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Categorical and Geographical 
Separation in Science
Julian Sienkiewicz  1, Krzysztof Soja1, Janusz A. Hołyst  1,2 & Peter M. A. Sloot  2,3,4

We study scientific collaboration at the level of universities. The scope of this study is to answer two 
fundamental questions: (i) can one indicate a category (i.e., a scientific discipline) that has the greatest 
impact on the rank of the university and (ii) do the best universities collaborate with the best ones only? 
Restricting ourselves to the 100 best universities from year 2009 we show how the number of publications 
in certain categories correlates with the university rank. Strikingly, the expected negative trend is not 
observed in all cases – for some categories even positive values are obtained. After applying Principal 
Component Analysis we observe clear categorical separation of scientific disciplines, dividing the papers 
into almost separate clusters connected to natural sciences, medicine and arts and humanities. Moreover, 
using complex networks analysis, we give hints that the scientific collaboration is still embedded in the 
physical space and the number of common papers decays with the geographical distance between them.

The idea of so-called science of science is not entirely new: 20th century is well known for its critical works of 
Kuhn1, Popper2, Lakatos3 and Feyerabend4 who tried to build models describing how science should work or, 
which is far more important, to show how it in fact does work. However it is only in recent times that, owing to 
the start of the era of overwhelming data, it is now possible to track this problem quantitatively5,6. Several studies 
are on a journey to answer such intriguing questions like “Who is the best scientist?”, “What makes the best uni-
versity” etc7–14.

There are at least three separate factors that can be regarded as key components of today’s science and the way 
it is recognized: papers, citations and rankings. The last one is devoted rather to whole unities like universities or 
departments although recent studies consider it also in the scope of individuals14. It has been argued that rankings 
still can be perceived as not enough deep measures “providing finalized, seemingly unrelated indicator values”15. 
On the other hand it is well known that scientific impact is a multi-dimensional construct and that using a single 
measure is not advisable16.

Nonetheless, rankings are clearly a derivative of the number of published papers. However apart from just 
raw numbers the quality of science comes often with two additional factors: specialization and collaboration. 
Interestingly the type of the scientific category can dramatically change both the way the paper is written and 
received, e.g., in the case of simple lexical factors as title length its impact on the acquired citations change sig-
nificantly from one category to another17. In the same manner it is possible to spot that the number of citations 
per paper can vary by several orders of magnitude and are highest in multidisciplinary sciences, general internal 
medicine, and biochemistry and lowest in literature, poetry, and dance18. These studies can go even as deep as to 
fascinating notion of scientific meme propagating along the citation graph19,20.

Collaboration has been in the scope of interest for a long time21,22 and it is generally considered that it leads 
to high impact publications23. One of recognized factors affecting the level of collaboration is undoubtedly geo-
graphic proximity: usually one expects to find a decaying probability of citation as well as common papers with 
distance24,25, however it can also be connected to such features as ethnicity or level of economic development26.

In this study we perform an investigation for a selected group of 100 best universities to unravel how the 
scientific productivity measured in the number of published papers per scientific categories (e.g, physics, art etc) 
correlates with the rank of the university. Using Principal Component Analysis (PCA) we study whether scientific 
categories coming from different areas (natural science, humanities etc) tend to stick together. In the second part 
of the paper we examine the complex network27 of scientific collaboration among 100 best universities and study 
the properties of such a network using the concept of weight threshold28.
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Results
We use the QS World University Ranking and service Web of Science datasets to examine patterns of category and 
geographic separation (see Methods for details). The data describes 100 best universities in a form of two matrices 
Pij (100 universities by 181 categories) and Cij (100 by 100 universities). The first matrix contains information 
about the number of papers published by a specific university i in a given scientific category j while the second one 
stores the total number of common papers among universities i and j (regardless of the category).

The main text of this paper concerns absolute numbers of quantities Pij and Cij while the Supplementary 
Information contains some results for the scaled cases.

