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Noise-level estimation of time series using coarse-grained entropy
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We present a method of noise-level estimation that is valid even for high noise levels. The method makes use
of the functional dependence of coarse-grained correlation engfy) on the threshold parameter We
show that the functioK,(e) depends, in a characteristic way, on the noise standard deviatitinfollows
that observingk,(e) one can estimate the noise level Although the theory has been developed for the
Gaussian noise added to the observed variable we have checked numerically that the method is also valid for
the uniform noise distribution and for the case of Langevin equation corresponding to the dynamical noise. We
have verified the validity of our method by applying it to estimate the noise level in several chaotic systems and
in the Chua electronic circuit contaminated by noise.

DOI: 10.1103/PhysRevE.67.046218 PACS nuni)er05.45.Tp, 05.40.Ca

[. INTRODUCTION The function depends on system variables (correlation
entropy, D, (correlation dimension o (standard noise de-
It is a common case that observed data are contaminatedation), and a normalizing constadt. These four variables
by a noise(for a review of methods of nonlinear time series are estimated using the least squares fitting. The Diks method
analysis se¢l,2]). The presence of noise can substantially[6] is valid for a noise level up to 25% of signal variance and
affect invariant system parameters as a dimension, entropy @r various measurement noise distributions. The Diks
Lyapunov exponents. In fact Schreibi@d] has shown that method needs optimal values of the embedding dimerdsion
even 2% of noise can make a dimension calculation misleadne empedding delay, and the maximal thresholel, .
ing. It follows that the assessment of the noise level can be g, et g.[7] developed a method of noiseductionand

crucial for estimation of system invariant parameters. Evenay sed this method for noise-level estimation. The method

after performing a noise reduction one is interested to evaluéxplored the local-geometric-projection principle and is use-

iﬁstg?sn(());tseiI?e\z/eflalrlgetgeaglZa%zigl?rt:fnlennihjn?é?é\rilrr\?eC\tr;[il_(“:%I for various noise distributions but rather small noise lev-
9 . y els. To use the method one needs to choose a number of
corresponds to a random variable added to the system teni-

porary state or to the experimental outcome. This kind Opeighboring points to be. regarded, an appropriate number of
noise is usually called themeasuremerdr theadditivenoise. fterations as well as OP““_’a' para_\meters valdw_d &
Another case is the noise influencing the system dynamics, Oltmansetal. [8] considered influence of noise on the
what corresponds to the Langevin equation and can be calldyfobability density functiorf,(e) but they could take into
the dynamicalnoise. The second case is more difficult to @ccount only a small measurement noise. They used a fit of
analyze, because the noise acting at momgnusually  fn(¢) to the corresponding function which was found for
changes the trajectory fdr>t,. It follows that there is no Small &. Their fitting function is similar to the probability
clean trajectory and instead of it anshadowed trajectory density distribution that we receive from correlation integrals
occurs[4]. For real data a signdk.g., physical experiment 1/N*Dy(e). The method needs as input parameters values of
data or economic dakds subjected to the mixture of both d, 7, ande.
kinds of noise(measurement and dynamigal Our method has its origin in recurrence pl¢&PS [9]
Schreiber has developed a method of noise-level estimand it uses RPs quantities to characterize the data. Recur-
tion [3] by evaluating the influence of noise on the correla-fence plots were originally introduced by Eckmdi®j as a
tion dimension of investigated system. The Schreiber metho#Seful graphic way for data analysis. The plot is defined as a
is valid for rather small Gaussian measurement noise ancdhatrix NX N, where a doti(,j) is drawn wher1|yi—yj||<s
needs values of the embedding dimensibthe embedding (e is a given threshold By recurrence plots one can study
delay = and the characteristic dimensionspanned by the data stationarity10—12, as well as their recurrence and de-
system dynamics. terministic propertie§13—15. The approach was also ap-
Diks [5] investigated properties of correlation integral plied for parameter optimizin16] in the local projection
with the Gaussian kernel in the presence of noise. The Dikenethod of noise reductiorl7]. RPs can be easy to calculate
method makes use of a fitting function for correlation inte-characteristic system parameters like the correlation entropy
grals calculated from time series for different threshalds [18], what will be performed in our case. Lines of black dots
parallel to the main diagonal can appear in recurrence plots
and their number can serve as a measure of determinism
*Electronic address: urbanow@if.pw.edu.pl [10]. In our method we take into account a number of lines
TElectronic address: jholyst@if.pw.edu.pl D, of the lengthn or longer by the embedding dimension

