eq.~11! to Eq. ~8! and Eq.~10! we see that
the effect of noise corresponds formally to the change

n→nS 11Ap
A«2/312s22«/A3

« D . ~12!

Instead of the second part of lhs of Eq.~7! we have
04621
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2ntK2→2ntK2~«!S 11Ap
A«2/312s22«/A3

« D .

~13!

For a small noise (s!e) the last equation can be tran
formed to

2ntK2→2ntK2~«!S 11A3p
s2

«2 D , ~14!

which is in agreement with the well-known result@31,32# for
the noise entropy in the case of noise spectrumS(v)
;v22,

Knoisy;
1

«2
. ~15!

Equation ~13! expresses the influence of noise on the li
lengthn. On the other hand Schreiber has shown@3# that the
influence of noise can be described by the substitution in
~7!,

D2→FD21~n2r !gS «

2s D G , ~16!

where

g~z!5
2

Ap

ze2z2

er f~z!
, ~17!

and the parameterr follows from the method of singula
value decomposition used in Ref.@3#.

Combining Eq.~7! with results~13! and ~16! we get

Dn~«!;« [D21(n2r )g(«/2s)]expF2ntK2~«!

3S 11Ap
A«2/312s22«/A3

« D G , ~18!

whereK2(«) is the coarse-grained entropy of the clean s
nal. The explicit form of the functionK2(«) is unknown. A
good fit that seems to be valid for several systems is

K2~«!5k1b ln~12a«!, ~19!

where the constantk corresponds to the correlation entrop
while the second term describes the effect of the coa
graining. We stress here that the precise value of the la
function is not needed for our approach of noise-level e
mation, because we are left with some free parameter
follows that one can estimate the coarse-grained entrop
the signal with noise as
8-3
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Knoisy~«!52
d ln@Dn~«!#

dn

52
1

t
gS «

2s D ln «1K2~«!

3
S 11Ap

A«2

3
12s22

«

A3

«
D , ~20!

where the functiong(.) corresponds to the influence of nois
on the correlation dimension, while the second term can
split into the coarse-grained entropy of the clean sig
K2(«) and the linear increase of this entropy due to the pr
ence of the external noise Ap@(A«2/312s2

2«/A3)/«#K2(«). To estimate the noise levels one can use
the above dependence of the correlation entropyKnoisy(«) as
the function of the threshold«. However, we have found tha
because of a peculiar behavior ofKnoisy(«) it is more con-
venient to fit the functionKnoisy(«)«p instead ofKnoisy(«)
to corresponding experimental data (p is a constant of orde
of 1, see the following section for discussion!. It follows that
we need to estimate five free parametersk, s, a, b, andc
for the function

Knoisy~«!«p52c«pgS «

2s D ln «1@k1b ln~12a«!#«p

3S 11Ap
A«2/312s22«/A3

« D . ~21!

The parameterc (c ranges typically from 0.5 to 0.7) ha
been introduced for a better agreement to numerical data
fit the above function we have used Levenberg-Marqua
method@33#. We stress here that we do not need to assu
any input value for the above coefficients, but they appea
a result of application of our method.

IV. NOISE-LEVEL ESTIMATION: EXAMPLES

In practice, all input parameters of the method can
default. The character of the method causes that the eva
tion of the embedding dimension that usually appears in n
linear time series analysis is not needed at all. Since in
we consider lines of all lengths larger than 2, the embedd
dimension applied here is practically the highest as poss
for given time series.

The first point is to calculate the average line length^n&
for a given threshold and then to find the corresponding
tropy K2(«) using formula~6!. Having values of entropies
for about 100 different thresholds, one should rescale th«
axis. In such a way different systems with different sizes
attractors can be compared. Practically, we do this by mu
plying « by some constantg, such that«maxg5 «̄max50.7
@«max has been chosen using the conditionK(«max)
50.015]. After finding the noise levels̄ in the rescaled data
the corresponding noise of the original time series can
calculated ass5s̄/g.
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One can see the behavior of fitting function~21! for the
clean signal in Fig. 1. For a small threshold«!«max the
dependence is a linear since for small« K2(«) is a constant.

The important feature of the plotKnoisy(«)«p for noisy
data is the appearance of two maxima~see Fig. 2!. This
feature is helpful for the noise estimation since origins
these maxima are related to the first and second part of rh
Eq. ~21!, i.e., the first maximum is connected to the noi
level, while the second maximum to the finiteness of t
attractor. For a high noise level both maxima merge. T
position of the first peak or the single maximum can be u
for additional noise estimation, because one can find that

p.3.441 7172
1

ln~s!
, ~22!

the maximum ofKnoisy(«)«p appears at«5s. Relation~22!
gives us the second way, beside Eq.~21!, for estimation of
noise level and for the control of results received due
fitting ~21!.

Let us define the percent of noise as the ratio ofs to the
standard deviation of data

FIG. 1. Chaotic Henon map without a noise. Plot of coa
grained entropy multiplied by the threshold« ~squares! calculated
from time series and the fitting function~21! with p51 ~line!.

