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A particular case of a cellular automata-based model of two-state opinion 
formation in social groups with a strong leader is studied. We consider a 2D 
Euclidian geometry of"social space" and mutual interactions ~: l/r". The model 
shows an interesting dynamics which can be analytically calculated. There are 
two stable states of the system: a cluster around the leader and unification. 
Unstable clusters may also appear. A variation in parameters such as the 
leader's strength or the "social temperature" can change the size of a cluster or, 
when they reach some critical values, make the system jump into another state. 
For a certain range of parameters the system exhibits bistability and hysteresis 
phenomena. We obtained explicit formulas for the cluster size, critical leader's 
strength, and critical "social temperature." These analytical results are verified 
by computer simulations. 

KEY WORDS: Cellular automata; opinion formation; bistability; phase 
transitions. 

1. I N T R O D U C T I O N  

D u r i n g  the  last  20 years  the re  has  been  a g rea t  dea l  o f  in teres t  in the  

a p p l i c a t i o n  o f  p a r a d i g m s  o f  t heo re t i ca l  phys ics  to  the  d e s c r i p t i o n  o f  social  

and  e c o n o m i c  p h e n o m e n a .  T h e  usefulness  o f  m e t h o d s  based  on  the  c o n -  

cep t s  o f  synerge l ics ,  the  m a s t e r  e q u a t i o n ,  I~1 ce l lu la r  a u t o m a t a ,  ~2"3) neu ra l  

n e t w o r k s ,  14~ d y n a m i c a l  sys tems,  and  de t e rmin i s t i c  c h a o s  Is1 has  been  p r o v e n  

in severa l  papers .  T h e  m a i n  a d v a n t a g e  o f  these  m e t h o d s  w h e n  app l i ed  to 
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social or economical models t6 227 is the quantitative character of the results 
they provide. 

Cellular automata ~21 (CA) are one of these interdisciplinary concepts, 
first introduced by von NeumannJ -'3~ CA are dynamical systems in which 
space and time are discrete. They consist of a lattice of cells which can have 
a finite (usually small) number of values. The cells are updated syn- 
chronously according to a definite local rule which is the same for each cell. 
Cellular automata have been extensively applied in physics, chemistry, 
biology, and the theory of computation, ~3~ and they are considered to be 
an alternative or complementary way of describing nature as compared to 
differential equations. Despite their simplicity, they often exhibit a very 
complex dynamics. They have been also used for modeling the behavior of 
groups of individualsJ sl 

The theory of social impact (SI) formulated by Latan6124~ has led to a 
new class of CA models. ~22"25~ It claims that the impact imposed on an 
individual by a group of people is a certain function of their strength, 
immediacy, and number. The concept of "social space" is important here. 
Each pair of individuals is characterized by a distance in this space and the 
absolute value of social impact is some decreasing function of this distance. 
This impact is in fact a combined effect of several types of social influences 
that an individual can experience from others and that are known in the 
sociological literature ~241 as behavioral contagion, c01formity, compliance, 
group pressure, imitation, normative influence, observational learning, social 
faciliation, suggestion, and vicarious conditioning. The SI theory is able to 
describe such various social phenomena cz4~ as stage fi'ight and embarrass- 
ment, news h~terest, tipp#lg in restaurants, or bystander intervention. 
Although very simplified, the SI models show complex processes like 
clusterization and polarization of opinion which are also observed in real 
social groupsJ z6~ 

Opinions are often represented in SI models by binary states. This is 
certainly relevant for yes/no questions, but it was also proved by social sur- 
veys that in the case of important questions with many possible answers the 
distribution of attitudes is b#nodal, i.e., most people share one out of two 
opposite opinions, c~8~ The analysis of several SI models based on statistical 
mechanics (mean-field theory) can be found in ref. 20. One of the main 
results is a "staircase" cluster dynamics. Starting from a random initial dis- 
tribution of attitudes, the social system tends to form clusters of individuals 
sharing the same opinion, though we assume that they cannot move. Such 
a structure enables the minority opinion to survive. 

Clusters are basic stable structures appearing in the course of evolu- 
tion in the SI models. In this paper we examine a particular case of a 
cluster around a strong leader. 
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In Section 2 we introduce some general assumptions and properties of 
the SI model. Section 3 is devoted to the problem of size of the followers' 
cluster appearing around a leader in social space and in Section 4 we study 
the influence of "social temperature" (i.e., noise) on such a cluster. 