1063-651X/2003/6(#)/0462187)/$20.00 67 046218-1 ©2003 The American Physical Society



K. URBANOWICZ AND J. A. HOLYST PHYSICAL REVIEW E67, 046218 (2003

d=1. We use the fact that there is a straightforward relation o D, (€) dIn[D,(e)]
betweenD, and the correlation integrllg]. Kz=1im limin B an (©)
The crucial point of our method is fitting of a proper e—On—e TN

function to the estimated correlation entropy,. In fact
similar considerations can be performed for Kolmogorov-
Sinai entropy{19-21 K using, for example, the approach D, =D e (""2Kz, (4)
given in Ref.[22], but in such a case a much larger number

of data is needed, since tlifg entropy is more sensitive to Let us introduce the following convention for lines counting:
regions of the phase space with small values of invarianif there is a line of the lengtim then it includes one line of
measure. The method is not too time consuming, e.g., a cathe lengthn— 1, one line of the lengtih— 2, etc. Using Eq.
culation of entropy for 100 various thresholds axde 3000  (4) one can easily find the average line length,

data points needed a few minu{&8]. Our method does not
demand any input parameters like the embedding dimension ‘ —(n-2)K
d or the embedding delay. The minimal and maximal val- nz (Dn+Dhy2=2Dp11)N 242 ne 2
ues of the threshold parametercan be automatically esti- (ny=— =—
mated. In all considerations we use the maximum norm to C(n—2)K
save the computation time and to perform analytic expan- ,Z:Z (Dot Dns2=2Dn+1) zfz e (12
sions. It is known that in the limit—0 the behavior of

invariant system parameters does not depend on the type of 2_a Ko

used norm. In our case features of coarse-grained entropy are =— "
considered and the value of the threshold paramestrould 1-e "2

be comparable to the noise level. It follows that one can not )

exclude that the type of applied norm affects the functionall "€ @bove formula neglects all lines of the lengtt 1.
dependence of the coarse-grained entripis) in the pres-  NOW the entropy can be approximated as

We assume that E@3) is approximately valid fon=2 thus

oo [’

N

®)

ence of noise of a large or medium value. (ny—1
We stress here that our method is provided for a noise- K,~In . (6)
level estimation. The method is not equivalent to noise filters (n)—2

that allow to extract an original nondisturbed signal from

noisy time serie§4,24,25. The relation between the entropy, dimension, and correlation

integral is given by the well-known formul28,29

II. ENTROPY ESTIMATION FOR A TIME SERIES IN THE . . 1
NOISE ABSENCE lim |Im|ann(8):D2|n8—nTK2, (7)

n—og—0

Let {x;}, wherei=1,2,... N, be a time series any . . o
={X; Xi+ Xi+(n_1),} @ correspondingn-dimensional thus the logarithm of the correlation integral is a linear func-
[ et e i B n—1)r - . .
vector constructed in the embedded space, wimeig an tion of entropyK, and system dimensioD,. On the other

embedding dimension andis an embedding delay. The cor- hand.the c_:orrelqtion dimensicm_z is independent of the em-
lation int | calculated in th bedded spag bedding dimensiod if the latter is large enough. We use this
relation integral caiculated in the embedded Space fact and in the following section we will estimate the noise

effect on the dimensiod®, as well as on the length of the

. 1 XX I line in RP where the line length corresponds to the embed-
Cl(e)= N2 2 2, 0e=lyi—yjl, 1) ding dimension. Finally, we will incorporate both effects into
1 j#i . .
Eq. (7) to reproduce the complete influence of noise on the
) o ) ) ~ correlation integral.
whered is the Heaviside step function. ||f. . .| is the maxi-

mum norm, the correlation integr@"(e) is proportional to
the numbem,,(¢) of lines of the lengtm or longer in the RP
constructed from the data spt;} [18]

Ill. INFLUENCE OF NOISE ON CORRELATION
INTEGRAL

Let us modify the definition oD,, in such a way that the
influence of noise on entropy can be analytically estimated.

