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Mean-field theory for clustering coefficients in Barabási-Albert networks
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We applied a mean-field approach to study clustering coefficients in Baraba´si-Albert ~BA! networks. We
found that the local clustering in BA networks depends on the node degree. Analytic results have been
compared to extensive numerical simulations finding a very good agreement for nodes with low degrees.
Clustering coefficient of a whole network calculated from our approach perfectly fits numerical data.
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INTRODUCTION

During the last decade networks became a very pop
research domain among physicists~for a review see Refs
@1–3#!. It is not surprising, since networks are everywhe
They surround us. In our daily life we participate in doze
of them. A number of social institutions, communication, a
biological systems may be represented as networks, i.e.,
of nodes connected by links. It was observed that des
functional diversity most of real web-like systems sha
similar structural properties. The properties are: fat-tailed
gree distribution~that allows for hubs, i.e., nodes with hig
degree!, small average distance between any two nodes~the
so-calledsmall worldeffect! and a large penchant for crea
ing cliques~i.e., highly interconnected groups of nodes!.

A number of network construction procedures have b
proposed to incorporate the characteristics. The Barab´si-
Albert ~BA! @4,5# growing network model is probably th
best known. Two important ingredients of the model are c
tinuous network growth and preferential attachment. The n
work starts to grow from an initial cluster ofm fully con-
nected sites. Each new node that is added to the netw
createsm links that connect it to the previously added nod
The preferential attachment means that the probability o
new link to end up in a vertexi is proportional to the con-
nectivity ki of this vertex

P i5m
ki

(
j

kj

. ~1!

Taking into account that( j kj52mt the last formula may be
rewritten asP i5ki /(2t). By means of mean-field approx
mation @5# one can find that the average degree of a nodi
that entered the network at timet i increases with time as
power law

ki~ t !5mA t

t i
. ~2!

Taking advantage of the above formula one can calculate
probability that two randomly selected nodesi andj are near-
est neighbors. It is given by
1063-651X/2003/68~4!/046126~4!/$20.00 68 0461
ar

.
s

ets
te

-

n

-
t-

rk
.
a

he

pi j 5
m

2

1

At i t j

. ~3!

It was shown that the degree distribution in BA netwo
follows a power law

P~k!5
2m2

k3
, ~4!

wherek5m,m11, . . . ,mAt. The power-law degree distri
bution is characteristic of many real-world networks and
scaling exponentaBA53 is close to those observed in re
systems@a real is roughly limited to the range~1–3!#. It was
also shown that the BA model is a small world. The me
distance between sites in the network havingt nodes behaves
as l; ln t/ln ln t @6,7#. The only shortcoming of the model i
that it does not incorporate a high degree of cliqueness
served in real networks.

In this paper we study cliqueness effects in BA networ
The cliqueness is measured by the clustering coefficienC
@8,9#. The clustering coefficientCi of a single nodei de-
scribes the density of connections in the neighborhood of
node. It is given by the ratio of the numberEi of links be-
tween the nearest neighbors ofi and the potential number o
such linksEmax5ki(ki21)/2,

Ci5
Ei

Emax
5

2Ei

ki~ki21!
. ~5!

The clustering coefficientC of the whole network is the av
erage of all individualCi ’s. It is known, from numerical
calculations, that the clustering coefficient in BA networ
rapidly decreases with the network sizet. In this article we
apply a mean-field approach to study the parameter. Our
culations confirm that in the limit of large (t@1) and dense
(m@1) BA networks the clustering coefficient scales as
clustering coefficient in random graphs@10–12# with an ap-
propriate scale-free degree distribution~4!

C5
~m21!

8

~ ln t !2

t
. ~6!
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We also show that the individual clustering coefficientCi in
the BA network weakly depends on the node’s degreeki .
The dependence is almost invisible when one looks at
merical data presented by other authors@13#.

MEAN-FIELD APPROACH

Let us concentrate on a certain nodei in a BA network of
sizet. We assume thatm>2. The case ofm51 is trivial. BA
networks withm51 are trees thus the clustering coefficie
in these networks is equal to zero. By the definition~5! the
clustering coefficientCi depends on two variablesEi andki .
Since in the BA model only new nodes may create links,
coefficientCi changes only when its degreeki changes, i.e.,
when new nodes create connections toi and x50, . . . ,m
21 of its nearest neighbors. The appropriate equation
changes ofCi is then

dCi

dt
5 (

x50

m21

p̃ixDCix , ~7!

whereDCix denotes the change of the clustering coeffici
when a new node connects to the nodei and tox of the first
neighbors ofi, whereasp̃ix describes the probability of thi
event.DCix is simply the difference between clustering c
efficients of the same nodei calculated after and before
new node attachment

DCix5
2~Ei1x!

ki~ki11!
2

2Ei

ki~ki21!
52

2Ci

ki11
1

2x

ki~ki11!
.

~8!

The probability p̃ix is a product of two factors. The firs
factor is the probability of a new link to end up ini. The
probability is given by Eq.~1!. The second one is the prob
ability that among the rest of (m21) new linksx links con-
nect to nearest neighbors ofi. It is equivalent to the prob-
ability that (m21) Bernoulli trials with the probability for
success equal to( j* kj /(vkv5( j* kj /(2mt) result inx suc-
cesses (( j* runs over the nearest neighbors of the nodei ).
Replacing the sum( j* by an integral one obtains

(
j*

kj5E
1

t

kj pi j dtj5
m

2
ki ln t. ~9!