2. THE MODEL 

Following the paper by Lewenstein et a/., c2~ we consider a system 
consisting of N individuals (members of a social group) and we assume 
that each of them can share one of two opposite opinions on a given sub- 
ject, denoted as tr i= +1,  i =  1, 2 ..... N. Individuals can influence each 
other's opinion, and each individual is characterized by two parameters 
which describe his/her "social strength": persuasiveness pg>0,  which 
denotes the ability to induce others to adopt his/her opinion, and suppor- 
tiveness s ;>  0, which is the ability to support those who already share it. 
Every pair of individuals (i, j )  is ascribed a distance d o. in social space. 
Similarly to cellular automata models, ~2~ the dynamics of the system has a 
discrete form: the opinion of the ith individual at a moment t + 1 depends 
on the social impact I~ that he/she experiences at the moment t. The impact 
is defined as 

E I [ l Ii=Ip j ~ = l ~ ( l - - f f i f f j )  --Is j_~l~ (1 nt-~iffJ ) 1) 

Here, I t (x )  and /,.(x) are increasing functions describing the relative 
"persuading" and "supporting" impact (usually one assumes ~2~ that 
Ir..,.(x) ~ x ", where 0.5 ~< �9 ~< 1 ), f ( x )  is an increasing function of si and p;, 
and g(x)  is also an increasing function of the social distance do.. In our 
model we put I t (x)  =/,.(x) = �89 x, f ( x )  = x and 

g(do. ) = ~ d J ,  n>/ l  for i :~j  
( l i f t  for i = j  (2) 

where fl is the so-called self-support parameter. We also assume s i =Pi =- si, 
i.e., everyone is ascribed only one parameter, which we call "strength." 
Considering all the above assumptions, the social impact on the ith 
individual [cf. Eq. (1)] can be rewritten in the form 

N 
Ii = ~ -- s / r  sift (3) 

j=l , j#i  dij 
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Changes of opinion in the course of time, i.e., the dynamics of the 
system, are determined by 

i.e., 

a ;( t  + 1 ) = - s i g n [ a ; ( t ) / i ( t ) ]  (4) 

~tri(t) for Ii(t)<~O (5) 
a i ( t + l ) = ( - a i ( t )  for Ii(t)>O 

The dynamics may be synchronous (all individuals are updated at the 
same time) or asynchronous (they are updated in consecutive steps one 
after another in a given order or at random). In our simulations we use the 
synchronous type of dynamics unless stated otherwise. 

The dynamics (4) can be extended in the following way: 

ai(t + 1 ) = -sign[ai(t)L(t) + hi(t)] 
i.e., 

(6) 

cri(t+l)=~ai(t) for li(t)+ai(t)hi(t)<<.O 
~-cr~(t)  for L(t)+a~(t)h~(t)>O (7) 

The additional term h i may express the influence of external factors 
(e.g., mass media, government policy, special events) supporting one of the 
opinions. It can also be a random variable modeling all the complexity of 
human behavior. In the latter case we obtain a noisy dynamics. 

The properties of the model for different geometries of social space 
with si and Pi being random variables and exponents in (2) 
17~ {0, 1, 2, 4, 8} were extensively studied both analytically and numeri- 
cally j20, 22~ It was found c-'~ that the value n ~ 2 gives a good fit to correla- 
tion data collected during social surveys on the influence of physical 
distance on social interactions for populations such as students/adults 
in Boca Raton (Florida), students in Shanghai, or the group of social 
psychologists attending a Nags Heads Conference. 

3. A G R O U P  W I T H  ONE LEADER 

Consider a circular space of radius R. The individuals are located in 
the nodes of a quadratic grid, and the distance between nearest neighbors 
equals 1. This geometric distance models social immediacy. 4 Each of the 

4 The assumptions that individuals are unifornlly placed at sites of a regular lattice and that 
"the social distance" is calculated as the geometric distance can certainly look artificial in a 
model describing society. However, we stress that just such approximations have been used 
by social scientists who have successfully simulated various cooperative phenomena occurring 
in social groups, c-'=' TM 
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individuals but the one in the middle of the circle has equal strength si = I. 
The strength SL of the individual in the center, whom we will call the 
"leader," is far greater than that of the others (sL ~ 1). According to the 
symmetry one can expect that a circular cluster of individuals sharing the 
opinion of the leader will form around him or her. Our first aim is to 
calculate the size of the cluster, i.e., its radius a as a function of sL, R, and 
ft. The state of the system is stable if the impact on every individual is 
negative. This certainly is the case for those who are distant from the 
cluster border. Positive (persuasive) impact may appear only close to the 
border, where individuals of different opinion meet. Therefore we shall con- 
sider the impact at the border. It is convenient to replace the sum over 
individuals in (3) by an integral. This is justified when a ~ 1. The surface 
density of individuals is 1 (one per unit square). 