C(s)= i E 0(e— |Xi—Xj|)0(8—|Xi+ First we change Eq.l) to the equivalent form
2 L A T
N e N N |
~Xji ) 0= X (nm1)r= X+ (n-1)7]) Dp(e)=2, ; 0 kEO 0(e—|Xi k= Xj)—n], (8
I i#] =
Dy(e) . . .
= N (20 wherel is the length of the recurrence line beginning at the

point (i,j). Equation(8) is valid provided that one assumes
0(0)=1 for the Heaviside function. The functiof in Eq.
The correlation entropj26,27] can now be calculated as (1) is called a kernel functiof30], and it can be written in a
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Je?l3+20%— 8/\/§>

€

general way ap.(r). Now let us use the fad30] that the
kernel function can be replaced by any monotonically de- —n7K,——n7Ky(e)
creasing functionp_(r) with a bandwidth e such that
lim, _or Pp,(r)=0 for e>0 and anyp=0. The bandwidth
e of the kernel function corresponds to the thresheldit

follows that we can replace the innéfe —r) function in Eq.
(8) by a new linear continuous function

1+m

(13

For a small noise €<¢) the last equation can be trans-
formed to

e—r

2
, for Osrse¢ _nTK2—>—nTK2(8)(1+ \/3770—2), (14
Oe—r)=pg(r)=y & ) &

which is in agreement with the well-known resi8tl,32 for

and simultaneously we lower the threshold in outdiunc- e 7nzoise entropy in the case of noise spectrfw)
tion by the constang=1/\/m. We have checked that other ~ ®
choices ofB bring similar results. Now instead of E() we

have 1
Knoi'sy'vg- (15

N N L
DG(E)ZE 2 0 E M_Bn . (10

T i#] \ k=0 € Equation(13) expresses the influence of noise on the line
lengthn. On the other hand Schreiber has shd@&hthat the
We use the above expression to Ca'cu'ate the mean |ini@fluence Of noise can be described by the SubStitutiOl’] in Eq
length(n). Practically the length of each line is calculated as(?),
the maximal value of the parameterin Eq. (10) provided

that the# function equals to 1. Havingn) we calculate the €
system entrop¥, using the Eq(6). Da—| Do+ (n=1)g| 5|, (16)
Now let us consider the influence of uncorrelated Gauss-
ian noiser; added to the observed system variakle Eq. where
(10) is replaced by the following approximation:
g L= Xkt i X mid (2) 2 ze ¥ 17
D, _ 0 I+ I+ ]+ ]+ 9(2)=—=—%F-,
a(2)=2] 2 (go . Jz erf(z)
and the parameter follows from the method of singular
—pn|, value decomposition used in R¢8].

Combining Eq.(7) with results(13) and(16) we get

8_|Xi+k_xl'+k| n A} a282+ 20'2_08

N N
EZ ; 6( g‘o € € ’Dn(s)"’S[Der(nr)g(SIZU)]EX[{—nTKZ(S)

2 2_,
Vell3+ 20 /\/5”, 18

€

1+m

_Bn), (11) X

whereo is the standard noise deviation aads a constant
of order 1 that depends on the distribution|®f—x;|. One
can easily derive Eq11) assuming that,~ ae, whereoy
stands for a standard deviation |af —x;| € (0,¢). When the
differences|x; —x;|_are uniformly distributed in the region
(0,e), thena=1/3.
Comparing Eq(11) to Eq. (8) and Eq.(10) we see that
the effect of noise corresponds formally to the change where the constant corresponds to the correlation entropy
while the second term describes the effect of the coarse

whereK,(¢g) is the coarse-grained entropy of the clean sig-
nal. The explicit form of the functiof,(&) is unknown. A
good fit that seems to be valid for several systems is

Ky(e)=k+biIn(1-ae), (29

JeU31 22— ¢1\3 grain_ing._We stress here that the precise valu_e of the Iatt_er
n—n| 1+\7 ] (120  function is not needed for our approach of noise-level esti-
€ mation, because we are left with some free parameters. It
follows that one can estimate the coarse-grained entropy of
Instead of the second part of lhs of E@) we have the signal with noise as
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dIn[D,(g)] - T —
Knoisy(s):_d—rr]1 0.08 + .
_ 1 /e 0.06} -
——;g(% |n8+K2(8) "
oS
[2 ¢ 5 0.04+ 1
§+20'2— ﬁ v 3
x\ 147 . . (20 0.02} )
H H H 000 1 N s 1 N I 1 N I
where the functiomgy(.) corresponds to the influence of noise 00 01 02 03 04 05 06 0.7

on the correlation dimension, while the second term can be
split into the coarse-grained entropy of the clean signal
K,(e) and the linear increase of this entropy due to the pres- FIG. 1. Chaotic Henon map without a noise. Plot of coarse
ence of the external noise \[(\e%/3+202 grained entropy multiplied by the threshatd(square} calculated
—&/\/3)/e]K,(¢). To estimate the noise levelone can use from time series and the fitting functiq®1) with p=1 (line).

