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Coupling of link- and node-ordering in the coevolving voter model
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We consider the process of reaching the final state in the coevolving voter model. There is a coevolution of state
dynamics, where a node can copy a state from a random neighbor with probabilty 1 − p and link dynamics, where
a node can rewire its link to another node of the same state with probability p. That exhibits an absorbing transition
to a frozen phase above a critical value of rewiring probability. Our analytical and numerical studies show that
in the active phase mean values of magnetization of nodes n and links m tend to the same value that depends on
initial conditions. In a similar way mean degrees of spins up and spins down become equal. The system obeys a
special statistical conservation law since a linear combination of both types magnetizations averaged over many
realizations starting from the same initial conditions is a constant of motion: � ≡ (1 − p)μm(t) + pn(t) = const.,
where μ is the mean node degree. The final mean magnetization of nodes and links in the active phase is
proportional to � while the final density of active links is a square function of �. If the rewiring probability is
above a critical value and the system separates into disconnected domains, then the values of nodes and links
magnetizations are not the same and final mean degrees of spins up and spins down can be different.
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I. INTRODUCTION

It is common that a system in an equilibrium state
is described by appropriate balance equations that possess
mechanical, thermal, chemical, or other meaning [1]. It is no
different when we move toward a multi-agent model with
stochastic dynamics [2,3]. The aim of this paper is to find
corresponding balance conditions for a coevolving voter model
[4].

The model was introduced as a simple model of competition
between species [5] but later named voter model [6]. Its
simplicity means it could be used in many contexts [7],
including opinion formation or catalytic reactions [8]. The
basic two-state voter model has several noteworthy properties:
the coarsening of domains leading to ordering that depends
on dimensionality [8], lack of surface tension on domain
boundaries [9], as well as statistical conservation of the number
of different states [10]. The last property is conditional on
whether one updates nodes or links, or viewing differently, how
the source and target nodes for the state overwriting are chosen
[10]. It is also statistical, which means that the conservation
happens only for averages over many realizations, while each
single realization will inevitably change the numbers of nodes
in different states, leading at the end to an absorbing, fully
ordered state of a finite system. The statistical nature makes
these conservation laws different than conservation of energy
or momentum that are strictly fulfilled. The voter model was
exhaustively researched [7] both in finite-dimensional systems
[8,11,12] as well on networks, including random graphs
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and scale free networks [13–15], Watts-Strogatz small-world
networks [16], networks with modular structure [17], and
directed networks [18,19]. Variations of the original voter
model were also studied, including noisy voter model [20,21],
nonlinear voter model [22,23], as well as a few other [7].

One of more interesting variants of the voter model is
the case of coevolution of the voter dynamics and network
topology. The coevolution dynamics is also known as adaptive
networks [24]. In the nontrivial situation, where the topology
of the network changes in response to the voter dynamics on
the network with similar time scales, new phenomena arise.
The best known is the fragmentation transition [4,25] where the
coevolution can lead to a partition of the network into several
separate clusters, in the case of voter model each with internal
ordering of node states. This transition has been also studied
in more complex network types, including directed [26] and
multilayer networks [27]. The issue of dynamics of so-called
link magnetization was considered in [15,25], allowing to
calculate how the system approaches a final absorbing state
of a static network and when the fragmentation transition
occurs in coevolutionary dynamics. While the coevolving voter
model was studied, the research mostly focused on why and
how the fragmentation occurs, and while works have studied
the dynamics of numbers of links connecting different state
combinations [4,28,29], they have not focused on conservation
laws.

