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Stochastic multiresonance due to interplay between noise and fractals
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Stochastic multiresonance is shown to occur in a general class of threshold-crossing systems, in which a
derivative of the threshold-crossing probability with respect to a system parameter is a nonmonotonic function
of the noise intensity. As an example, a two-dimensional chaotic map is considered, where the threshold-
crossing probability follows the overlap of the fractal structures of chaotic saddles and the basins of escape in
noise-induced crisis. The analytic theory is in reasonable agreement with the numerical results for spectral
power amplification.
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I. INTRODUCTION to g, considered as a function of the noise intensity, is non-
monotonic, the SMR appears in such TC systems, in the
Stochastic resonand&R) is a phenomenon occurring in adiabatic limit of slow periodic signals. As a particular ex-
nonlinear systems whose response to a weak periodic stimample of such a TC system we consider a two-dimensional
lation is enhanced by addition of noise with optimum inten-chaotic map with noise-induced crigi86], and with a peri-
sity [1—4]. This response can be characterized, e.g., by thedic signal added to the control paramegein this example,
spectral power amplificatio(SPA) defined as the ratio of the SMR appears due to the fractal structures of attractors and
output signal power at the periodic stimulation frequency tothe basins of attraction overlapping above the crisis point.
the power of the input periodic signal. In systems with SR,For this case, we formulate an analytic theory for SMR based
the SPA shows maximum as a function of noise intensityon the models of fractal attractors and their basins of attrac-
The occurrence of SR requires an energetic activation barrigfon, valid for slowly varying periodic signals and correlated
or, more generally, a sort of threshold. The way in which thisnoise, which agrees qualitatively with the numerical results.
threshold is realized in the system dynamics and the suitabfehe example analyzed extends the previous studies of noise-
definition of the output signal, both enable distinction be-free SMR in maps with crisel20,21] to the case of noise-
tween the basic classes of systems exhibiting SR, such agduced crises, i.e., to the case of SR with noise.
bistable potential systenfiS], dynamical6] and nondynami- The rest of this paper is organized as follows. In Sec. II,
cal [7] threshold-crossingTC) systems. A separate class of we formulate a general theory which links the SPA with the
systems with SR is formed by chaotic systems without exderivative of the TC probability in the above-mentioned class
ternal noise, in which the internal chaotic dynamics can bef TC systems. In Sec. Ill, we introduce the model chaotic
tuned, by varying the control parameter, so that the outpufhap, describe methods of analysis of SMR, and present an
signal shows maximum periodicif,3,8}; this kind of SR is  analytic theory for the SPA in two-dimensional chaotic maps
referred to as noise-free SR. close to the noise-induced crisesith details in the Appen-
It has been recently realized that the picture of SR can bglixes. In Sec. IV, we present numerical evidence for the SPA
more complex than expected. In particular, in certain systemgith multiple maxima vs the noise intensity in the model

the output SPA can show multiple maxima as a function ofmap, and compare numerical and theoretical results. Finally,
the noise intensity, and the respective phenomenon wasec. V contains conclusions.

given a name stochastic multiresonanl&MR) [9-11] or
was reported without referring to this nafie2—19. A simi-

lar phenomenon, noise-free SMR, was found in chaotic sys- Il STOCHASTIC MULTIRESONANCE
tems[20,21]. The ubiquity of SMR has been also confirmed IN THRESHOLD-CROSSING SYSTEMS:
by the recent experimental observatid@2—25. However, GENERAL CONSIDERATIONS

the theoretical investigations of SMR with noise have been
so far constrained only to potential systems with certain dis- Let us consider a general class of TC systems in which the
crete spatial symmetri¢9,10] or with bistable potential and TC probability p depends on some parametgrand input
correlated noisg¢11]. noise with the intensityp, p=p(q,D). A small periodic sig-

