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Stochastic multiresonance due to interplay between noise and fractals
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Stochastic multiresonance is shown to occur in a general class of threshold-crossing systems, in which a
derivative of the threshold-crossing probability with respect to a system parameter is a nonmonotonic function
of the noise intensity. As an example, a two-dimensional chaotic map is considered, where the threshold-
crossing probability follows the overlap of the fractal structures of chaotic saddles and the basins of escape in
noise-induced crisis. The analytic theory is in reasonable agreement with the numerical results for spectral
power amplification.

DOI: 10.1103/PhysRevE.68.016216 PACS number~s!: 05.45.2a, 05.40.2a
n
im
n
th

t
R
ity
rri
hi
ab
e
h

of
ex
b

tp

b
m
o

w

y
d

e
is

s
a

TC

e
ct

on-
the
x-
nal

and
int.
sed
ac-
d

lts.
ise-

-

II,
he
ss
tic
t an
ps

PA
el
ally,

the

-

es

d

I. INTRODUCTION

Stochastic resonance~SR! is a phenomenon occurring i
nonlinear systems whose response to a weak periodic st
lation is enhanced by addition of noise with optimum inte
sity @1–4#. This response can be characterized, e.g., by
spectral power amplification~SPA! defined as the ratio of the
output signal power at the periodic stimulation frequency
the power of the input periodic signal. In systems with S
the SPA shows maximum as a function of noise intens
The occurrence of SR requires an energetic activation ba
or, more generally, a sort of threshold. The way in which t
threshold is realized in the system dynamics and the suit
definition of the output signal, both enable distinction b
tween the basic classes of systems exhibiting SR, suc
bistable potential systems@5#, dynamical@6# and nondynami-
cal @7# threshold-crossing~TC! systems. A separate class
systems with SR is formed by chaotic systems without
ternal noise, in which the internal chaotic dynamics can
tuned, by varying the control parameter, so that the ou
signal shows maximum periodicity@2,3,8#; this kind of SR is
referred to as noise-free SR.

It has been recently realized that the picture of SR can
more complex than expected. In particular, in certain syste
the output SPA can show multiple maxima as a function
the noise intensity, and the respective phenomenon
given a name stochastic multiresonance~SMR! @9–11# or
was reported without referring to this name@12–19#. A simi-
lar phenomenon, noise-free SMR, was found in chaotic s
tems@20,21#. The ubiquity of SMR has been also confirme
by the recent experimental observations@22–25#. However,
the theoretical investigations of SMR with noise have be
so far constrained only to potential systems with certain d
crete spatial symmetries@9,10# or with bistable potential and
correlated noise@11#.

In this paper, we propose a general class of TC system
which multiple maxima of the SPA vs noise intensity appe
in a natural way. We consider TC systems in which the
probability depends on the noise intensityD and on some
parameterq to which a weak periodic signal is added. W
show that if the derivative of the TC probability with respe
1063-651X/2003/68~1!/016216~7!/$20.00 68 0162
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to q, considered as a function of the noise intensity, is n
monotonic, the SMR appears in such TC systems, in
adiabatic limit of slow periodic signals. As a particular e
ample of such a TC system we consider a two-dimensio
chaotic map with noise-induced crisis@26#, and with a peri-
odic signal added to the control parameterq. In this example,
SMR appears due to the fractal structures of attractors
the basins of attraction overlapping above the crisis po
For this case, we formulate an analytic theory for SMR ba
on the models of fractal attractors and their basins of attr
tion, valid for slowly varying periodic signals and correlate
noise, which agrees qualitatively with the numerical resu
The example analyzed extends the previous studies of no
free SMR in maps with crises@20,21# to the case of noise
induced crises, i.e., to the case of SR with noise.

The rest of this paper is organized as follows. In Sec.
we formulate a general theory which links the SPA with t
derivative of the TC probability in the above-mentioned cla
of TC systems. In Sec. III, we introduce the model chao
map, describe methods of analysis of SMR, and presen
analytic theory for the SPA in two-dimensional chaotic ma
close to the noise-induced crises~with details in the Appen-
dixes!. In Sec. IV, we present numerical evidence for the S
with multiple maxima vs the noise intensity in the mod
map, and compare numerical and theoretical results. Fin
Sec. V contains conclusions.