the above dependence of the correlation entitdpys\(e) as

the function of the threshold. However, we have found that One can see the behavior of fitting functi@i) for the
because of a peculiar behavior i6f,,is,(¢) it is more con-  clean signal in Fig. 1. For a small threshadd<e,,x the
venient to fit the functiorK,,,is ()P instead ofK,is(€) dependence is a linear since for smakK,(¢) is a constant.

to corresponding experimental dafa i6 a constant of order The important feature of the pld€,q;s(e)eP for noisy

of 1, see the following section for discussjott follows that ~ data is the appearance of two maxirtsee Fig. 2 This

we need to estimate five free parameterso, a, b, andc  feature is helpful for the noise estimation since origins of
for the function these maxima are related to the first and second part of rhs of
Eqg. (22), i.e., the first maximum is connected to the noise
level, while the second maximum to the finiteness of the
attractor. For a high noise level both maxima merge. The
position of the first peak or the single maximum can be used

rescaled threshold ¢

&

Khoisy(€)eP= —Cspg< o Ine+[k+blin(l—ae)]eP

Ve?i3+ 202—8/\/§ for additional noise estimation, because one can find that for
x| 1+ . . ()
1
The parametec (c ranges typically from 0.5 to 0.7) has p=3.44171F (o)’ (22

been introduced for a better agreement to numerical data. To
fit the above function we have used Levenberg—Marquardé . _ b _ .
method[33]. We stress here that we do not need to assum he maximum oKp,is(£)eP appears at =o. Relation(22)

any input value for the above coefficients, but they appear aglves us the second way, beside &), for estimation of
S noise level and for the control of results received due to
a result of application of our method.

fitting (21).
Let us define the percent of noise as the ratierdb the
standard deviation of data

In practice, all input parameters of the method can be
default. The character of the method causes that the evalua- 0.16} _
tion of the embedding dimension that usually appears in non-

IV. NOISE-LEVEL ESTIMATION: EXAMPLES

linear time series analysis is not needed at all. Since in RP 0.14¢ ]
we consider lines of all lengths larger than 2, the embedding g 0.12} .
dimension applied here is practically the highest as possible gw o.10f ]

—

for given time series. w

The first point is to calculate the average line length 70.08 - 1
for a given threshold and then to find the corresponding en- X" 0.06} ]
tropy K,(&) using formula(6). Having values of entropies

for about 100 different thresholds, one should rescalesthe 0.04¢ ]
axis. In such a way different systems with different sizes of 0.02} T
attractors can be compared. Practically, we do_this by multi- 010001 020304 05 06 0.7
plying € by some constany, such thate .4y = &max=0.7 rescaled threshold ¢

[max has beeh .Chosen 93|ng t_he conditidt(emay) FIG. 2. Chaotic Henon map with measurement noise
=0.0135]. After f'lndlng'the noise Ievgt_ln th? resca[ed data, ~10%. Plot of coarse-grained entropy calculated from the time
the corresponding noise of the original time series can bgeries multiplied bys®%?? (squares and fitting function(21) with
calculated asr=o/7y. p=0.622(line).
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TABLE I. Results of noise-level estimation for systems with the ~ TABLE Il. Results of noise-level estimation for the Lorenz sys-

measurement noise. tem with the dynamical noise.
System N o Estimatedo System N o Estimatedo
Henon 0% 0 —0.0023-0.0001 Lorenz 11% 1 1.190.12
Henon 9% 0.1 0.£0.0007 Lorenz 11% 1 1.1Z20.15
Duffing oscylator 20% 0.4 0.460.005 Lorenz 11% 1 1.140.1
Duffing oscylator 55% 2 1.90.02 Lorenz 11% 1 1.150.2
Ikeda 10% 0.07 0.070.0005 Lorenz 11% 1 1.1£0.18
Lorenz 22% 2.2 2.20.01 Lorenz 11% 1 1.0¢0.14
Roessler 4% 0.58 0.580.012
Roessler 14% 2 1.750.01
Roessler 350 6 6.160.2 the first three examples correspond to the noise added after
Roessler 48% 10 8.940.1 writing the value of a variable into a file and the next ex-

amples correspond to the noise added just before writing a
variable to a file.