In this paper, we propose a general class of TC systems inal is added to the parametgrso that it becomes time de-
which multiple maxima of the SPA vs noise intensity appeampendentq(t) =q,+ (,C0St). Let us go to discrete time by
in a natural way. We consider TC systems in which the TCdividing it into short time steps so that every TC event takes
probability depends on the noise intensilyand on some place within one time step. The output sigyét) is defined
parameterg to which a weak periodic signal is added. We as y(t)=1 when at timet the TC event took place, and
show that if the derivative of the TC probability with respect y(t) =0 otherwise. The output SP4 is defined as
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IP,|2 1 NT _ structures of the chaotic saddles and the basins of escape,
o= 12 , Pi=1Iim NT > y(bete, (1)  although smeared out by noise, are still visible in the phase
a; N—oo N 1 =1 space. Thus, the jump probabilip(g,D) can still show os-

) o cillations around a certain main trend dfor D are varied
WhereT:27T/g). If the TC systgm |s.non(.jynam|c(ale., We  [26]. Then the difference quotient’(q,D) can be a non-
deal with static threshold nonlinearjtyor if the TC system 1 ,ntonic function of the noise intensify [note that since
has internal dynamics but the periodic signal modulates ifhe oscillations of the jump probability are fractal induced,
adiabatically, the TC probability becomes a periodic functlonp(q D) need not be differentiableHence, defining the TC
of time which can be obtained gt)=p(do+q:SiNwtD)  eyents as jumps of the phase trajectory between the symmet-
and ric chaotic saddles, and adding periodic signal to the control
T parameter, we obtain a TC system fulfilling the sufficient
E p(t)e“t. 2) condition given in Sec. Il for the appearance of SMR.
t=1

=l -

P]_:

) ) ) ) B. The model of kicked spin map with noise
Assumingq;<1 and developingy(t) in the Taylor series

with respect tog yields in the first approximation The TC system we take as an example is based on the
chaotic kicked spin map. The map describes the motion of a
o'%l((?p/ﬁq)|(q0’D)|2/4_ (3)  classical magnetic momelispin S, |§ =S, in the field of

uniaxial anisotropy and impulse transversal magnetic field
From Eq.(3), it follows that a sufficient condition for the E(t)zBEﬁ:l(S(t—nT) for which the Hamiltonian isH=
occurrence of SMR is that the derivativg@/dq, with fixed —A(S)%2-B(1)S,, whereA>0 is the anisotropy constant.
do, is nonmonotonic as a function of the noise intensity. Therhe time evolution of the spin is determined by the Landau-
multiple maxima of the SPA are associated with extrema of jfschitz equation with damping constant The equation
this derivative. If the curvep=p(q,D) is not differentiable  can be integrated, and denoting the spin vectorShyust
with respect tog, one can replace the derivative in B8  after thenth field pulse one finds a two-dimensional map
with the difference quotient S,.1=T[S,], whose form is given in Ref§31—33.
, For some regions of the model parameters, the spin map
P'(do.D)=[P(Go*01,D)=P(do=01.D)}/201- (9 oypinits attractor merging crisis &=B,: for B<B, two
separate symmetric chaotic attractors, corresponding to the
IIl. THE MODEL AND METHODS OF ANALYSIS spin “up” (S,>0) and “down” (S,<0) states, coexist,
whereas foB>B_ the attractors merge and the spin jumps
between these two states. Both the chaotic saddles and the
In order to introduce the model two-dimensional mappasins of escape are fractal, which is reflected in the TC
close to noise-induced attractor merging crisis, let us stafbrobability p(B), i.e., the probability of jump between the
with the attractor merging crisis without noise. The attractortwo spin orientations, which exhibits complicated oscilla-
merging crisis[27,28 occurs in systems in which, for a tions around the power-law tref@9,30.
range of values of the control parametgrtwo symmetric KeepingB<B_, the noise-induced attractor merging cri-
chaotic attractorghenceforth called precritical attractpex-  sjs can be forced by adding noise to the system. In order to
ist with complementary precritical basins of attraction. Asstudy SR in the spin map, a weak periodic signal and the