II. STOCHASTIC MULTIRESONANCE
IN THRESHOLD-CROSSING SYSTEMS:

GENERAL CONSIDERATIONS

Let us consider a general class of TC systems in which
TC probability p depends on some parameterq and input
noise with the intensityD, p5p(q,D). A small periodic sig-
nal is added to the parameterq so that it becomes time de
pendent,q(t)5q01q1cos(vt). Let us go to discrete time by
dividing it into short time steps so that every TC event tak
place within one time step. The output signaly(t) is defined
as y(t)51 when at timet the TC event took place, an
y(t)50 otherwise. The output SPAs is defined as
©2003 The American Physical Society16-1
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s5
uP1u2

q1
2

, P15 lim
N→`

1

NT (
t51

NT

y~ t !eivt, ~1!

whereT52p/v. If the TC system is nondynamical~i.e., we
deal with static threshold nonlinearity!, or if the TC system
has internal dynamics but the periodic signal modulate
adiabatically, the TC probability becomes a periodic funct
of time which can be obtained asp(t)5p(q01q1sinvt,D)
and

P15
1

T (
t51

T

p~ t !eivt. ~2!

Assumingq1!1 and developingp(t) in the Taylor series
with respect toq yields in the first approximation

s'u~]p/]q!u(q0 ,D)u2/4. ~3!

From Eq. ~3!, it follows that a sufficient condition for the
occurrence of SMR is that the derivative]p/]q, with fixed
q0, is nonmonotonic as a function of the noise intensity. T
multiple maxima of the SPA are associated with extrema
this derivative. If the curvep5p(q,D) is not differentiable
with respect toq, one can replace the derivative in Eq.~3!
with the difference quotient

p8~q0 ,D !5@p~q01q1 ,D !2p~q02q1 ,D !#/2q1 . ~4!

III. THE MODEL AND METHODS OF ANALYSIS

A. Systems with crises as models for stochastic multiresonanc

In order to introduce the model two-dimensional m
close to noise-induced attractor merging crisis, let us s
with the attractor merging crisis without noise. The attrac
merging crisis@27,28# occurs in systems in which, for
range of values of the control parameterq, two symmetric
chaotic attractors~henceforth called precritical attractors! ex-
ist with complementary precritical basins of attraction.
the control parameter is increased above the critical valuqc
each attractor collides with a border of its precritical basin
attraction and pokes over it, overlapping the complemen
basin. The precritical attractors are then turned into cha
saddles, and their complementary basins of attraction
basins of escape. The phase trajectory bounces sequen
around the two saddles, occasionally jumping between th
The jump probability is proportional to the invariant measu
of the chaotic saddle overlapping the basin of escape,
shows a trend given by a power scaling lawp(q)}(q
2qc)

g̃, whereg̃.1/2 is a critical exponent@27#. However,
since the chaotic saddles inherit the fractal structure of
precritical attractors, with ragged distribution of the invaria
measure, and the basins of escape can also have a fr
structure, significant oscillations ofp(q) superimposed on
this trend can be often observed@28–30#.

If the control parameter is below the critical value,q
,qc , merging of the precritical attractors is possible if noi
with intensityD is added to the system; this phenomenon
called noise-induced attractor merging crisis. The frac
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structures of the chaotic saddles and the basins of esc
although smeared out by noise, are still visible in the ph
space. Thus, the jump probabilityp(q,D) can still show os-
cillations around a certain main trend ifq or D are varied
@26#. Then the difference quotientp8(q,D) can be a non-
monotonic function of the noise intensityD @note that since
the oscillations of the jump probability are fractal induce
p(q,D) need not be differentiable#. Hence, defining the TC
events as jumps of the phase trajectory between the sym
ric chaotic saddles, and adding periodic signal to the con
parameter, we obtain a TC system fulfilling the sufficie
condition given in Sec. II for the appearance of SMR.