Our method can be useful for evaluation of very high
X 100% (23)  noise levels. Figure 4 shows the plot of functi@) for the
TDATA noise (V~=100%,p=1). In such a case the error of the
estimation is large, because we are free to use five param-

by an appropriate fit to Eq(21) for several systems and eters to fit a simple curve. We have found that for high noise

. : . levels it is better to use as the fitting function a sum of
noise levels are presented in Table I. One can see a fairl

good agreement between the estimated and known level équaﬂons(Zl) thh different exponentp (W? have useql?l
noise. =0.5 and p,=7). It follows that we fit the function

_ 3 P imati
We apply this method for chaotic differential equations Knoisyk)(e"*+&2). The estimation works better, because
for different values ofp function (21) is more sensitive to

where the noise, is added to system statgs, calculated jitterent noise levels.
by the _fourth-order Runge-Kutta algorlthn_]. It foIIo_vvs that T, verify our method in a real experiment we have per-
next points of the trajectory are dependent in a nonlinear waysmeq analysis of data generated by a nonlinear electronic
on previous noisy contributiong34] (we call this kind of 0t The Chua circuit in the chaotic regini@5,36 has
noisea dynamical noise In fact we consider a noise added poen ysed, and we have added a measurement noise to the
to the nonlinear map resulting from the 0r|glpal dlﬁergntlal outcoming signal. The noisevhite and Gaussiarhas come
equations and the Runge-Kutta procedwg.;=F(y, from an electronic noise generator. The results are presented
+7,). We have found that the noise-level estimated by ouin Table IV. The first two rows correspond k=10 000 and
method corresponds to the standard deviation of the noistne rest toN=1000. In the case of a small noise level we
existing in the systenur= \/<7;n2>. Figure 3 shows that the cannot perform any estimation for a small number of data,
behavior of the coarse-grained entropy is similar in the presbecause the noise is smaller than the average distance be-
ence of dynamical and additive noise. tween nearest neighbors. The estimation Ifor 1000 has
Results for the dynamical noise and a mixture of twotaken a few minuteg23].
kinds of noise are presented in Tables Il and Ill. In Table I

N:

The estimated values of the standard deviatioreceived

V. CONCLUSIONS
0-07 T T T T T T T T T T T T

In conclusion we have developed a universal method of

0-06_' noise-level estimation from time series. The method makes
0.05% use of the functional dependence of the coarse-grained en-
. tropy K,(e) on the threshol@. It appears that the peculiar
w 0.041
3’%0 03 | TABLE lIl. Results of noise-level estimation for systems with
- mixture of measurement and dynamical noise.
x L]
0.02}+
- System N o Estimatedo
0.01}
- Lorenz 43% 4.06 4.560.12
0-00 1 1 1 . 1 1 s 1 1 1 0
00 01 02 0.3 0.4 05 0.6 0.7 Lorenz 6% °.93 >.340.11
rescaled threshold ¢ Lorenz 35% 2.93 2.420.12
Roessler 14% 2.82 1.970.12
FIG. 3. Chaotic Lorenz model with the dynamical noise. Plot of Roessler 94% 335 320.75
coarse-grained entropy calculated from the time series multiplied by  Roessler 81% 16.12 160.71

the threshold: (squaresand fitting function(21) with p=1 (line).
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J T T J T T T T TABLE IV. Results of noise-level estimation for the Chua cir-
0.25¢ 7 cuit with the measurement noise.
0.20} . N o (mV) Estimatedo (mV)
w 0% 0 0.15-0.015
2 0.15} .
< 3.1% 30.4 29.60.3
20.10L i 6.2% 60.8 61.38
« 0
I 12.3% 121.7 1168
0.05 - i 24.9% 2434 22313
L 28.3% 304 3869
0.00 L— \ . ) . L L L 46.1% 486 49920
00 01 02 03 04 05 06 0.7 73.7% 973 110852
rescaled threshold ¢ 90.6% 1520 153717
96.5% 2120 2042 38

FIG. 4. NoiseN=100%. Plot of coarse-grained entropy calcu-
lated from the time series multiplied by the thresheldsquarep
and the fitting function21) with p=1 (line).

our method by applying it to estimate the noise level in sev-
eral chaotic systems and in the Chua electronic circuit.
shape of this entropi{,(e) depends on the standard devia-

tion_ of the no_isecr so a simple function fitt_ing can be_applied ACKNOWLEDGMENTS
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