the control parameter is increased above the critical v@lue noiseD ¢(n) is added to the control paramet®y
each attractor collides with a border of its precritical basin of

attraction and pokes over it, overlapping the complementary B(n)=By+D¢(n)+B;icogwn), 5
basin. The precritical attractors are then turned into chaotic

saddles, and their complementary basins of aftraction intQjith the assumption that the noise has zero mean Byd
basins of escape. The phase trajectory bounces sequentiallyg, <B_ to remain in the noise-induced crisis regime. Thus,
around the two saddles, occasionally jumping between theng B =q and B,=q, in the notation of Sec. II; since
The jump probability is proportional to the invariant measure £(n))=0, the parameterB,=(B(n)) andD can be varied
of the chaotic saddle overlapping the basin of escape, anddependently, as needed.
shows a trend given by a power scaling lgwq)>=(q
—q.)?, wherey>1/2 is a critical exponenf27]. However,
since the chaotic saddles inherit the fractal structure of the
precritical attractors, with ragged distribution of the invariant We simulate numerically the spin map wiB(n) given
measure, and the basins of escape can also have a fracksl Eq. (5), with variousBg, B4, andD. The noise£(n) has
structure, significant oscillations qf(q) superimposed on uniform distributionp(x) =1/2 on the interva{—1,1). Both
this trend can be often observgzB—30Q. white and correlated noise are considered. The correlated
If the control parameter is below the critical valug, noise is obtained as follows. Firgt(0) is chosen at random.
<., merging of the precritical attractors is possible if noiseForn=1, with probabilityIl the value ofé(n) is chosen at
with intensity D is added to the system; this phenomenon israndom, and with probability 211 it remains unchanged,
called noise-induced attractor merging crisis. The fractalé(n)=¢&(n—1). The correlation timer of this noise is of

A. Systems with crises as models for stochastic multiresonance

C. Methods of analysis
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order 1I1. The use of such correlated noise with uniform
distribution makes possible the analytic studies in Sec. Il D. :
The model is treated as the TC system. The output signa _ o
is y(n)=1 if at time n the spin jump occurred, i.eS, , and
S, n—1 have opposite signs, arygn) =0 otherwise. From the B'b
output signal SPA is evaluated according to Eg. Besides,

for eachB, the jump probabilitiep(By+B;,D) and p(By . 3 Blbe
—B,,D) are obtained numerically as functions@fand the 2t _ _ yLan

SPA is evaluated from Eq$4) and (3). A good agreement a"‘{a"

between both kinds of curvesg(D) proves that our model is a*. K+

an example of the TC system supporting SMR, as describe /\ }}:x(l_;,)

in Sec. Il. Finally, the results are also compared with the o

analytic theory(see below, Sec. Il D /\ r—a-n
It should be mentioned that in the same map close to the : »5(1-p)

attractor merging crisis, noise-free SMR was observed in

Refs.[20,21. In this paper, the study is extended to the case F|G. 1. The model of the fractal chaotic saddle and the basin of
of crisis induced by noise, and SPA is not a function of theescape. The tops of the parabolic segments of the sadiglare
distance from crisiB8.— By but the intensity of nois®. It located aty=(1— & . 1)ae*+q and their relative invariant mea-
should be also noted that SR with noise has already beesures are given byu,=(1—7y)y¥, for O<k=K, and g,
studied in the spin map, but the amplitude of the periodic=y*"1. The lower and upper boundaries of the stripes of the basin
signal and noise intensities were too large to observe SMRre located aty=(1-8.1)(8'b—B'bg) and y=pg'b, respec-
due to the fractal structure of the precritical sg34]. Be- tively. The figure shows the location of parabolic segments and
sides, a related study of SR in the spin dynamics with constripes forg=0.

tinuous time[35] also did not show evidence for SMR.