In this paper we investigate the coevolution of the voter
model [5,6,8] and network topology, where links can be
rewired [28] to connect to another node of the same state
instead of changing the state of a node. We explore relations
between mean magnetization of links and nodes. In our mean-
field calculations, we treat mean degrees of nodes in different
states (+)(−) as separate variables μ+,μ−. This allows
discussing the magnetization of links and the magnetization
of nodes as potentially independent variables. Yet we find that
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a combination of node and link magnetizations is conserved
in an ensemble average [Eq. (11)], which is consistent with
the conservation of weighted spins for nonadaptive networks
[10] as well as an obvious fact that node magnetization is
conserved when only links can change. Moreover, we show
that when the rewiring probability is below the critical value
and the final network state contains a nonzero value of active
links then the mean magnetizations of nodes and links are the
same and mean degrees of nodes possessing different spins
also become equal.

II. ELEMENTARY EVENTS

Let us consider a complex network where every node is
attributed to an internal variable that will be called a spin
and is valued +1 or −1 (up or down). The variable can
correspond also to two different opinions of agents placed in
network nodes. Let N+, N− be numbers of nodes up and down,
respectively, and the total number of nodes is N+ + N− = N .
We do not specify the network topology that will evolve in
the course of time. Suppose that each link between nodes is
cut in half and the half-links are classified as directed. Their
number is denoted here as Mαβ (from the nodes endowed with
spin α to the nodes endowed with spin β), where α,β = ±1.
Obviously, M+− = M−+, and M++ + M−− + 2M+− = Nμ,
where μ is the mean degree of node in the network. Further,
a node with the spin α is supposed to have kα = kαα + kαβ

neighbors (β �= α), where kαα (kαβ) is the number of half-links
directed from the node with spin α to other nodes with spins
α (β), and so on.

The system dynamics consists of the evolution of spins as
in the standard voter model and changes in network topology
as was suggested in [28]. In every time step a random node i

is chosen and then one of its nearest neighbors j is selected.
If both nodes possess the same spins the connecting link will
be called inert and nothing happens. If spins are different then
the connecting link will be called active and there are two
options:

(i) With a probability r = 1 − p the spin i is changed to
the value of the spin j . It means the agent i has been convinced
by one of his neighbors j to change his opinion. Such a case
corresponds to the standard voter dynamics [5,6,8].

(ii) With a probability p the spin i is kept but a link between
nodes i and j is removed and a new link between the node i

and any other node l that was initially disconnected from i but
possessed the same spin as the node i is created [28]. Using
the language of opinion dynamics such a rewiring process
can correspond to the case when the agent i was not able to
accept the opinion of the agent j and this disagreement leads
to breaking by the agent i his social relationship to the agent j

and replacing it with a new social tie to the agent l that shares
the same opinion as the agent i.

Overall, there are four possible elementary events: state
changes + → − and − → + as well as rewirings +− →
++ and −+ → −−. Each of these events changes numbers
of spins of given state N+ and N− as well as numbers of
links connecting given states M++,M+−,M−+,M−− in the
following ways (symbols kαβ refer to links from the updated
node α to a node β):

FIG. 1. Possible elementary events: flip α → β (upper) and
rewiring αβ → αα (bottom).

(flips) + → −: N+ → N+ − 1, N− → N− + 1,
M++ → M++ − 2k++, M−− → M−− + 2k+−, M+− →
M+− + k++ − k+− and M−+ → M−+ + k++ − k+−,

(flips) − → +: exactly opposite to above,
(rewirings) + − → ++: M++ → M++ + 2, M+− →

M+− − 1 and M−+ → M−+ − 1,
(rewirings) − + → −−: exactly opposite to above.
These rules are illustrated by Fig. 1. For example, a flip

+ → − means that k++ inert links of a given node become
active links of type −+ and as result the variable M−+
increases by k++. Simultaneously, k+− active links of this
node are switched to inert links of type −−, and so on.

Let us note that flips of spins and rewiring of links keep the
total number of links in the network constant.