FIG. 2. Chaotic Henon map with measurement noiseN
'10%. Plot of coarse-grained entropy calculated from the ti
series multiplied by«0.622 ~squares! and fitting function~21! with
p50.622~line!.
8-4
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N5
s

sDATA
3100% ~23!

The estimated values of the standard deviations received
by an appropriate fit to Eq.~21! for several systems an
noise levels are presented in Table I. One can see a f
good agreement between the estimated and known leve
noise.

We apply this method for chaotic differential equatio
where the noisehW n is added to system statesyW n , calculated
by the fourth-order Runge-Kutta algorithm. It follows th
next points of the trajectory are dependent in a nonlinear w
on previous noisy contributions@34# ~we call this kind of
noisea dynamical noise!. In fact we consider a noise adde
to the nonlinear map resulting from the original different
equations and the Runge-Kutta procedureyW n115F(yW n

1hW n). We have found that the noise-level estimated by
method corresponds to the standard deviation of the n
existing in the systems5A^hn

2&. Figure 3 shows that the
behavior of the coarse-grained entropy is similar in the pr
ence of dynamical and additive noise.

Results for the dynamical noise and a mixture of tw
kinds of noise are presented in Tables II and III. In Table

TABLE I. Results of noise-level estimation for systems with t
measurement noise.

System N s Estimateds

Henon 0% 0 20.002360.0001
Henon 9% 0.1 0.160.0007
Duffing oscylator 20% 0.4 0.4660.005
Duffing oscylator 55% 2 1.960.02
Ikeda 10% 0.07 0.0760.0005
Lorenz 22% 2.2 2.260.01
Roessler 4% 0.58 0.5860.012
Roessler 14% 2 1.7560.01
Roessler 35% 6 6.1660.2
Roessler 48% 10 8.9460.1

FIG. 3. Chaotic Lorenz model with the dynamical noise. Plot
coarse-grained entropy calculated from the time series multiplied
the threshold« ~squares! and fitting function~21! with p51 ~line!.
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the first three examples correspond to the noise added
writing the value of a variable into a file and the next e
amples correspond to the noise added just before writin
variable to a file.

Our method can be useful for evaluation of very hi
noise levels. Figure 4 shows the plot of function~21! for the
noise (N'100%, p51). In such a case the error of th
estimation is large, because we are free to use five par
eters to fit a simple curve. We have found that for high no
levels it is better to use as the fitting function a sum
equations~21! with different exponentsp ~we have usedp1
50.5 and p257). It follows that we fit the function
Knoisy(«)(«p11«p2). The estimation works better, becau
for different values ofp function ~21! is more sensitive to
different noise levels.

To verify our method in a real experiment we have p
formed analysis of data generated by a nonlinear electro
circuit. The Chua circuit in the chaotic regime@35,36# has
been used, and we have added a measurement noise t
outcoming signal. The noise~white and Gaussian! has come
from an electronic noise generator. The results are prese
in Table IV. The first two rows correspond toN510 000 and
the rest toN51000. In the case of a small noise level w
cannot perform any estimation for a small number of da
because the noise is smaller than the average distance
tween nearest neighbors. The estimation forN51000 has
taken a few minutes@23#.

V. CONCLUSIONS

In conclusion we have developed a universal method
noise-level estimation from time series. The method ma
use of the functional dependence of the coarse-grained
tropy K2(«) on the threshold«. It appears that the peculia

f
y

TABLE II. Results of noise-level estimation for the Lorenz sy
tem with the dynamical noise.

System N s Estimateds

Lorenz 11% 1 1.1960.12
Lorenz 11% 1 1.1760.15
Lorenz 11% 1 1.1460.1
Lorenz 11% 1 1.1560.2
Lorenz 11% 1 1.1160.18
Lorenz 11% 1 1.0960.14

TABLE III. Results of noise-level estimation for systems wi
mixture of measurement and dynamical noise.

System N s Estimateds

Lorenz 43% 4.06 4.5660.12
Lorenz 56% 5.93 5.3460.11
Lorenz 35% 2.93 2.4260.12
Roessler 14% 2.82 1.9760.12
Roessler 94% 33.5 3260.75
Roessler 81% 16.12 1660.71
8-5
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shape of this entropyK2(«) depends on the standard devi
tion of the noises so a simple function fitting can be applie
to find the noise level. The process of noise estimation ca
done easily without assuming input parameters and can
programmed in such a way that the algorithm makes all s
automatically. When the length of the time seriesN,5000
the whole evaluation procedure takes a few minutes@23#.
The method has no limitations regarding a noise level an
kind of noise so one can evaluate very high noise levels
a dynamical noise as well. We have verified the validity

FIG. 4. NoiseN'100%. Plot of coarse-grained entropy calc
lated from the time series multiplied by the threshold« ~squares!
and the fitting function~21! with p51 ~line!.
s
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d
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our method by applying it to estimate the noise level in s
eral chaotic systems and in the Chua electronic circuit.
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