K+1L+1
D. Analytic theory for stochastic multiresonance in systems (inst) () — (inst)

n)= n, 6

close to noise-induced crises P (n) gkzo pZo () ©

In this section, we present an analytic theory for SMR h (1s9¢1) is the instant insid
valid for two-dimensional maps close to noise-induced cri-VNEre iy (n) IS the Instantaneous measure 4f inside
B, at timen and ¢ is the proportionality constant.

with slow periodic signal an rrel noise. In con- . A ; .
ses, with slow periodic signal and correlated noise co After simple calculationgsee Appendix A using Egs.

trast with the general considerations of Sec. Il, the analyti o ) >
theory for this particular case is based on the models of frac?-'%l)' (A2), and(A3), the periodic in time jump probability

X ; : n) can be easily obtained by averagipt"s?(n) over the
'gl ghaqg::os?cri]c(i)l_e :ngtb(?;";;; ?nsza‘e%gén;aeIﬁﬁéerr%.dgse ise distribution. This averaging procedure resembles the
ISIS without noise, introdu : o IS one used in Ref.26] to obtain universal scaling behavior for

is strongly correlated and the periodic signal is slow, Wethejump probability in noise-induced crises. On the basis of

assume that their effect is simply to vary in time the relative, : - :
position of the chaotic saddles and the basins of escape, thLIJEsq' (6), the Fourier coefficient2) can be then written as

changing their overlap and the TC probability. In particular, K+1 L+1
we assume that the topological structure of these sets is not P1:§E 2 My 1, )
affected by the periodic signal and noise, and is identical k=0 =0 '

with that of the corresponding precritical attractor and the

basin of attraction. whereM,, ; are the Fourier coefficients at frequensyof the
We model the chaotic saddle with a set of parabolicmeasureg.("s"(n) averaged over the noise distribution, i.e.,

branches4,, k=1,2, .. .K+ 1, with a certain distribution of of the quantitiesu,;(n) from Eq.(A3). The analytic form of

invariant measurge,, and the basin of escape with a set of M1 is given in Appendix B. The theoretical curve SPAD's
stripesB,, 1=1,2,...L+1, whereK andL define the ac- can be plotted after insertirfg; into Eqg.(1). The form of the
curacy of the finite approximation of the true fractal sets@bove result resembles that of SPA in noise-free SMR in
(Fig. 1). The distance between the top of the uppermost pargwo-dimensional maps close to the cri$0]. The SPA is
bolic segmentA ., ; and the lower boundary of the lower- independent ofu, which is typical of the TC systems in the
most stripeB, . ; is given by the control parameter If the  adiabatic limit.

correlated noise and the slow periodic signal are added to the

control parameter so thg{n) =qy+ q,cosn)+DE&n), then IV. RESULTS AND DISCUSSION

the measure of the overlap between the chaotic saddle and
the basin of escape becomes slowly time dependent. Then
the instantaneous value of the jump probability is propor-
tional to a sum of contributions from the overlap between the In this section, we present numerical results for SPAvs
parabolic segmentgl, and the stripes, , obtained in the system discussed in Sec. Ill B, and compare

A. Evidence for stochastic multiresonance due to collision
of fractal sets
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them with the theoretical results. In Fig. 2, typiaalvs D noise. This qualitative agreement confirms indirectly that the
curves are shown, obtained from numerical simulations witi>MR is in fact connected with the overlap between the frac-
various distanceB.— B, from the crisis point. In Fig. @), Fal chaotlc_sgddle_s and the basins of escape above the noise-
SPA exhibits two strong maxima and a plateau located belnduced crisis point.
tween them, thus SMR is found. With increasBg- By, the
maxima of the SPA become smoother and the maxima aB- Changes of the spectral power amplification with increasing
smallerD are turned into plateau&igs. 2b)—2(d)], but the distance from the crisis point
shape_of the_ SPA curves is always different from a typical | gt us discuss briefly the differences betweervs D
one with a single maximum. In all cases, nonzero SPA wagves for increasing distan@ — B,. The basic effect is the
observed forBy+B;+D>B,; taking into account thaB,  gecrease o as the distancB.— B, increases. Besides, the
+B;<B., we observe SMR in the parameter regime of thepgjght of the maxima of the SPA at smallBr diminishes
noise-induced attractor merging crisis. faster than that of the maxima at larger(Figs. 3 and 2
The direct stemming of the complicated structure of therhese effects are very intuitive, and result from the overall
SPA curves from the nonmonotonic derivatip§(B,,D) IS gecrease of the spin jump probability with increasig
well visible in Fig. 2. Here, the numerical SPA obtained from _ B,. For decreasin@,, larger noise intensitp is required
the output signal is compared with the SPA obtained from thg, induce the crisis, the density of the noiB&, p(Dé)
numerical TC probability as described in Sec. Ill C, using_ 1/2D pecomes lower, and the probability thais in the