III. MEAN-FIELD CALCULATIONS

Now mean-field equations of motion will be constructed
in a similar way as it was done in [4]. We shall assume,
however, that during the system evolution mean degrees of
nodes μα = 〈kα〉 possessing positive and negative spins can
be different, similarly fractions of active links around positive
and negative spins can be also different. As far as we know,
this approach has never been applied before. We shall show
that these more general assumptions lead to time dependence
of mean magnetization of nodes and mean magnetization of
links as well as to nontrivial changes in dynamics of active
links. Let Pα(kα) be the degree distribution for nodes endowed
with spin α and B(kαβ ; kα) be the probability of kαβ active links
out of kα links around nodes endowed with spin α. A general
equation of motion for the total number of active links can be
written as

dMαβ

dt
= Nα

∑
kα

Pα(kα)
∑
kαβ

B(kαβ ; kα)

× kαβ

kα

[r(kαα − kαβ) − p] + Nβ

∑
kβ

Pβ(kβ)

×
∑
kβα

B(kβα; kβ)
kβα

kβ

[r(kββ − kβα) − p]. (1)
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Dynamics of the spin numbers Nα is

dNα

dt
= −r

1/Nα

∑
kα

Pα(kα)
∑
kαβ

B(kαβ ; kα)
kαβ

kα

+ +r

1/Nβ

∑
kβ

Pβ(kβ)
∑
kβα

B(kβα; kβ)
kβα

kβ

. (2)

The above equations follow directly from the description
of elementary events in our dynamics. We assume that the
probability distribution B(kαβ ; kα) is binomial, treating it as if
a result of kα trials and with a success rate ηα equal the fraction
of active links around nodes endowed with spin α. Let us stress
that kα can be a time-dependent variable, and in general, it is
possible that η+ �= η− and μ+ �= μ− where μα is the mean
degree 〈kα〉. In this point our model is more general than that
considered, for example, in [4] where only symmetrical states
μ+ = μ− = μ and η+ = η− were taken into account.

The first two moments of the distribution B(kαβ ; kα) can be
easily found∑

kαβ

B(kαβ ; kα)kαβ = kαηα,

∑
kαβ

B(kαβ ; kα)k2
αβ = k2

αη2
α + kαηα(1 − ηα). (3)

Using these relations and taking into account that kα =
kαα + kαβ after some algebra we get from Eq. (1)

dMαβ

dt
= Nα

[
rηαμα − 2rη2

αμα − 2rηα(1 − ηα) − pηα

]
+Nβ

[
rηβμβ − 2rη2

βμβ − 2rηβ(1 − ηβ) − pηβ

]
,

(4)

Similarly,

dMαα

dt
= −2Nαrηα(μα − μαηα − 1 + ηα)

+ 2Nαpηα + 2rNβηβ(μβηβ + 1 − ηβ), (5)

dNα

dt
= r(Nβηβ − Nαηα). (6)

To make the notation more convenient, we define the density
ρ of active links by its relation with M+−, i.e., M+− =
M−+ = Nμρ/2. Also, we introduce order parameters for
mean magnetizations of nodes n and links m, defined by the
relations: N+ − N− = Nn, and M++ − M−− = Nμm. The
link magnetization m is equal to the weighted magnetization
described in [10]. Hence, Nα = N (1 + αn)/2, and recalling
that Mαα + Mββ + 2Mαβ = Nμ we have Mαα = Nμ(1 −
ρ + αm)/2. Further, from the definition of the mean degrees
of nodes μα we have Nαμα = Mαα + Mαβ . Then,

μα = μ(1 + αm)

(1 + αn)
. (7)

Finally, the coefficients ηα can be written as ηα =
Mαβ/(Nαμα), hence ηα = ρ/(1 + αm).