B. The model of kicked spin map with noise

The TC system we take as an example is based on
chaotic kicked spin map. The map describes the motion
classical magnetic moment~spin! S, uSu5S, in the field of
uniaxial anisotropy and impulse transversal magnetic fi
B̃(t)5B(n51

` d(t2nt) for which the Hamiltonian isH5

2A(Sz)
22B̃(t)Sx , whereA.0 is the anisotropy constan

The time evolution of the spin is determined by the Landa
Lifschitz equation with damping constantl. The equation
can be integrated, and denoting the spin vector bySn just
after thenth field pulse one finds a two-dimensional ma
Sn115T@Sn#, whose form is given in Refs.@31–33#.

For some regions of the model parameters, the spin m
exhibits attractor merging crisis atB5Bc : for B,Bc two
separate symmetric chaotic attractors, corresponding to
spin ‘‘up’’ ( Sz.0) and ‘‘down’’ (Sz,0) states, coexist
whereas forB.Bc the attractors merge and the spin jum
between these two states. Both the chaotic saddles and
basins of escape are fractal, which is reflected in the
probability p(B), i.e., the probability of jump between th
two spin orientations, which exhibits complicated oscill
tions around the power-law trend@29,30#.

KeepingB,Bc , the noise-induced attractor merging cr
sis can be forced by adding noise to the system. In orde
study SR in the spin map, a weak periodic signal and
noiseDj(n) is added to the control parameterB,

B~n!5B01Dj~n!1B1cos~vn!, ~5!

with the assumption that the noise has zero mean andB0
1B1,Bc to remain in the noise-induced crisis regime. Thu
B02Bc[q and B1[q1 in the notation of Sec. II; since
^j(n)&50, the parametersB05^B(n)& andD can be varied
independently, as needed.

C. Methods of analysis

We simulate numerically the spin map withB(n) given
by Eq. ~5!, with variousB0 , B1, andD. The noisej(n) has
uniform distributionr(x)51/2 on the interval̂ 21,1&. Both
white and correlated noise are considered. The correla
noise is obtained as follows. First,j(0) is chosen at random
For n>1, with probabilityP the value ofj(n) is chosen at
random, and with probability 12P it remains unchanged
j(n)5j(n21). The correlation timet of this noise is of
6-2
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order 1/P. The use of such correlated noise with unifor
distribution makes possible the analytic studies in Sec. III

The model is treated as the TC system. The output sig
is y(n)51 if at time n the spin jump occurred, i.e.,Sz,n and
Sz,n21 have opposite signs, andy(n)50 otherwise. From the
output signal SPA is evaluated according to Eq.~1!. Besides,
for eachB0 the jump probabilitiesp(B01B1 ,D) and p(B0

2B1 ,D) are obtained numerically as functions ofD, and the
SPA is evaluated from Eqs.~4! and ~3!. A good agreemen
between both kinds of curvess(D) proves that our model is
an example of the TC system supporting SMR, as descr
in Sec. II. Finally, the results are also compared with
analytic theory~see below, Sec. III D!.

It should be mentioned that in the same map close to
attractor merging crisis, noise-free SMR was observed
Refs.@20,21#. In this paper, the study is extended to the ca
of crisis induced by noise, and SPA is not a function of t
distance from crisisBc2B0 but the intensity of noiseD. It
should be also noted that SR with noise has already b
studied in the spin map, but the amplitude of the perio
signal and noise intensities were too large to observe S
due to the fractal structure of the precritical sets@34#. Be-
sides, a related study of SR in the spin dynamics with c
tinuous time@35# also did not show evidence for SMR.

D. Analytic theory for stochastic multiresonance in systems
close to noise-induced crises

In this section, we present an analytic theory for SM
valid for two-dimensional maps close to noise-induced c
ses, with slow periodic signal and correlated noise. In c
trast with the general considerations of Sec. II, the anal
theory for this particular case is based on the models of f
tal chaotic saddle and basin of escape in the system clos
crisis without noise, introduced in Refs.@29,30#. If the noise
is strongly correlated and the periodic signal is slow,
assume that their effect is simply to vary in time the relat
position of the chaotic saddles and the basins of escape,
changing their overlap and the TC probability. In particul
we assume that the topological structure of these sets is
affected by the periodic signal and noise, and is ident
with that of the corresponding precritical attractor and
basin of attraction.