Egs. (4) and (3). Figure 2 shows very good agreement be'range where noise can induce spin jumps, i.e., Bat By
tween the two kinds of curves, i.ar, vs D for all Bo—B,.

This result confirms directly that the map under study be-
longs to the class of TC systems supporting SMR, introducecs
in Sec. Il. The SPA as a function 8f, andD, evaluated from §
the numerical TC probability, is shown also in Fig. 3 as a
three-dimensional plot, for easier comparison ofvs D :
curves for various,,. =
In Fig. 2, the numerical results are also compared with the
analytic ones, based on the theory of Sec. Ill D, with the
parameters obtained similarly as in R€f20,21. The theo-
retical o vs D curves for all distanceB.— B, agree qualita-
tively with the numerical ones. The best agreement is ob-
tained for smallD andB.—Bj. This is because the models
of the fractal sets in Fig. 1 are approximate; they capture well FIG. 3. SMR in the spin map with parameters from Fig. 2. SPA
the structure of the chaotic saddle and basin of escape justaluated the from numerical escape probability as a function of
above the crisis point, but do not take into account all detailsise intensityD and control paramete®, for B;=6x10"* and
of the fractal sets and their possible changes with increasing= 10.
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' ' ' " ' in large ensembles of stochastic resonators with independent
noise, but driven by a small subthreshold signal common to
all elements. The signal-to-noise ratio and the other measures
of SR in such devices exhibit a broad maximum if plotted
with respect to the noise strength. As the number of elements
tends to infinity, the subthreshold signal passes the ensemble
perfectly, which is a consequence of the law of large num-
bers. In such ensembles a large number of attractors exists
with a widely distributed spectrum of possible escape rates
between the several attractors. It makes the ensemble able to
respond efficiently to the subthreshold periodic driving in a
broad window of noise intensities.

Similarly, in our system, for moderate noise the signal is
amplified due to the existence of multiple possible transition
paths between the two spin orientations, starting from the
D distinct segments of the chaotic saddles. For fiBgdand
B,, the system is able to find a possible transition path be-

_FIG. 4. I_nfluence of the n0|se_correlat|0n t_|me on SM_R in the tween the two chaotic saddles, corresponding to the overlap
spin map with parameters from Fig. 2 and noise correlation times;

=100 (solid ling), r=10 (dashed ling r=5 (dash-dotted line ~ O! @ certain segment of the saddlgidened by noiswith

=2 (dotted line. the basin of escape. For higher noise, a large number of
branches of the saddle overlaps the basin of escape, thus the
signal is amplified due to a large number of possible transi-