One can see that η+ = η− only when m = 0 or ρ = 0.
Similarly the mean degrees of nodes with spin α are the same
for m = n. We shall consider a triple (ρ,m,n) as a set of

time-dependent observables describing our system. Equations
of motion for these new variables are

dρ

dt
= 2rρ

1 − m2

[
1 − m2 − 2ρ − 2

μ
(1 − mn)

+ 2ρ(1 + m2 − 2nm)

μ(1 − m2)

]
− 2pρ(1 − mn)

μ(1 − m2)
, (8)

dn

dt
= 2rρ(m − n)

1 − m2
, (9)

and

dm

dt
= 2pρ(n − m)

μ(1 − m2)
. (10)

If m = 0, Eq. (8) reduces to Eq. (2) in [4]. On the other hand,
Eqs. (9) and (10) indicate that the order parameters n and
m are coupled. Eliminating the explicit time dependence, we
receive a new conservation law for a linear combination of
both magnetizations

(1 − p)μm(t) + pn(t) = �, (11)

where � is a constant of motion for this system that results
from initial conditions m0 = m(t = 0) and n0 = n(t = 0). Let
us remark that the conservation law (11) is fulfilled only sta-
tistically. Every elementary update (flip or rewiring) changes
m and n in a way that �R [the value for the actual realization
calculated from Eq.(11) with real m(t) and n(t)] is also
changing. However, due to the symmetry of probabilities �R

is only experiencing fluctuations similar to unbiased random
walk. Since |m| � 1 and |n| � 1 thus |�| � (1 − p)μ + p. In
the limiting case for p = 1 (no flips), we get n = const., what
is obvious. On the other hand, for p = 0 (no rewiring) we get
m = const. This result can be understood as follows. A state
change can only follow from interaction along any of the active
links (between nodes i and j possessing different spins si =
+1 and sj = −1). This is either the flip + → − (probability
1/(Nki

+) or the flip − → + (probability 1/(Nk
j
−). The related

changes of M++ − M−− are −2(ki
++ + ki

+−) or 2(kj
−+ + k

j
−−),

respectively. As ki
++ + ki

+− = ki
+ and k

j
−+ + k

j
−− = k

j
−, the

mean change of M++ − M−− is zero. A similar argumentation
on the preservation of magnetization weighted by the node
degree was presented in [10]. In this way our relation (11)
links together two distinct conservation laws that are fulfilled
in the limiting cases p = 0 and p = 1.

Another conclusion from Eqs. (9) and (10) is that the
asymptotic values of the links and nodes magnetizations m

and n are equal

m∗ = n∗ (12)

provided that the asymptotic density of active links is nonzero
ρ∗ > 0. In other words, active links are responsible for reach-
ing the balance between the links and nodes magnetization. As
a consequence of Eq. (11), the number of variables is reduced
to two; let us take (ρ, m). The evolution of the variable n(t) is
given by Eq. (11), or explicitly through initial conditions as

n(t) = n0 + μ
1 − p

p
[m0 − m(t)]. (13)
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Equations (8) and (10) with n calculated from Eq. (13) have a
line of fixed points (ρ = 0,m) and a fixed point (ρ∗,m∗) which
depends on � and thus the initial state

ρ∗ =
[

1 −
(

�

μ(1 − p) + p

)2
]

(1 − p)(μ − 1) − 1

2(1 − p)(μ − 1)
, (14)

m∗ = �

μ(1 − p) + p
. (15)

The last equation shows that the constant of motion � can
be seen as the final value of the node or link magnetization
normalized by a linear combination of system parameters μ

and p. Following Eq. (14) the final density ρ∗ is a quadratic
function of �, it reaches its maximal value for � = 0 and
it vanishes when |�| is maximal. The density ρ∗ can be
also expressed as a function of m∗ instead of �, where the
whole dependence on initial conditions is via the value of
m∗(μ,p,n0,m0)

ρ∗ = (1 − m∗2)
(1 − p)(μ − 1) − 1

2(1 − p)(μ − 1)
. (16)

Since in the stationary state m∗ = n∗, this relation is the same
as the one observed in numerical simulation results in [4],
where the trajectories of model realizations were observed to
fluctuate along such a curve.