We model the chaotic saddle with a set of parabo
branchesAk , k51,2, . . .K11, with a certain distribution of
invariant measurem̃k , and the basin of escape with a set
stripesBl , l 51,2, . . . ,L11, whereK and L define the ac-
curacy of the finite approximation of the true fractal se
~Fig. 1!. The distance between the top of the uppermost p
bolic segmentAK11 and the lower boundary of the lowe
most stripeBL11 is given by the control parameterq. If the
correlated noise and the slow periodic signal are added to
control parameter so thatq(n)5q01q1cos(vn)1Dj(n), then
the measure of the overlap between the chaotic saddle
the basin of escape becomes slowly time dependent. T
the instantaneous value of the jump probability is prop
tional to a sum of contributions from the overlap between
parabolic segmentsAk and the stripesBl ,
01621
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p( inst)~n!5z (
k50

K11

(
l 50

L11

mkl
( inst)~n!, ~6!

wheremkl
( inst)(n) is the instantaneous measure ofAk inside

Bl at timen andz is the proportionality constant.
After simple calculations~see Appendix A!, using Eqs.

~A1!, ~A2!, and ~A3!, the periodic in time jump probability
p(n) can be easily obtained by averagingp( inst)(n) over the
noise distribution. This averaging procedure resembles
one used in Ref.@26# to obtain universal scaling behavior fo
the jump probability in noise-induced crises. On the basis
Eq. ~6!, the Fourier coefficient~2! can be then written as

P15z (
k50

K11

(
l 50

L11

Mkl,1 , ~7!

whereMkl,1 are the Fourier coefficients at frequencyv of the
measuresmkl

( inst)(n) averaged over the noise distribution, i.e
of the quantitiesmkl(n) from Eq. ~A3!. The analytic form of
Mkl,1 is given in Appendix B. The theoretical curve SPA vsD
can be plotted after insertingP1 into Eq.~1!. The form of the
above result resembles that of SPA in noise-free SMR
two-dimensional maps close to the crisis@20#. The SPA is
independent ofv, which is typical of the TC systems in th
adiabatic limit.

IV. RESULTS AND DISCUSSION

A. Evidence for stochastic multiresonance due to collision
of fractal sets

In this section, we present numerical results for SPA vsD
obtained in the system discussed in Sec. III B, and comp

FIG. 1. The model of the fractal chaotic saddle and the basin
escape. The tops of the parabolic segments of the saddleAk are
located aty5(12dk,K11)aak1q and their relative invariant mea

sures are given bym̃k5(12g)gk, for 0<k<K, and m̃K11

5gK11. The lower and upper boundaries of the stripes of the ba
are located aty5(12d l ,L11)(b lb2b lbE) and y5b lb, respec-
tively. The figure shows the location of parabolic segments a
stripes forq50.
6-3
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MATYJAŚKIEWICZ et al. PHYSICAL REVIEW E 68, 016216 ~2003!
FIG. 2. SMR in the spin map
for the crisis parametersS51,
Ac51, tc52p, lc

50.105 494 12 . . . . Numerical
results:s vs D for B15631024,
t510, and~a! B050.999, ~b! B0

50.99, ~c! B050.9, ~d! B050.7
~thick solid line!; SPA evaluated
from numerical escape
probability—thin solid line; SPA
obtained from fractal model de
veloped in Sec. III D with param-
eters a50.0108, g50.294, b
50.125, bE51.467 93, a
54.5009, b52.7, z53.33, and
K5L510 is shown by the dashe
line.
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of
them with the theoretical results. In Fig. 2, typicals vs D
curves are shown, obtained from numerical simulations w
various distancesBc2B0 from the crisis point. In Fig. 2~a!,
SPA exhibits two strong maxima and a plateau located
tween them, thus SMR is found. With increasingBc2B0, the
maxima of the SPA become smoother and the maxima
smallerD are turned into plateaus@Figs. 2~b!–2~d!#, but the
shape of the SPA curves is always different from a typi
one with a single maximum. In all cases, nonzero SPA w
observed forB01B11D.Bc ; taking into account thatB0
1B1,Bc , we observe SMR in the parameter regime of t
noise-induced attractor merging crisis.