First we shall investigate long-distance interactions, 1/g(do)= 1/d o. 
The total impact experienced by an individual at the border of a cluster 
with radius a can be then derived as 

- - +  - d S -  d S -  - d S  - f l  (8) 
6l " ' { ( a ,  Ol,  a )  r K'((a,  OI, R) r ' { ( a . o ) . u )  I" 

where r (replacing the notation d 0 for the discrete net) is the distance from 
the origin (0, 0) which is defined by the location of the individual con- 
sidered (see Fig. 1). The symbol K((x, y), r) stands for a circle with the cen- 
ter at point (x, y) and radius r. The first term in (8) represents the influence 
of the leader, the second represents the influence of the members of the 
cluster. The expression in parentheses is the impact exerted by the majority, 
i.e., the people outside the cluster (we call these members the "majority," 
although for some values of the parameters sL, fl, and R this group can be 
smaller than the group of followers around the leader) and fl is the self-sup- 
portive impact. K' denotes the respective circles excluding the intersection 
with the circle K((O, 0), 1/x/~), which represents the individual under con- 
sideration. We assumed here that he/she shares the opinion of the majority. 
If the opposite case held, all terms in (8) would change their signs except 
for the self-suppQrt fl, which is always negative. The first assumption means 
that the cluster grows tending to a stable state; the seconds assumption, 
that it shrinks. The limiting condition for the stability of the cluster is I = 0. 
Calculating the integrals in polar coordinates, one obtains, according to 
the assumptions mentioned above, two equations differing in the sign of fl, 
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Fig. I. Scheme  o f  a c lus te r  a r o u n d  a leader .  

where E(k ,  ~o)=~'  ( I - k  2 sin2 ~)~/2 d~ is an elliptic integral of the second 
kind. 

In the zeroth-order approximation (valid for a ~ R )  we have 
E(a /R ,  n/2) -~ rr/2 and (9) simplifies to a quadratic equation which has two 
solutions for both _+fl (i.e., four solutions altogether): 

1 
a ~- - ~  { ( 2reR +_[3) +_ [ ( 2 x R  +_fl)2 - 32s t. ] '/2} (10) 

It follows from (10) that for s t - > s t - , . ~ ( 2 r c R + f l ) 2 / 3 2  no real solution 
exists. In this case the general acceptance of the leader's opinion is the only 
stable state. At the point sL = st.,. a discont inuous phase  transit ion appears. 
The stable cluster radius changes from a,. ~ (2xR +fl)/16 to a = R  [unless 
f l>  R( 1 6 -  2re) when a,.> R]. If the leader is too weak, on the other hand, 
it may be impossible for him or her not only to form a cluster, but also to 
maintain his/her own opinion. The limiting condition for the minimal 
strength of the leader st. m~,, to resist against the persuasive impact of the 
majority can be written as 

f_,, fR 1 d(p - r dr = flsL min ( I 1 ) 
~ 0  " l , ' x / ~  I" 

Hence, 

SL rain ~ (12) 

For s L <sL rain unification (a = 0) will be the only stable state again. 
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Fig. 2. Cluster radius a vs. leader's strength sL-phase diagram for a circular social space. 
Interactions were assumed proportional to the inverse of the mutual distance {I ~ l/r). Lines 
correspond to analytical results, points to computer simulations. 

Figure 2 shows the phase diagram in SL--a space. All plots are made 
for a space of radius R = 2 0  (1257 individuals) and f l=  1 unless stated 
otherwise. The choice fl = 1 means that the individual's own opinion is as 
important  as that of his/her nearest neighbor. We have two k#uts of stable 
solutions, i.e., attractors: a homogeneous distribution of opinions (i.e., 
a--= R when the leader's opinion wins, a = 0 when it ceases to exist) and a 
stable cluster corresponding to the stable solution of (9). The curves in 
Fig. 2 are obtained by solving (9) numerically. Solid lines represent stable 
fixed points-attractors [they correspond to the solution (10) with the 
minus sign in front of the square root] ;  dashed lines represent unstable 
repellers [corresponding to the plus sign in (10)]. In SL--a space one can 
distinguish three basins of attraction. Starting from a state in the area 
denoted as I, the temporal evolution leads to unification with a =0 .  The 
stable cluster attractor divides its basin of attraction into the areas IIa  and 
lib. All states from III  will evolve to unification with a - -20 .  Owing to the 
two possible signs of the self-support parameter  fl in (9), the attractor 
and repeller are split. In the parameter  space between the split curves we 
observed a mixture of stationary and unstationary clusters, where the for- 
mer correspond to local equilibria of the system dynamics. We stress here 
that, as a result of self-support, even states lying in the space formed by the 
split repeller can be stabilized. 