Rank–number correlations for categories. It is interesting to understand how the university rank cor-
relates with the number of scientific publications and, which is even far more intriguing, to split these relations 
according to different scientific categories. Naively one would expect a strong negative correlation between these 
quantities as larger number of papers should be reflected in acquiring higher rank (thus smaller number). The 
results for our data analysis are shown in Tables 1, 2 and Fig. 1, where we plot correlation coefficient ρ against the 
total number of papers N published in the given category (an alternative and much more straightforward method 
would be to use regression analysis however, in this case, it brings unreliable results - see SI for details). In each 
case ρ was obtained by taking one of the columns j of matrix Pij, ranking it and correlating with the university 
rank, thus calculating Spearman’s rank correlation coefficient. The outcome clearly suggests that there are cate-
gories for which we observe even positive correlation coefficient. On the other hand, one has to take into account 
the fact that in these cases statistical significance of such results is usually very low (p-value > 0.05) as depicted 
in Fig. 1. When treated as a whole the data points give evidence of a log-linear relationship ρ = a + b log N (blue 
solid line in Fig. 1) between correlation coefficient and the number of papers with a = 0.098 ± 0.056 (p = 0.08) and 
b = −0.0415 ± 0.0068 (p < 0.001). A similar fit performed only for the highly significant categories (red solid line 
in Fig. 1) yields a = −0.285 ± 0.072 (p < 0.001) and b = −0.0127 ± 0.0081 (p = 0.13). An insignificant value of b 
in this case means that the level of correlations for the selected group of categories is in fact constant, contrary to 
the previous situation where we observe a significant decrease with N. It is worth to mention here that using not 
absolute but relative numbers of papers (i.e., divide by the total number of papers from a given university) leads 
to different results where positive correlations for certain categories are significant (see Fig. S1 in Supplementary 
Information). Interestingly, the category of Multidisciplinary Sciences seems to be unexpectedly robust, regardless 
of the method used (cf Fig. 1 and S1 in SI) it yields the highest correlation value, which might suggest that inter-
disciplinary research has a substantial influence on university ranking.

Categorical separation. As a next step of our analysis, we check the hypothesis of categorical separation of 
science. In order to test this assumption we perform a Principal Component Analysis (PCA) for matrix Pij where 
we restrict ourselves to those categories that were identified as highly correlated ones (see Fig. 1). Figure 2 presents 
the results of this PCA: the main panel (Fig. 2a) shows a 3D projection of the original 44 categories onto the first 
three principal components. As can be seen in Fig. 2d, the first three principal components explain around 75% 
of data variability. Each category was marked with a color connected to its OECD classification29 that contains six 
different areas: Natural Sciences, Engineering and Technology, Medical & Health Sciences, Agricultural Sciences, Social 
Sciences and Humanities, marking with a different color the scientific category Multidisciplinary Sciences. The 3D plot 
suggests two separate bundles of categories — one connected to medical sciences combined with complementary 
natural sciences (such as Virology or Cell Biology) and the second identified as mainly social sciences and humani-
ties. Interestingly, such core natural sciences like Physics and Mathematics tend to point in directions separated from 
these two bundles. The other intriguing fact is almost complete absence of agricultural and engineering sciences 
(except for one category) in this scheme. Another typical way often used to present the results of PCA is to show 
them in a form of so-called bi-plot, i.e., two dimensional projections of consecutive PCs. Figure 2b,c provides this 
additional information: the values of the first PC are if the same sign, while the 2nd PC differentiates between natural 
sciences and other. It is Fig. 2c that uncovers a very clear distinction among natural sciences, medical sciences and 
social sciences with humanities. This distinction comes also in a clear way from the cluster analysis — Fig. 2e pro-
vides results from k-means algorithm used in case of the outcomes from PCA. When searching for three clusters we 
obtain almost perfect separation among natural sciences, medicine and humanities and social sciences.

Network analysis. Apart from the categorical point of view we can also consider university quality by ana-
lyzing the direct connections between universities i and j on the basis of the collaboration matrix Cij where the 
element Cij gives the number of common publications of institutions i and j. The structure of such a collaboration 
network is depicted in Fig. 3a where each node (vertex) is a university and links (edges) show the connections 
between them. The width of each link corresponds to the number of common publications between the universi-
ties. The algorithm used to obtain this structure is the following. Using 100 highest ranked universities, for each 
of them (u1, u2, …, u100) we search for its publications p1, p2, …, pM(u1). Then, if among the co-authors of p1 there 
is any that comes from either of the universities u2, …, u100 a link of weight w = 1 between those universities (e.g., 
u1 and u2) is established. The weight is increased by one each time u2 is found among the following publications 
of u1. Finally the weight of the link between nodes u1 and u2 is just the number of their common publications (as 
seen in the database).