The direct stemming of the complicated structure of
SPA curves from the nonmonotonic derivativep8(B0 ,D) is
well visible in Fig. 2. Here, the numerical SPA obtained fro
the output signal is compared with the SPA obtained from
numerical TC probability as described in Sec. III C, usi
Eqs. ~4! and ~3!. Figure 2 shows very good agreement b
tween the two kinds of curves, i.e.,s vs D for all B02Bc .
This result confirms directly that the map under study
longs to the class of TC systems supporting SMR, introdu
in Sec. II. The SPA as a function ofB0 andD, evaluated from
the numerical TC probability, is shown also in Fig. 3 as
three-dimensional plot, for easier comparison ofs vs D
curves for variousB0.

In Fig. 2, the numerical results are also compared with
analytic ones, based on the theory of Sec. III D, with t
parameters obtained similarly as in Refs.@20,21#. The theo-
reticals vs D curves for all distancesBc2B0 agree qualita-
tively with the numerical ones. The best agreement is
tained for smallD andBc2B0. This is because the mode
of the fractal sets in Fig. 1 are approximate; they capture w
the structure of the chaotic saddle and basin of escape
above the crisis point, but do not take into account all det
of the fractal sets and their possible changes with increa
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noise. This qualitative agreement confirms indirectly that
SMR is in fact connected with the overlap between the fr
tal chaotic saddles and the basins of escape above the n
induced crisis point.

B. Changes of the spectral power amplification with increasing
distance from the crisis point

Let us discuss briefly the differences betweens vs D
curves for increasing distanceBc2B0. The basic effect is the
decrease ofs as the distanceBc2B0 increases. Besides, th
height of the maxima of the SPA at smallerD diminishes
faster than that of the maxima at largerD ~Figs. 3 and 2!.
These effects are very intuitive, and result from the ove
decrease of the spin jump probability with increasingBc
2B0. For decreasingB0, larger noise intensityD is required
to induce the crisis, the density of the noiseDj, r(Dj)
51/2D becomes lower, and the probability thatj is in the
range where noise can induce spin jumps, i.e., thatBc2B0

FIG. 3. SMR in the spin map with parameters from Fig. 2. S
evaluated the from numerical escape probability as a function
noise intensityD and control parameterB0 for B15631024 and
t510.
6-4
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2B1,Dj,D, is smaller. The decrease of the spin jump pro
ability results in the overall decrease of the SPA according
Eqs.~2! and~1!. Moreover, let us assume that the maximu
value of the control parameter~5!, B01B11D.Bc , is
fixed. Then, the closer this quantity is toBc , the larger are
the relative changes of the spin jump probability with d
creasingB0. As a consequence, SPA decreases in gen
faster at smallerD than at largerD when the distance from
the crisis point is increased, which explains the relative
minishing of the maxima of the SPA at smaller noise inte
sities. Both tendencies are also well captured by the the
given in Sec. III D.

Another effect, already mentioned in the procedi
seciton, is smoothing of the maxima of the SPA and turn
them into plateaus with the rise ofBc2B0. This effect is not
predicted by the theory given in Sec. III D, which sugge
that it is related to smearing out the fractal structures of
chaotic saddles and the basins of escape by increasing n
that is needed to induce crisis with risingBc2B0. This
smearing can be a dynamical phenomenon, not taken
account by the adiabatic theory. It can be, e.g., related to
transient effects, since for largeD the phase trajectory need
long time to relax after each large change ofj(n). The above
results show that the fractal structures of chaotic saddles
the basins of escape are reflected in the complex shape o
s vs D curves in noise-induced crises, leading to SM
However, increasing noise smears out the effect of th
structures by smoothing the maxima of the SPA and decr
ing their height asBc2B0 increases. In the limit of largeD
andB02Bc , one should expect smooths vs D curves with
a single maximum, as in Ref.@34#. Nevertheless, for smal
periodic signals, even in this case remnant effects of
underlying fractal structures can still be observed, as in F
2~d!.