The continuum approximation used in our analytical calculations 
implies a complete rotational symmetry of the system. In the case of a 
square lattice the symmetry is reduced to the fourfold axis, and in effect the 
actually observed clusters are not exactly circular, but rather square 
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Fig. 3. Oc t agona l  c luster  observed for I ~ I/r 3, sc = 2000. 

(smaller clusters) or octagonal (larger clusters) (see Fig. 3). we did not 
observe other polygons, but one can anticipate that they can appear for 
model parameters allowing still larger clusters. Therefore, the value a 
corresponding to simulation points in Fig. 2 (as well as in Figs. 5 and 11 ) 
denotes an effective radius of the cluster, i.e., the radius of a circle with an 
area equal to that of the actually observed octagon (square). 

To obtain the effective cluster radius in regions corresponding to the 
(split) attractor and repeller (Figs. 2, 5, and 11), we used several sets of 
initial conditions, i.e., circular clusters with various radii, and we waited for 
an appropriate number of time steps until the clusters reached their equi- 
librium shapes and sizes. As the clusters evolved to the nearest (locally) 
stable states we thus observed a broad spectrum of effective cluster radii 
and we plotted only the cluster parameters corresponding to the states on 
the border of these regions. 

One can also imagine a situation where the opinion of the leader is 
independent of the influence of the group and his/her strength parameter is 
varying. In such a case we observe a hysteresis of the (evolving) percentage 
~/of individuals sharing the leader's opinion (Fig. 4). Let us assume that the 
starting point is the leader holding the "for" opinion (ty L = + 1 ) and all the 
others "against." When we increase sL, the cluster of "for" followers grows 
to the critical value sL<, at which a phase transition to unification occurs. 
A further increase or decrease of sL will obviously cause no other changes. 
But when the leader changes his/her opinion (to "against"), the process of 
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Hysteresis in the system's behavior. The leader's strength s L and Iris/her opinion ~s 
change independently of the group. 

cluster expansion will be repeated. Thus, for ss <sL,. the system shows 
bistability. 

Similar calculations can be made for other interactions [e.g., for 
g(do)=(do)", n > 1]. The results are more complicated. We can derive the 
functions sL(a) analytically for n = 2, 3, and 4, respectively: 

Sz(a)=a= --4 lncosrpdq~-4Cgln(2av/-~)+nln(Tta 2) 

+f;~  In I cos (o + (c~_~- sin'- r '/-'] dcp +/7} (13) 

sL(a)=a3 f21n/l+[l-1/(4na=)]'/='~ , /--. _ 
t,3 -- [ i  v,<+= + 

_l[2.1n[cos~+(R:_sin2~)l/2 ] -ld4 ~ (14, 
�9 c t J 0  ka- 

{ 1  1)t~ 1 sL(a) = a4 ~ (4tta 2 -- -- 2~ arccos 2a--x/~ + ~- 

2a 21 ~ln[c~162 dq~+_fl)t (15) 

where r = arccos [ 1/(2a + r ~ ) ] .  



178 Kacperski and Hotyst 

20 

15 

10 

5 

0 
0 200 400 600 

(a) 

SL 

20 

15 

10 

5 

0 

�9 (b) 

2000 4000 6000 8000 10000 

SL 

5 

0 
0 

20 

15 

10 

. . . .  t . . . . . . . . . . . . .  

% �9 

(c) 

50000 100000 150000 

S L 

Fig. 5. Cluster radius a vs. leader's strength sL-phase diagram For a circular social space. 
Social impact: (a) I ~ l /r  z, (b) I ~ 1/1' 3, (c) I ~ l / r  4. Lines correspond to analytical results, 
the dotted line to the case o f f l = O  (no splitting), and the points to computer simulations. 
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Inverting the above functions (numerically), we obtain the a(SL) 
dependences. They are plotted in Fig. 5 with the respective simulation 
results. Dotted lines are for p = 0  (no splitting). Again the simulation 
points denote effective radii of clusters of ex treme size that are typically 
octagonal. Qualitatively these diagrams have a structure similar to that of 
Fig. 2. This means that above a certain critical value of sL no stable cluster 
exists and the only possible final state of the system is a total unifica- 
tion a = R. Because of the weaker short-range interactions, the same value 
of the self-support parameter p =  1 causes a much greater splitting of 
attractor and repeller; the area of "frozen states" is enlarged. Upon replac- 
ing the sum in (3) by an integral we assumed a continuous distribution of 
individuals, while in our simulation they sit in nodes of a square net. 
Such an approximation yields good results for long-range interactions. In 
the case of short-range interactions an individual mostly "feels" his/her 
nearest neighbors and their exact position becomes important. This is why 
calculation and simulation results diverge when the range of interactions 
decreases. 