Weights probability distribution. In order to examine the fundamental properties of the weighted network of col-
laboration we need to compute link weight probability distribution function (PDF) which can give an idea about 
the diversity of number of publications between universities. Figure 3b presents link weight PDF, suggesting a 
fat-tail distribution where the majority of link weights can be found between w = 1 and w = 10.
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Weight threshold. In the following analysis will use the concept of weight threshold28 depicted in Fig. 4. Let us 
take the original network of 5 fully connected universities seen in Fig. 4a and assume now that we are interested 
in constructing an unweighted network that would take into account only the connections with weight higher 
than a certain threshold weight wT (w > wT). A possible outcome of this procedure is presented in Fig. 4b - all the 
links with w < wT are omitted and as a result we obtain a network where links indicate only connections between 
nodes (i.e., they do not have any value).

Using weight threshold as a parameter it is possible to obtain several unweighted networks - for each value of 
wT in the range 〈wmin; wmax〉 we get a different network NT(wT) whose structure is determined only by wT. Then, 
for each of these networks it is possible to compute standard network quantities: (i) number of nodes N that 

Category N ρ Category N ρ

Acoustics 2997 −0.183 Agricultural Economics and Policy 262 −0.221*

Agricultural Engineering 480 0.177 Agriculture 2921 0.044

Agronomy 1267 0.015 Allergy 2539 −0.191

Anatomy and Morphology 1096 −0.231* Andrology 257 −0.301**

Anesthesiology 2602 −0.249* Anthropology 3535 −0.297**

Archaeology 1341 −0.207* Architecture 616 −0.356***

Area Studies 2337 −0.371*** Art 775 −0.325***

Asian Studies 869 −0.403*** Astronomy and Astrophysics 23507 −0.458***

Automation and Control Systems 5809 −0.238* Behavioral Sciences 5393 −0.345***

Biochemical Research Methods 8789 −0.390*** Biochemistry and Molecular Biology 39647 −0.442***

Biodiversity Conservation 1509 −0.247* Biology 6769 −0.501***

Biophysics 8981 −0.356*** Biotechnology and Applied Microbiology 11698 −0.344***

Business 6739 −0.313** Cardiac and Cardiovascular Systems 17817 −0.287**

Cell Biology 20596 −0.470*** Cell and Tissue Engineering 1738 −0.358***

Chemistry 65996 −0.174. Classics 745 −0.141

Clinical Neurology 24176 −0.339*** Communication 1558 −0.105

Computer Science 53600 −0.243* Construction and Building Technology 2157 −0.098

Criminology and Penology 748 −0.219* Critical Care Medicine 3945 −0.269**

Crystallography 2690 0.062 Dance 17 −0.072

Demography 614 −0.287** Dentistry 4079 −0.042

Dermatology 5267 −0.232* Developmental Biology 5417 −0.468***

Ecology 9358 −0.217* Economics 12516 −0.449***

Education 2488 −0.238* Education and Educational Research 4373 −0.178

Electrochemistry 2876 −0.109 Emergency Medicine 2003 −0.214*

Endocrinology and Metabolism 15241 −0.334*** Energy and Fuels 4709 −0.081

Engineering 82305 −0.182 Entomology 1348 −0.000

Environmental Sciences 12350 −0.274** Environmental Studies 3078 −0.294**

Ergonomics 634 0.024 Ethics 1325 −0.347***

Ethnic Studies 483 −0.151 Evolutionary Biology 5809 −0.283**

Family Studies 1198 −0.265** Film 376 −0.246*

Fisheries 1122 0.074 Folklore 91 −0.114

Food Science and Technology 4087 −0.027 Forestry 1299 −0.076

Gastroenterology and Hepatology 9901 −0.323** Genetics and Heredity 17932 −0.430***

Geochemistry and Geophysics 9285 −0.295** Geography 4426 −0.060

Geology 1719 −0.080 Geosciences 10126 −0.185

Geriatrics and Gerontology 3801 −0.430*** Gerontology 4331 −0.328***

Health Care Sciences and Services 6751 −0.311** Health Policy and Services 4840 −0.307**

Hematology 18635 −0.301** History 7000 −0.249*

History Of Social Sciences 852 −0.255* History and Philosophy Of Science 2196 −0.434***

Horticulture 755 0.088 Hospitality 740 0.113

Humanities 3110 −0.317** Imaging Science and Photographic Technology 2152 −0.234*

Immunology 18895 −0.392*** Industrial Relations and Labor 664 −0.227*

Infectious Diseases 8625 −0.373*** Information Science and Library Science 2132 −0.201*
Instruments and Instrumentation 5474 −0.168 Integrative and Complementary Medicine 634 −0.223*

International Relations 1983 −0.342*** Language and Linguistics 2253 −0.148

Law 2684 −0.343*** Limnology 1012 −0.113

Linguistics 2670 −0.220* Literary Reviews 633 −0.264**

Table 1. Correlation coefficients in categories.
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have a at least one link (i.e., nodes with degree ki = 0 are not taken into account), (ii) Number of edges (links) E 
between the nodes, (iii) the average shortest path 〈l〉, (iv) clustering coefficient C, (v) assortativity coefficient r 
(vi) size S of largest connected component with number n of components (see Materials and Methods for details).