The general shape of the SPA in Figs. 2 and 3 resem
the phenomenon ‘‘tuning without noise’’@36–38#. It happens

FIG. 4. Influence of the noise correlation time on SMR in t
spin map with parameters from Fig. 2 and noise correlation tim
t5100 ~solid line!, t510 ~dashed line!, t55 ~dash-dotted line!,
t52 ~dotted line!.
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in large ensembles of stochastic resonators with indepen
noise, but driven by a small subthreshold signal common
all elements. The signal-to-noise ratio and the other meas
of SR in such devices exhibit a broad maximum if plott
with respect to the noise strength. As the number of eleme
tends to infinity, the subthreshold signal passes the ensem
perfectly, which is a consequence of the law of large nu
bers. In such ensembles a large number of attractors e
with a widely distributed spectrum of possible escape ra
between the several attractors. It makes the ensemble ab
respond efficiently to the subthreshold periodic driving in
broad window of noise intensities.

Similarly, in our system, for moderate noise the signa
amplified due to the existence of multiple possible transit
paths between the two spin orientations, starting from
distinct segments of the chaotic saddles. For fixedB0 and
B1, the system is able to find a possible transition path
tween the two chaotic saddles, corresponding to the ove
of a certain segment of the saddle~widened by noise! with
the basin of escape. For higher noise, a large numbe
branches of the saddle overlaps the basin of escape, thu
signal is amplified due to a large number of possible tran
tions in a broad window of noise intensities. Hence, SPA
D curve exhibits a plateau as a result of transitions betw
different branches of the symmetric chaotic saddles.

C. Changes of the spectral power amplification with the noise
correlation time

In Fig. 4, we analyze the SPA as a function of noise
tensity for various noise correlation timest[1/P ~Fig. 4!.
For t5100 andt510, the SPA has almost the same valu
small differences result from numerical errors. This confir
that the correlation time we used for simulations in Fig.
was long enough to fulfill the criteria for applicability of th
theory given in Sec. III D. For shorter correlation timest
55 andt51 ~white noise!, the SPA becomes smaller, bu
maxima are still well visible. Hence, the SMR due to t
overlap of fractal sets appears even for uncorrelated nois
the limit where the analytic theory in Sec. III D is already n
valid.

D. Changes of the spectral power amplification with the
amplitude of the periodic signal

In Fig. 5, the SPA as a function of noise intensity f
increasing amplitudes of the periodic signal is shown. F
B15331024 and B15631024 @Figs. 5~a! and 5~b!#, the
multiple maxima ofs are well visible, and the analytica
results based on the topological model predict well the lo
tion of the first maximum. With the signal amplitude increa
ing up toB151231024, the multiple maxima merge; analo
gous phenomenon was observed in the case of noise
SMR @20#. This shows that SMR due to the interplay b
tween noise and fractals is strongly dependent on the am
tude of periodic signal. For large amplitudes, only one ma
mum of the SPA is observed, and the SMR turns in
‘‘conventional’’ SR @34#.

s:
6-5
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V. CONCLUSIONS

In this paper, we study the phenomenon of SMR wh
appears in a natural way in a general class of TC system
is shown that the multiresonance occurs due to the nonm
tonic derivative of the TC probability with respect to som
parameterq, which the periodic signal is added to, consi
ered as a function of the noise intensity. We have studied
spin map, where this derivative is nonmonotonic due to
fractal structures of the chaotic saddles and basins of es
colliding above the noise-induced crisis point. For such
case, we propose an adiabatic theory combined with a to
logical model for colliding fractal sets, which yields the SP
curves in qualitative agreement with the numerical resu
The latter results are an extension of our previous invest
tion of noise-free SMR in this system. We also pointed o
some analogy between our model and the phenomenon ‘‘
ing without noise.’’ Since oscillations of the TC probabilit
were observed in many systems with crises@39#, the results
for the spin map suggest that SMR can be observed als
other numerical and experimental chaotic systems clos
crises. However, our theory is not constrained only to t
class of systems; the relationship between the nonmonot
derivative of the TC probability and the appearance of SM
is a universal condition leading to SMR in TC systems.