—B,<D&<D, is smaller. The decrease of the spin jump prob-tions in a broad window of noise intensities. Hence, SPA vs
ability results in the overall decrease of the SPA according td? curve exhibits a plateau as a result of transitions between
Egs.(2) and(1). Moreover, let us assume that the maximumdifferent branches of the symmetric chaotic saddles.
value of the control paramete5), Bo+B;+D>B,, is
fixed. Then, the closer this quantity is By, the larger are  C. Changes of the spectral power amplification with the noise
the relative changes of the spin jump probability with de- correlation time
creasingBy. As a consequence, SPA decreases in general . . o
faster a% sCr)naIIeD than atqlargelD when the distance fgr]om In. Fig. 4, we analy;e the SPA as a function Of. noise n-
the crisis point is increased, which explains the relative ditensity for various noise correlation times=1/11 (Fig. 4).
minishing of the maxima of the SPA at smaller noise inten-FOr 7=100 and7=10, the SPA has almost the same value;
sities. Both tendencies are also well captured by the theor mall dlfferences_ resglt from numerical grrors._Thls_conf|rms
given in Sec. Il D. hat the correlation time we used for simulations in Fig. 2
Another effect, already mentioned in the procedingWas long enough to fulfill the criteria for applicability of the
seciton, is smoothing of the maxima of the SPA and turningheory given in Sec. Il D. For shorter correlation times
them into plateaus with the rise Bf,—B,. This effectis not =5 and7=1 (white noisg, the SPA becomes smaller, but
predicted by the theory given in Sec. Ill D, which suggestsmaxima are still well visible. Hence, the SMR due to the
that it is related to smearing out the fractal structures of theverlap of fractal sets appears even for uncorrelated noise, in
chaotic saddles and the basins of escape by increasing noiske limit where the analytic theory in Sec. 1l D is already not
that is needed to induce crisis with risirg.—B,. This  valid.
smearing can be a dynamical phenomenon, not taken into
account by the adiabatic theory. It can be, e.g., related to the p_changes of the spectral power amplification with the
transient effects, since for lardge the phase trajectory needs amplitude of the periodic signal
long time to relax after each large change@f). The above . ) o )
results show that the fractal structures of chaotic saddles and N Fig- 5, the SPA as a function of noise intensity for
the basins of escape are reflected in the complex shape of tHcreasing amplitudes of the periodic signal is shown. For
o vs D curves in noise-induced crises, leading to SMR.B1=3X10"* and B;=6x10"* [Figs. §a) and §b)], the
However, increasing noise smears out the effect of thes@ultiple maxima ofo are well visible, and the analytical
structures by smoothing the maxima of the SPA and decreagesults based on the topological model predict well the loca-
ing their height aB.— B, increases. In the limit of largp  tion of the first maximum. With the signal amplitude increas-
andB,— B, , one should expect smoothvs D curves with  ing up toB;=12x10"*, the multiple maxima merge; analo-
a single maximum, as in Ref34]. Nevertheless, for small gous phenomenon was observed in the case of noise-free
periodic signals, even in this case remnant effects of th&MR [20]. This shows that SMR due to the interplay be-
underlying fractal structures can still be observed, as in Figtween noise and fractals is strongly dependent on the ampli-
2(d). tude of periodic signal. For large amplitudes, only one maxi-
The general shape of the SPA in Figs. 2 and 3 resemblasum of the SPA is observed, and the SMR turns into
the phenomenon “tuning without nois¢36—38. It happens  “conventional” SR[34].
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APPENDIX A: THE MEASURE OF THE FRACTAL
CHAOTIC SADDLE IN THE BASIN OF ESCAPE

The instantaneous measyi""(n) in Eq. (6) is

pr0(n) = w{™O(1— 8 1) (B'b— B'be),n]
_MﬁinSt)[ﬁlb’n]' (Al)

whereu{"*Y(c,n) is the instantaneous measure4f inside

a half planey>c. For small distance between the top of the
parabolic segment and the half-plane borde(n)—(1

— 8 r1)aak—c<1, the measurgu{"*%[c,n] can be ap-
proximated by the square root:

0.01¢

£"%(c,n) =1 do+ g;coq wn) + DE(N)
— (1= 8 k+1)aa*—c]*?0(qo+ g,c0q wn)

+DE&(N)—(1— Sy k+1)aak—c), (A2)

0" . L L L L
1.000 1.001 1.002 1.003 1.004 1.005
B+B+D

FIG. 5. Influence of the amplitude of the periodic signal on Where® denotes the Heaviside function.