The above results generally hold when the strength parameter s; of all 
individuals except the leader is a random variable with a mean value equal 
to 1, but still si ~ sz,, instead of being identical for all individuals, which is 
certainly more realistic. This fact follows simply from the observation that 
introducing such a random variable will lead to the appearance of addi- 
tional integrals (or sums) over all possible values of si in (8). Assuming that 

0 
o 0 0 0 0 o o 0 0 0 o 0 o  

e o o o o o o o o o o o o o o o o  
o e e e o o o o o o o o o o o o o o o e e  

000@@@00000000000000@@@@0 
O0000@eOOOOOOOOOOOOOOeeeO00 

oooooeeeooooooooooooooooooooo 
000000@@00000000000000000000000 

0000000@@000000000000000000000@@@ 
000000000000000000000000000000@@@ 

00000000000@@@@@@@@@@@@@@@00000@@@@ 
0000000000@@@@@@@@@@@@@@@@@00000000 

0000000000@@@@@@@@@@@@@@@@@@@00000000 
000000000@@@@@@@@@@@@@@@@@@@@@0000000 

000000000@@@@@@@@@@@@@@@@@@@@@@@@@@@000 
00000000@@@@@@@@@@@@@@@@@@@@@@@@@@@@000 
0000000@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@00 

oiiiiliiiiiiiiiiiiiiiiiiUiiiEiiii  i  i. @@@@000000 
0000~00@@@@@@@@@@@@@@@@@@@@@@@@@@000000 
0000000@@@@@@@@@@@@@@@@@@@@@@@@@0000000 
0000000@@@@@@@@@@@@@@@@@@@@@@@@@0000000 
OOQO0000@@@@@@@@@@@@@@@@@@@@@@@O0000000 
000000000@@@@@@@@@@@@@@@@@@@@@@00000000 
000000000@@@@@@@@@@@@@@@@@@@@00000000 
O000000000@@@@@@@@@@@@@@@@@@O00000000 
0000000000@@@@@@@@@@@@@@@@000000000 
00000000000@@@@@@@@@@@@@@0000000000 
00000000000@@@@@@@@@@@@0000000000 
000000000000@@@@@@@@@@00000000000 
00000000000000@@@@@@00000000000 
0000000000000000@@00000000000 
O000000000000000000000eee@O 
000000000000000000000@@@@ 

0000000000000000000@@ 
00000000000000000 

0000000000000 
0 

Fig. 6. Stationa~ state reached after 16 time steps (33% "b lack"  minority). Initial state: 4 5 %  

"b lack"  minority randomly distributed over the circle; I ~ l / r  4, sL = 30000. 
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the probability distribution Pr (s;) characterizing the random variable sg is 
a space-independent function, one can reduce the resulting equations to the 
Eq. (8). We checked in corresponding computer simulations that the 
behavior of such "random" model was similar to that with a fixed value of 
the strength parameter s~. 

In all our analytical calculations as well as computer simulations we 
considered only the clusters that were centered around the leader so we 
could use the resulting symmetry and get explicit forms for the cluster 
radius a. It is clear that nonsymmetric clusters are also possible. For  exam- 
ple, if the initial state is not symmetric with respect to the leader, the 
stationary state can have the form of a nonsymmetric cluster or a set of 
nonsymmetric clusters (Fig. 6). Such clusters are more likely for models 
with short-range interactions. We observed also that an increase of the 
value of the self-support parameter fl significantly favors the appearance of 
an asymmetry, and in the case of fl = 0 asymmetric clusters are possible 
only as states with an oscillating cluster boundary. On the other hand, a 
change from the synchronous dynamics to an asynchronous dynamics results 
in an increase of the probability of nonsymmetric clusters which can then 
appear even for symmetric initial conditions. 