Summarizing the above discussion one yields the relatio

p̃ix5
ki

2t
~x

m21!S ki ln t

4t D xS 12
ki ln t

4t D m212x

. ~10!

Now, inserting Eqs.~2!, ~8!, and~10! into Eq.~7! one obtains
after some algebra
04612
u-

t

e

r

t

dCi

dt
52

m

~mt1Att i !
Ci1

m~m21!ln t

4~mt21tAtt i !
. ~11!

Solving the equation forCi one gets

Ci~ t !5
~m21!

8~At1At i /m!2 S ~ ln t !22
4

m
At t

t
ln t2

8

m
At i

t
1BD ,

~12!

whereB is an integration constant and may be determin
from the initial conditionCi(t i) that describes the clusterin
coefficient of the nodei exactly at the moment of its attach
ment t i

Ci~ t i !5
1

2 (
j

(
v

pi j pivpj v /~2
m!5

m2

8~m21!

~ ln t i !
2

t i
.

~13!

Following the notation introduced by Bianconi and Capo
@14#, the initial clustering coefficientCi(t i) may be written
as

Ci~ t i !5
1

~2
m!

F]^N3~ t !&
]t G

t5t i

, ~14!

where]^N3(t)&/]t describes how the number of triangul
loops increases in time. Figure 1 shows the prediction of
~13! in comparison with numerical results. For small valu
of t i , the numerical data differ from the theory in a signi
cant way. This can be explained by the fact that the form
for the probability of a connectionpi j ~3!, that we use three
times in Eq. ~13!, holds only in the asymptotic regiont i
→`.

Taking into account the initial conditionCi(t i) and ne-
glecting mutually compensating terms that occur in Eq.~12!
after puttingB calculated from Eq.~13! one obtains the for-
mula for time evolution of the clustering coefficient of
given nodei

FIG. 1. The initial value of the local clustering coefficientCi(t i)
~averaged over 1000 BA networks!.
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Ci~ t !5
~m21!

8~At1At i /m!2 F ~ ln t !21
4m

~m21!2
~ ln t i !

2G .

~15!
Let us note that ift i!t or m@1, the local clustering

coefficient does not depend on the node under considera
and approachesCi(t).(m21)(ln t)2/(8t), i.e., the formula
~6! that gives the clustering coefficient of a random gra
with a power-law degree distribution~4!. Since one knows
how the node’s degree evolves in time~2! one can also cal-
culate the formula forCi(ki). At Fig. 2 we present the for
mula ~15! ~solid line! and corresponding numerical da
~scatter plots!. The two kinds of scatter plots represent r
spectively: real data~light gray circles! and the same dat
subjected to adjacent averaging smoothing~dark gray
circles!. As before~see Fig. 1!, we observe a significant dis
agreement between the numerical data and the theory
small t i . We suspect that the effect has the same origin,
the relations~2! and ~3! that we use in our derivation wor
well only in the asymptotic regiont i,t→`.

To obtain the clustering coefficientC of the whole net-
work the expression~15! has to be averaged over all nod
within a networkC5*1

t Ci(t)dti /t. We were not able to find
an exact analytic form of this integral but we found
asymptotic form in the limit of larget→` and densem@1
BA networks. Taking advantage of the second mean va
theorem for integration@15,16# the clustering coefficientC
may be written in the form

C5
m2~m11!2

4~m21! F m

~m11!
1 ln„~m11!At…2

mAt

Aj1mAt

2 ln~Aj1mAt !G @ ln~ t !#2

t
, ~16!

where 1,j,t is unknown parameter. Note that for large a
dense networks the termAj in formula ~16! may be ne-
glected in comparison withmAt and the expression forC
may be rewritten as

FIG. 2. The local clustering coefficientCi(t) as a functiont i

~averaged over 104 networks!. Note that theki axis is nonlinear.
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C5
m2~m11!2

4~m21! F lnS m11

m D2
1

m11G@ ln~ t !#2

t
. ~17!

For large (t→`) and dense (m@1) networks the above
formula approaches Eq.~6!. The effect lets us deduce that th
structural correlations@17# characteristic for growing BA
networks become less important in larger and denser
works. The same was suggested in Ref.@6#. Figure 3 presents
the average clustering coefficient in BA networks as a fu
tion of the network sizet compared with the analytical for
mula ~17! ~solid line! and numerical integration of Eq.~15!
~open squares!. Paradoxically, the approximate integration
Eq. ~15! given by Eq.~17! better fits the real data then th
numerical integration of Eq.~15!.

CONCLUSIONS

In summary, we applied a mean-field approach to stu
clustering effects in Baraba´si-Albert networks. We found tha
local clustering coefficientsCi(t) in BA networks are not
completely homogeneous as suggested in Refs.@10,13#. The
observed small deviations ofCi(t) from the global network
parameterC(t) are especially visible for old nodes (t i!t).
We derived a general formula for the clustering coefficienC
characterizing the whole BA network. We found that in t
limit of large (t→`) and dense (m@1) networks both the
local (Ci) and the global~C! clustering coefficients approac
clustering coefficient derived for a random graph with
power-law degree distribution~4!. Our derivations were
checked against numerical simulation of BA networks fin
ing a very good agreement.
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FIG. 3. The clustering coefficientC of a whole BA network as a
function of the network sizet ~averaged over 100 networks!.
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