The fixed point Eqs. (14) and (15) depends on both
parameters p,μ, and �(p,μ,n0,m0). The stability analysis
shows that parameter p alone decides whether it is stable or
not. The Jacobian for the fixed point (ρ∗,μ∗) has eigenvalues

λ1 = [μ(1 − p) + p][2 − μ(1 − p) − p]

(μ − 1)μ(1 − p)
, (17)

λ2 = 2

μ
[2 − μ(1 − p) − p], (18)

with associated eigenvectors u1 = [ρ1,m1] and u2 = [1,0],
where

ρ1

m1
= m∗ × 2μ + 3(μ − 2)(μ − 1)p − 3(μ − 1)2p2

p(μ − 1)[2 − μ(1 − p) − p]
.

(19)

For p → pc, the denominator of Eq. (19) becomes zero, so
the second component of the eigenvector u1 becomes zero and
the eigenvectors are parallel. Since

λ1 = λ2
μ(1 − p) + p

2(μ − 1)(1 − p)
, (20)

thus both eigenvalues in the limit p → pc, where

pc(μ) = μ − 2

μ − 1
(21)

are zero [follows Eqs. (17) and (18)] and are negative as
functions of the probability p below the same point. It follows
the fixed point is stable for p < pc and unstable for p > pc.
The value of pc is the same as the critical threshold of the
transition to the frozen phase found in [4].

For p > pc(μ) the point (ρ∗,m∗) not only becomes unsta-
ble, but it is also outside the phase space of the system (ρ∗ < 0)
and thus cannot be ever reached. Figure 2 shows an example
of the flows of the system state (ρ,m) in phase space, along

FIG. 2. Expected flows of the system state (m,ρ) in phase space
according to Eqs. (8) to (10) with n eliminated by Eq. (13). Green
lines represent direction of state changes (speed is not indicated in
any way), red dot shows stable fixed point (ρ∗,m∗) expressed by
Eqs. (14) and (15) and orange crossing lines show the directions
of the eigenvectors of the Jacobian at the fixed point. Figure uses
p = 0.3, μ = 4, � = 0.68 (this � includes for example m0 = 0.2,
n0 = 0.4). Note that since n0 ∈ (−1,1), thus Eq. (11) places limits
on possible m for given �. Gray lines show limits of possible m and
black line shows limit of ρ possible for given m.

with fixed point (ρ∗,μ∗) and eigenvector directions for p < pc

when the fixed point is stable.
The eigenvector u1 corresponds to a nonvertical direction

along which many initial conditions converge to the fixed
point, while the eigenvector u2 simply the direction of axis
ρ.

Taking into account Eq. (21), Eq. (20) can be written as

λ1 = λ2
1

2

(
1 + 1 − pc

1 − p

)
, (22)

thus

|λ1| < |λ2| iff p < pc. (23)

In other words, the eigenvector u1 corresponds to the direction
of slowest convergence to the fixed point in the space (ρ,m).
As the parameter p goes towards its critical value pc, the
convergence rates along both directions are similar and both
tend to zero.

IV. NUMERICAL RESULTS

Now we compare analytical results received from our mean-
field approximation to numerical simulations of coevolving
network of spins. When it is not otherwise stated we consider
a network of N = 50 000 nodes, with mean degree μ = 4,
where we observe variables (ρ, n, m). The critical value
of the rewiring probability calculated from the mean-field
approximation for such a system is equal to p∗ = 2/3. To
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FIG. 3. Numerical simulations of time evolution of the observable
〈�R〉 = (1 − p)μ〈m(t)〉 + p〈n(t)〉 [Eq. (11)] confirm that in a very
good approximation is a constant of motion. Results are presented
for different values of the parameter p: 0.1, 0.2,..., 0.9 (in order of
decreasing 〈�R〉). Horizontal black lines correspond to theoretical
values of �.

construct the network we set

Nα = N
1 + αn

2
, (24)

Mαβ = Mβα = Nμ
ρ

2
, (25)

Mαα = Nμ
1 − ρ + αm

2
. (26)

Considering the above, we construct the network with N+
nodes endowed with +1 spins randomly connected by
M++

2 links and N− nodes endowed with −1 spins ran-
domly connected by M−−

2 links. Both groups are connected
by M+− links.