4. N O I S Y  D Y N A M I C S  

It is obvious that the behavior of an individual in a group does not 
only depend on the influence of others, nor is the influence itself strictly 
determined. There are many factors, both internal (personal) and external 
ones, that induce opinion changes. It seems necessary to model them some- 
how. In our model we do this by using noisy dynamics. Noise can be intro- 
duced into the dynamics (4) in different ways. One of them is the special 
case of formula (6) when h,. is a random variable. Another way is to write 
the updating rule as 

a , i= t l  with probability 

1 with probability 

exp( - L ai/T) 
exp( - I~a~/T) + exp(I~ai/T) 

exp(Iiai/T) 
exp( - lia i/ T) + exp( lia i/T) 

(16) 

where we abbreviated a~(t) by a~ and ai(t + 1) by a';. Equation (16) is an 
analog of the Glauber dynamics in neural networks models 141 (with -I~a~ 
corresponding to the local field) and it is related also to the multinomial 
logit model used in decision theory. 171 The parameter T may be interpreted 
as a "social temperature," i.e., a degree of randomness in the behavior of 
individuals. Equation (16) implies the deterministic dynamics (4) when 
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T-~ 0. Both ways of introducing noise are equivalent when h i in (6) is a 
random variable with distribution 

1 
Pr (hi) - 2T cosh "-(h/T) (17) 

having the mean value h,. = 0 and variance h--~.-" = ( T z t / x / ~ )  2. To show this, 
we rewrite (6) as 

1 with probability 

a'; = _ 1 with probability 

Pr ( I ia  i + hi < O) 
(18) 

Pr (I ia i + hi > O) 

However, Pr(I ia  i + hi < 0) = ~ Z/'~ ' Pr(h i) dhv Comparing (16) and (18), we 
find 

f -I,., exp ( - I i a i / T )  (19) 
-.~. Pr (hi) dhi= exp ( - I i a i / T )  +ex p  ( I ia i /T)  

and, after differentiating the above equation, we obtain (17). 
Now let us see the effect of noise on the cluster dynamics of our 

model, using the synchronous version of the updating rule (16) and long- 
range interactions I cc  1/r. Figure 7 shows the results of the simulation 
with growing temperature. As temperature increases, the cluster grows 
slightly up to certain temperature level at which the process speeds up 
rapidly and the cluster bursts to the whole space. To explain such a 
behavior we need to calculate the social impact on individuals in different 
points of social space with a cluster around the leader. Considering the 
dynamics (16), we can conclude that the influence of noise on a single 
individual depends on the ratio of impact to temperature. When Ii/T--* 0 
both probabilities in (16) tend to �89 and we obtain a totally random 
dynamics; when I i / T  ~ c~ it becomes strictly deterministic. Because of sym- 
metry, the impact (at zero temperature) depends only on the distance to 
the leader. Again we replace the sum over individuals by an integral and 
then the impact 'on an individual [at  point (0, 0)] at a distance d from the 
leader [at  point (d, 0)] can be written as 

d ',,i,o).,,) r 

~- '({d, 0}, R) r '((d, o), a) r 
for d < a  (20) 

,~22 ~4 I-2-12 
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l, _ff  for 
'((eL 0). R) r '((tL Ol. a) r 

where a is the radius of the cluster. Calculating the integrals in polar coor- 
dinates, one gets the impact inside ( d < a )  and outside ( d > a )  the cluster, 
respectively: 

I i ( d ) -  SLd 8aE(d" 2)+4RE( , 2 ) + 2 v / ~ - f l  (22) 