SMR in the spin map with parameters from Fig.B,=0.99 and In order to obtain the periodic in time jump probability
amplitudesB;=3x10 % (a), B;=6X10* (b), B;=12x10"% (¢).  p(n) introduced in Sec. Il, we assume that the correlation
Numerical results—solid line, analytic results—dashed line. time of the noise is significant, but still small in comparison

with the period of the periodic signal. For the noise defined
in Sec. lll C, this means & 1/I1<T, which is in reasonable
V. CONCLUSIONS agreement with the conditions for the numerical simulations
) ~in Figs. 2, 3, and 5. Due to the separation of time scales, the
In th|s. paper, we study the phenomenon of SMR whichjstantaneous measurﬁf(‘”so[c,n] can be first averaged
appears in a natural way in a general class of TC systems. §er the uniform noise density(£)=1/2 to yield the peri-

is shown that the multiresonance occurs due to the nonmongyic in time averaged measure of the parabolic segrgnt
tonic derivative of the TC probability with respect to some jside the half plang>c

parameterg, which the periodic signal is added to, consid-
ered as a function of the noise intensity. We have studied the 1 (inst)

spin map, where this derivative is nonmonotonic due to the ~ #k(C,N)= Jfldff’(f)“k (c,n)
fractal structures of the chaotic saddles and basins of escape
colliding above the noise-induced crisis point. For such a

case, we propose an adiabatic theory combined with a topo- =§L—S[%+ gicogwn)+D—(1— S k+1)
logical model for colliding fractal sets, which yields the SPA

curves in qualitative agreement with the numerical results. X aa*=c]*¥0(go+q,cogwn)+D

The latter results are an extension of our previous investiga-

tion of noise-free SMR in this system. We also pointed out — (1= & k+1)aak—c). (A3)

some analogy between our model and the phenomenon “tu
ing without noise.” Since oscillations of the TC probabilit
were observed in many systems with cri§89], the results
for the spin map suggest that SMR can be observed also in
other numerical and experimental chaotic systems close to
crises. However, our theory is not constrained only to this
class of systems; the relationship between the nonmonotonic Our goal is to evaluate the Fourier coefficid@) from
derivative of the TC probability and the appearance of SMRp(n). To perform calculations analytically, let us go from
is a universal condition leading to SMR in TC systems. discrete to continuous time. Since we are interested in the

T this way, p(n) is obtained on the average pf"*)(n)
Y trom Eq. (6) over the noise distribution.

APPENDIX B: EVALUATION OF THE SPECTRAL
POWER AMPLIFICATION
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T

1
Mkﬂcr=$J;uACJmoindt

noise-induced crisis, there igo+0,<0, and we takec
=0. Let us introduce the quantities

Q=do— (1~ Sk k+1)aak, 2%k 2(m*—m?+1)
=30 (QF 0 tD—0)¥ ————
20, 12 37D 5m?
“\Q+gy+D-c) wt —m*+3m?-2 [ wt
XE 7,m +—2 7,m
B %c—D—Q)  eb-Q Sm
~ rarcco -
- dx dx X0(Q+dq;+D—oc), (B2)

T/2 if C_D_Q<_1' whereF(¢,m) andE(¢,m) are elliptic integrals of the first

d; and the second kind, respectively. Then, using &4.), we
(B1) get the Fourier coefficient of the measure of the parabolic
segmentA, inside the stripsB;, averaged over the noise

where for 0<t<t andT—t<t<T, there is a nonzero prob- intensity as
ability of overlap between the top of the parabolic segment
Ay a?;d the halfpplanq>c after aF()jding noFi)se and peri%dic Mi1= Ml (1= 81,01 (B~ B'be) ]~ Ma(B'D), B3
signal to the control parameter Then the Fourier coeffi- (B3
cient at frequency» of the periodic in time measuyg,(c,n) which should be substituted in E¢i) to obtainP,; analyti-
(A3) is cally.
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