In a single update, a node i with a spin si and one of its
neighbors node j with a spin sj are chosen randomly. If si = sj

nothing happens. Otherwise, with the probability p, the link
between i and j is reconnected from j to some randomly chosen
node l such that sl = si or with the probability (1 − p) the
spin si is changing to sj . Each time step consists of N single
node updates. Initial conditions are ρ0 = 0.3, n0 = 0.2, and
m0 = 0.4.

Analytical predictions based on our mean-field approach
shown in Fig. 5 to 8 were obtained by solving differential
equations (8) to (10) with the classical Runge-Kutta fourth-
order method implemented in the R package DESOLVE [30].
The presented data from numerical simulations are averaged
over 1000 realizations.

The results at Fig. 3 confirm that for large networks, the
value � received from our mean-field approach is indeed a
statistical constant of motion, i.e., the conservation law given
by Eq. (11) is fulfilled for averages over many realizations.
For smaller N we observed larger fluctuations, in particular,
for small values of the probability p. These fluctuations can
be explained through the finite size of the system. As can
be seen in Fig. 4 the standard deviation of the value of
�R over realizations decreases with the size of the network
approximately as 1/

√
N . The standard deviation of �R reaches

maximal value close to the consensus time, as individual

FIG. 4. Standard deviation of the observable �R = (1 − p)
μm(t) + pn(t) [Eq. (11)] divided by mean value of �R over different
realizations increases in time as

√
t . Red lines present numerical

data obtained from network with N = 1000 nodes, black: N = 5000,
gray: N = 10 000, blue: N = 50 000. Solid lines correspond to mean
degree μ = 4, dashed lines to μ = 20 and dotted lines to μ = 40.
Inset: The same, except that ordinate values are multiplied by

√
N

showing that standard deviation of �R decreases with size of the
network as 1/

√
N .

realizations become fully ordered and so deviation approaches
the maximum possible value (half realizations fully ordered to
+, half fully ordered to −). It can be also observed that the
growth of the standard deviation in time follows δ(�R) ∼ √

t

which is characteristic to random-walk processes, showing that
fluctuations of �R in particular realizations possess a similar
character to the random walk.

Figures 5 and 6 show simulations of the network when
the probability p of link rewiring is below pc. In such a case
the density of active links connecting nodes of different spins
does not decay to zero in the course of time, what is seen
at Fig. 5. One can see in Fig. 5 that mean magnetizations of
nodes and links tend toward equal values, i.e., m = n in the
stationary state and results of numerical simulations for their
time evolution are in a qualitative agreement with analytical

FIG. 5. Density of active links ρ(t) (red lines) does not drops to
zero while the mean magnetization of nodes n(t) (blue lines) and
links m(t) (black lines) become equal when p < pc. Data obtained
from numerical simulations (solid lines) for the rewiring probability
p = 0.3 confirm analytical mean-field predictions (dashed lines).
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FIG. 6. Mean degrees of nodes μα endowed with different
spins α tend towards the same value during time evolution in
active phase. Data obtained from numerical simulations (solid lines)
for the rewiring probability p = 0.3 confirm analytical mean-field
predictions (dashed lines). The blue lines show μ+(t) and the black
lines show μ−(t).

predictions. The difference between mean-field theory and the
numerical calculations can be explained as an inaccuracy of
our mean-field approximation as it disregards any correlations
other than direct neighborhood, as well as possible statistical
dependencies of node properties on degrees, such as was taken
into account in [31,32]. Results from Fig. 6 confirm also
another prediction of mean-field theory. In the course of time
the presence of active links leads to the vanishing difference of
degrees of nodes endowed with different spins, i.e., μ+ = μ−.
Figures 7 and 8 show simulations of the network when the
probability p of the link rewiring is above pc. In such a case
the density of active links connecting nodes of different spins
decays to zero in the course of time and the difference between
node magnetization n and link magnetization m remains frozen
what is seen at Fig. 7. Let us repeat that according to Eq. (7)
when n �= m then also μ+ �= μ− as can be observed in Fig. 8.