d 8aE a'arcsin +4RE\R,2j 

Both functions are plotted in Fig. 8 for sL = 400. Since the system remains 
in equilibrium, the impact on every individual is negative (nobody changes 
his/her opinion). It approaches zero at the border of the cluster, which 
means that individuals located in the neighborhood of that border are most 
sensitive to thermal fluctuations. We can, however, observe an asymmetry 
of the impact. Its absolute value increases much more steeply in the region 
inside the cluster than outside it. From this it follows that all individuals 
who are placed nearer to the leader and share his/her opinion are more 
deeply confirmed in their opinion, so they are also more resistant against 
noise in the dynamics. If we increase temperature, starting from T-~ 0 (as 
in the simulation corresponding to Fig. 7), random opinion changes begin. 
They primarily concern the individuals near the border (where the impact 
is weakest). As a result, individuals with adverse opinions appear both 
inside and outside the cluster, but they are more numerous outside because 
of the weaker impact (Fig. 8). In effect we observe a growth of the minority 
group. This causes the supportive impact outside the cluster to become still 
weaker and the majority becomes more sensitive to random changes, which 
is a kind of positive feedback. At a certain value of temperature the process 
becomes avalanche-like and the former majority disappears. Thus noise 
induces a jump from one attractor (cluster) to another (unification). Such 
a transition is possible for every temperature different from zero, but its 
probability remains negligible until the noise level exceeds a certain critical 
value. Our simulations prove that it is indeed a well-defined temperature 
that separates two phases (i.e., two attractors). Figure 9 demonstrates that 
temperatures which are very close to each other yield quite a different 
behavior of the system. At T =  25 we have a cluster with an effective radius 
a < R and with randomly flipping individuals, mainly near its border, while 
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Fig. 7. Time evolution of the percentage i 1 of tile leader's followers at temperature increasing 
by 1 every 20 time steps. I ,zc l /r ,  st. = 400. Starting point: T =  0, I l = 0.08% (leader only). 
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Fig. 8. Social impact I as a function of distance d to the leader. The leader's strength was set 
to st. = 400. 
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Fig. 9. Temporal  evolution of the percentage ~1 of tile leader's followers at constant  tem- 
peratures (a) T = 2 7 ,  (b) T = 2 6 ,  (c) T = 2 5 .  Here I a: Ifi', SL=400; starting point: ii =0 .08% 
(leader only). 
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at T = 2 7  the system quickly reaches unification, i.e., a =  R. At T = 2 6  
metastability of the cluster can be observed. Its mean lifetime is then of the 
order of a few hundred time steps and then we have a jump to unification. 

We can estimate how the effective cluster radius depends on tem- 
perature. For this we assume that the individuals in the cluster share the 
opinion + I .  Putting (22) and (23) into the noisy dynamics (16), we get 
the following form for the probability that an individual at distance r from 
the leader shares the opinion +1: 

f exp( -- Ii(r)/T) 
P r ( t r = l ) ( r ) =  exp(-I--~f-T)~exp(Ii(r)/T) for r < a  

exp(Io(r)/T) 
t ~  ~ for r>a 

(24) 

The mean number of all individuals with opinion +1 may be 
calculated by integrating the probability multiplied by the surface density 
(which is equal to 1) over the whole space: 

n(cr = 1 )(T) = Io R Pr(cr = 1 )(r) 2nr dr (25) 

This number equals the effective area of the circular cluster, so its radius 
is 

a(T)=[n(a= I)(T)] ~/2 
-- (26) 

In fact, this is not an explicit form of the function a(T), because the radius 
of the cluster appears on the right-hand side of the above equation, namely 
in Ii(r) and Io(r) given by (22) and (23). However, the transcendent equa- 
tion (26) may be solved numerically. 

As one can see in Fig. 10, at low temperatures there are two solutions 
and only the smaller one is stable. The cluster radius grows with increasing 
temperature up to a critical value T,., when both solutions coincide. At this 
temperature a transition from a stable cluster to unification occurs (Fig. 7). 
For T >  T,, no solution exists. Figure 11 presents the function a(T) in com- 
parison with the results of computer simulations. 

We have quite a good conformity of both curves, despite the fact that 
our calculation was simplified. Namely, we used expressions for impact 
(22), (23) which assumed the existence of a regular, circular cluster, while 
in fact, in the presence of noise, the border is diluted and both opinions 
may appear within the whole social space. This is a kind of mean-field 
approximation. 
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"";' [ , . ' f  

f(a) 6 8 

4 

2 

2 4 6 8 10 
a 

Fig. ]0. Solution of Eq. (26), f(a)=-RHS of Eq. (26) for s L =400 and T =  10 (solid line), 
T =  25 = T, (dashed line), and T =  30 (dotted line). 

Using (26), one can also calculate T,. as a function of the leader's 
strength sL. However, (22) and (23) imply that the leader's opinion does 
not change. In fact, when the SL is small and the temperature sufficiently 
large, the probability of such a change becomes significant. Below a certain 
value of s L = sL mi, the leader cannot maintain his/her opinion even at zero 
temperature (12). To prevent this, we set the opinion fixed, independent of 
the influence of the group. 