Network observables as a function of weight threshold. Figure 5 depicts the above described network parame-
ters as a function of the weight threshold wT. First, as can be seen in Fig. 5a, the number of nodes N is a linearly 
decreasing function of the weight threshold wT. The number edges E decreases faster, following an exponential 
function (Fig. 5b). On the other hand the average shortest path 〈l〉 (Fig. 5c) is a non-monotonic function of 
weight threshold, reaching its peak for wT ≈ 200. Clustering coefficient C (Fig. 5d) decreases with weight thresh-
old up to the point wT ≈ 500 where it rapidly drops down to 0. The most interesting is the behavior of r(wT) 
shown in Fig. 5e: the coefficient starts with r < 0, while for larger thresholds it crosses r = 0 and for wT ≈ 200 it 
takes its maximal value. Then once again it drops down below zero reaching r ≈ −0.4 for wT around 500. Finally 

Category N ρ Category N ρ

Literary Theory and Criticism 560 −0.261** Literature 4158 −0.189

Management 5410 −0.242* Marine and Freshwater Biology 3182 −0.051

Materials Science 35196 −0.163 Mathematical and Computational Biology 4155 −0.510***

Mathematics 20834 −0.394*** Mechanics 7236 −0.228*

Medical Ethics 778 −0.249* Medical Informatics 1845 −0.401***

Medical Laboratory Technology 1635 −0.240* Medicine 28662 −0.393***

Medieval and Renaissance Studies 720 −0.294** Metallurgy and Metallurgical Engineering 4295 −0.152

Meteorology and Atmospheric Sciences 6003 −0.314** Microbiology 9708 −0.264**

Microscopy 607 −0.061 Mineralogy 1307 −0.221*

Mining and Mineral Processing 795 −0.095 Multidisciplinary Sciences 15175 −0.594***

Music 935 −0.203* Mycology 588 −0.127

Nanoscience and Nanotechnology 12710 −0.232* Neuroimaging 2247 −0.452***

Neurosciences 36120 −0.445*** Nuclear Science and Technology 3605 −0.186

Nursing 2923 −0.181 Nutrition and Dietetics 5111 −0.206*

Obstetrics and Gynecology 8228 −0.345*** Oceanography 2763 −0.159

Oncology 25768 −0.320** Operations Research and Management Science 4088 −0.281**

Ophthalmology 5846 −0.346*** Optics 13796 −0.275**

Ornithology 408 −0.092 Orthopedics 4399 −0.198*

Otorhinolaryngology 2320 −0.228* Paleontology 1733 −0.179.

Parasitology 2200 −0.261** Pathology 7470 −0.334***

Pediatrics 9863 −0.317** Peripheral Vascular Disease 14139 −0.294**

Pharmacology and Pharmacy 17978 −0.249* Philosophy 2381 −0.192.

Physics 96469 −0.374*** Physiology 9709 −0.293**

Planning and Development 1539 −0.343*** Plant Sciences 7240 0.036

Poetry 237 −0.167 Political Science 4627 −0.307**

Polymer Science 4909 −0.191 Psychiatry 20036 −0.338***

Psychology 36186 −0.272** Public 18308 −0.305**

Public Administration 1046 −0.165 Radiology 12963 −0.323**

Rehabilitation 3833 −0.094 Religion 2140 −0.157

Remote Sensing 1367 −0.200* Reproductive Biology 4315 −0.217*

Respiratory System 7071 −0.347*** Rheumatology 5928 −0.238*

Robotics 2447 −0.199* Social Issues 1503 −0.347***

Social Sciences 7206 −0.462*** Social Work 1035 −0.201*

Sociology 3477 −0.319** Soil Science 1142 −0.015

Spectroscopy 3043 −0.249* Sport Sciences 4172 −0.093

Statistics and Probability 6058 −0.517*** Substance Abuse 3324 −0.255*

Surgery 16669 −0.301** Telecommunications 9861 −0.191.