FIG. 7. Density of active links ρ(t) (red lines) drops to zero
causing the mean magnetization of nodes n(t) (blue lines) and
links m(t) (black lines) to freeze at different values if p > pc.
Data obtained from numerical simulations (solid lines) for the
rewiring probability p = 0.7 qualitatively confirm analytical mean-
field predictions (dashed lines).

FIG. 8. Mean degrees of nodes μα endowed with different
spins α do not become equal when p > pc. Data obtained from
numerical simulations (solid lines) for the rewiring probability p =
0.7 qualitatively confirm analytical mean-field predictions (dashed
lines). The blue lines show μ+(t) and the black lines show μ−(t).

V. DISCUSSION

The main aim of this study is to understand the statistical
relations between observables related to internal nodes vari-
ables (spins, opinions) and observables related to the network
topology (link magnetizations) in the coevolving voter model.
Moreover we wanted to inspect if average degrees of nodes
are dependent on their spin values in such a system. To
resolve these issues we extended the standard mean-field
approach by taking into account that during the system
evolution mean degrees of nodes μα = 〈kα〉 with positive and
negative spins as well as fractions of active links incident to
them can be both different. Our analysis indicates that the
link magnetization m = (M++ − M−−)/(Nμ) is coupled to
the node magnetization n = (N+ − N−)/N . Namely, a linear
combination of these quantities forms a statistical constant of
motion � [Eq. (11)], where coefficients are the probabilities
of spin flip and rewiring. In other words, there exists a special
conservation law for node and link magnetization. Further, the
difference m − n decreases in time; if the asymptotic state is
active, its mean magnetization of links equals to its mean
magnetization of nodes (n∗ = m∗) and in such a case the
mean degrees of nodes do not depend on the spin value, i.e.,
μ+ = μ−. If there are no active links, i.e., the time evolution is
frozen; the mean magnetization of links can be different from
the mean magnetization of nodes, and the mean degrees of
nodes is different for nodes of different spins.

Numerical calculations confirm this picture in a short time
scale, while in a longer scale fluctuations are visible.

The fluctuations influence node and link magnetizations
in a different way. In the case where only the rewiring takes
place (p = 1), the node magnetization is exactly constant.
On the other hand, if rewiring is absent (p = 0), the link
magnetization is constant only in the average. Hence the
deviations of the solution from the mean-field behavior are
larger for small values of p, as observed in Fig. 3. The constant
of motion � complements the description in the full range of
the probability p between these two extrema.

The mean-field approach, where mean degrees of nodes
in different states are treated as separate variables, is a
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generalization of previous calculations, where this distinction
is not made [4,10]. To place our result among other theoretical
achievements on the voter model, we note that a large effort
has been made recently to evaluate properly the fragmentation
threshold pc where the active phase disappears [28,31]. In
particular, higher-order correlations between nodes of different
opinions have been included to analytical modeling [31,32].
Our goal here is not to improve the accuracy of the mean-field
approach of [4], but to generalize it by including more degrees
of freedom.

Applications of the coevolutionary voter model to the
process of opinion formation were discussed in [33], as often
has been done with the voter model itself [7,34]. Our results
should be useful for separating out the mean-field effects as
well as for comparisons of the model results with real data on
social networks, where the number of neighbors of a person
depends on her or his social status. Such a case can be observed
for coexisting communities representing, for example, various
social classes [35] where the density of social links can be
different in various communities. Our study suggests that
interactions between such groups should reduce differences
between these densities and a difference of sizes of both

groups should be proportional to a difference of number of their
internal connections. We would like also to point out that in the
case of a strongly controversial issue differentiating a society
(e.g., abortion or death penalty) the probability of acceptance
of another opinion can fall below a critical value. Then the
social group separates into disjointed communities and their
structures quantified by the number of nearest neighbors can
be very different.
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