The plot of T,.(sL) (Fig. 12) is a kind of phase diagram, i.e., the leader's 
followers are the minority for parameter  values below the curve and the 
majority above it. Upon crossing the T,.(sL) line (for constant sL), a phase 
transition occurs in the form of a rapid jump in the percentage Jl of the 
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A 

I -  

2 

0 
0 5 10 15 20 25 

T 

Fig. 11. Mean cluster radius a vs. temperature 7"; SL =400. Results of our calculations are 
represented by the solid line and those of computer simulations by the dotted line. 
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Fig. 12. Critical temperature T,. (above wiaich no stable cluster exists) vs. leader's strength 
s L. Leader's opinion was fixed (independent of the group). The line corresponds to analytical 
results [Eq. (26)], points to simulations. 

leader's followers (as in Fig. 7). The magnitude of that jump is maximal for 
st` close to but smaller than st`c, and it decreases with decreasing st`. For 
small st. we cannot see any cluster around the leader even at a low noise 
level; however, as the temperature approaches Tc there is still a rapid 
change in Pl. For example, if st. = 10, it changes from 30% to 60%, which 
shows that the system still "feels" the presence of a strong individual. At 
high temperatures the dynamics becomes random and, on average, equal 
numbers of individuals share both opinions. 

temperature step 

0 4 8 12 16 

100 

~9. 60 (b) 

40 (a) 

0 i , , 

0 1 O0 200 300 400 

time step 

Fig. 13. Temporal evolution of the percentage 11 of the leader's followers with temperature 
increasing by 2 every 50 time steps. (a) Interactions I oc l / r - ' , sL=200;  (b) interactions 
I ~  1/r 4, SL =40000. Starting point: T = 0 .  
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Noise effects were also observed in systems with interactions of shorter 
range. The results are qualitatively similar to the case of I oc 1/r. However, 
because of the weaker interactions, the impact on every individual is 
smaller than for I ~: 1/r, so that the system is more sensitive to noise. In 
the simulations shown in Fig. 13 we started from a state lying in the area 
of the repeller, split by self-support (Figs. 5a and 5c). In the case of interac- 
tions I oc 1/r 2 when noise appears, the system quickly falls on the attractor 
(stable cluster). As temperature goes on increasing, the minority grows and 
finally the cluster loses its stability, jumping to unification. In the case of 
interactions I oc 1/i .4 there is no relaxation to the stable cluster, but we can 
see a constant growth of the number of the leader's followers toward 
uniformity (rather then a rapid jump). The process is slower, because an 
individual practically feels only an impact of his/her nearest neighbors, and 
it requires more time for changes to propagate. 

One can observe also in Fig. 13 that for T >  T,, the thermal fluctua- 
tions grow and as the result the percentage of the leader's followers r/ 
decreases. In the limit T---, ~ one has ~ --* 50% and the dynamics is totally 
random [ P r ( a i =  + 1 ) ~  1/2]. Similar results could be seen for the inter- 
actions I oz 1/r (Fig. 7) if the temperature were appropriately higher. 

5. C O N C L U S I O N S  

The model of opinion formation in a social network with a strong 
leader exhibits interesting clustering phenomena which can be analytically 
described. Besides the "trivial" state of uniform opinion distribution, the 
system may remain in the state of a stable or unstable cluster centered 
around the leader (unstable clusters can be stabilized due to the effect of 
self-support). There is a critical value of the leader's strength above which 
no cluster can exist; below this value the system exhibits bistability, which 
leads to a hysteresis phenomenon. In the presence of noise (nonzero "social 
temperature") all clusters seem to be metastable states; however, at low 
temperatures their lifetimes may be practically infinitely long. An increase 
of temperature can cause the following effects: an increase of the effective 
radius of the stable cluster, a loss of stability of the cluster and transition 
to the uniform state, and jumps from an unstable cluster to a stable one or 
to uniformity. All these effects result in rapid changes of the minority to 
majority proportion. 

The model presented in this paper is very simplified and the quanti- 
tative results are not directly applicable to real social systems, but still it 
might be useful for the description of some sociological phenomena as in 
the case of the original Nowak and Latan6 model. For  example, in the 
history of human civilization there have been many leaders with a strong 
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personality (e.g., Luther, Gandhi,  Hitler) who were nearly alone with their 
"ideas" at the beginning. However, in the course of time they managed to 
influence their societies to such a degree that their opinions came to be 
shared by more and more individuals and in some cases even "social 
homogenization" took place. One also observes that for such a transition 
to the homogeneous state the role of "social noise" is sometimes very 
important;  e.g., Hitler came to power in a politically destabilized Germany 
during the time of the Weimar Republic. On the other hand, it is remarkable 
that existing homogeneous societies were (and are) very resistant against 
further changes, so that one might speak of social hysteresis. All these 
features (appearance of clusters, homogenization, the influence of social 
noise, social hysteresis) were observed in our computer  simulations, and 
were described analytically. 
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