FIG. 5. Influence of the amplitude of the periodic signal
SMR in the spin map with parameters from Fig. 2,B050.99 and
amplitudesB15331024 ~a!, B15631024 ~b!, B151231024 ~c!.
Numerical results—solid line, analytic results—dashed line.
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APPENDIX A: THE MEASURE OF THE FRACTAL
CHAOTIC SADDLE IN THE BASIN OF ESCAPE

The instantaneous measuremkl
( inst)(n) in Eq. ~6! is

mkl
( inst)~n!5mk

( inst)@~12d l ,L11!~b lb2b lbE!,n#

2mk
( inst)@b lb,n#, ~A1!

wheremk
( inst)(c,n) is the instantaneous measure ofAk inside

a half planey.c. For small distance between the top of th
parabolic segment and the half-plane border,q(n)2(1
2dk,K11)aak2c!1, the measuremk

( inst)@c,n# can be ap-
proximated by the square root:

mk
( inst)~c,n!5m̃k@q01q1cos~vn!1Dj~n!

2~12dk,K11!aak2c#1/2Q„q01q1cos~vn!

1Dj~n!2~12dk,K11!aak2c…, ~A2!

whereQ denotes the Heaviside function.
In order to obtain the periodic in time jump probabilit

p(n) introduced in Sec. II, we assume that the correlat
time of the noise is significant, but still small in compariso
with the period of the periodic signal. For the noise defin
in Sec. III C, this means 1!1/P!T, which is in reasonable
agreement with the conditions for the numerical simulatio
in Figs. 2, 3, and 5. Due to the separation of time scales,
instantaneous measuremk

( inst)@c,n# can be first averaged
over the uniform noise densityr(j)51/2 to yield the peri-
odic in time averaged measure of the parabolic segmenAk
inside the half planey.c,

mk~c,n!5E
21

1

djr~j!mk
( inst)~c,n!

5
m̃k

3D
@q01q1cos~vn!1D2~12dk,K11!

3aak2c#3/2Q„q01q1cos~vn!1D

2~12dk,K11!aak2c…. ~A3!

In this way, p(n) is obtained on the average ofp( inst)(n)
from Eq. ~6! over the noise distribution.

APPENDIX B: EVALUATION OF THE SPECTRAL
POWER AMPLIFICATION

Our goal is to evaluate the Fourier coefficient~2! from
p(n). To perform calculations analytically, let us go fro
discrete to continuous time. Since we are interested in
6-6
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noise-induced crisis, there isq01q1,0, and we takec
>0. Let us introduce the quantities

Q5q02~12dk,K11!aak,

m5S 2q1

Q1q11D2cD 1/2

,

t̂5H v21arccosS c2D2Q

q1
D if

c2D2Q

q1
.21

T/2 if
c2D2Q

q1
,21,

~B1!

where for 0,t, t̂ andT2 t̂,t,T, there is a nonzero prob
ability of overlap between the top of the parabolic segm
Ak and the half planey.c after adding noise and periodi
signal to the control parameterq. Then the Fourier coeffi-
cient at frequencyv of the periodic in time measuremk(c,n)
~A3! is
v.

ky

r
,

d

tat

n

y

01621
t

Mk,1~c!5
1

TE0

T

mk~c,t !cos~vt !dt

5
2m̃k

3pD
~Q1q11D2c!3/2F2~m42m211!

5m2

3ES v t̂

2
,mD 1

2m413m222

5m2
FS v t̂

2
,mD G

3Q~Q1q11D2c!, ~B2!

whereF(f,m) andE(f,m) are elliptic integrals of the first
and the second kind, respectively. Then, using Eq.~A1!, we
get the Fourier coefficient of the measure of the parab
segmentAk inside the stripsBl , averaged over the nois
intensity as

Mkl,15Mk,1@~12d l ,L11!~b lb2b lbE!#2Mk,1~b lb!,
~B3!

which should be substituted in Eq.~7! to obtainP1 analyti-
cally.
o,
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