Theater 402 −0.164 Thermodynamics 2154 −0.197*

Toxicology 3923 −0.168 Transplantation 5870 −0.292**

Transportation 1158 −0.184 Transportation Science and Technology 1991 −0.089

Tropical Medicine 1714 −0.312** Urban Studies 1044 −0.191

Urology and Nephrology 8348 −0.283** Veterinary Sciences 5039 −0.063

Virology 5516 −0.336*** Water Resources 3716 −0.054

Zoology 6031 −0.176

Table 2. Correlation coefficients in categories (ctnd).
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it increases toward zero for larger wT. In the case of largest connected component S Fig. 5f) we observe a series of 
rapid decreases, e.g., for wt ≈ 100 where S drops down by 20%. These results are quantitatively different from the 
ones obtained by randomly reshuffling the weights of the network (see SI for details).

Network visualisation. The above described non-trivial behavior of quantities r, C and 〈l〉 and S cannot be the sole 
cause of the relations presented in Fig. 3b although a high number of points with wT ≈ 100 can be responsible for 
some of these effects. It seems that there has to be another phenomenon leading to such an effect. Using R’s30 package 
igraph31 we visualize connections between universities and community structure (denoted by color) for different 
values of wT. The results for wT = 100, 200, 300 and wT = 400, 500, 1000 are shown in Figs 6 and 7, providing an input 
for further analysis. For wT = 100 (Fig. 6a) the network is still percolated, i.e., it is possible to reach any node from 
another one; over that value a separation occurs - Chinese, Australian and Singapore, Japanese, Danish and Swedish 
as well as Swiss universities all form separate clusters. This observation is connected with large loss of S in Fig. 5f. The 
remaining giant cluster is built out of American, Canadian, British, Dutch, and German universities (Fig. 6b). This 
is the area where both average path length 〈l〉 and assorativity r take their maximal values. For wT = 300 we witness 
the separation between US and British universities and from now on (with small exceptions) different clusters can 
be described as connected to different countries (or even smaller administrative units as English and Scottish uni-
versities are separated). Further plots depict progressing decay of connections between the universities that form 
either star-like structures (Japanese, Canadian, English and American in Fig. 7a,b) or ultimately chains (Fig. 7c).

A possible explanation to this phenomenon is in the geographical distance between the universities. In fact, 
Fig. 8 supports partially this assumption. The number of publications between universities i and j can be fitted 
with a decreasing power-law function of the geographical distance between them. The gap around d = 5000 is 
most probably caused by the presence of continents. Similar results regarding the role of geographical distance 
in science were obtained in previous studies25,32. On the other hand the error bars in Fig. 8 give evidence that for 
relatively short distances (d ∈ [1; 300] km) the number common papers can be considered constant. This in turn 
would support the hypothesis of country-driven rather than geographically-driven collaboration. A lower than 
expected value of collaboration for shorter distances could also have its origin in the fact that usually there is lack 
of universities of the same scientific profile in the direct vicinity.

Conclusions
Our results indicate that even such fundamental and straightforward analysis as calculation of correlation coef-
ficient between position of the university in the ranking and the number of papers published by its employees 
may reveal some non-trivial relationships. Although it would be natural to expect strictly negative correlation 
(i.e., the more you publish the higher rank you acquire) our analysis shows several scientific disciplines such as 
Agricultural Engineering, Horticulture or Hospitality, Leisure, Sport & Tourism where this is not the case. For the 
whole set of examined scientific categories we found a log-linear relationship between correlation and the number 
of papers. Intriguingly this relation breaks down when the most reliable correlations (i.e., most significant statisti-
cally) are selected. This study also underlines the differences among specific science areas — our PCA results give 
a clear picture that the separation between natural, medical and social sciences really takes place.

Figure 1. Correlations coefficients. Each data point represents a separate scientific category and gives the 
Spearman’s correlation coefficient ρ between the rank of the university and the ranked number of papers N 
in this category (shown as X-axis). The colors reflect statistical significance of the measure (see legend) and 
category names are shown only for the most significant points (p-value < 0.001). Solid lines represent log-linear 
fits to all points (blue) and most significant points (p-value < 0.001, red). Shades surrounding the lines represent 
95% confidence interval.
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The second part of the paper is devoted to network analysis of the collaboration among 100 best universities. 
We used the concept of weight threshold to obtain several slices of the original weighted network at different 
levels of collaboration intensity. Treating the threshold as a control parameter we were able to track such network 

Figure 2. Principal Component Analysis (PCA) of scientific category data. Given the number of papers each of 
the 100 universities published in 44 different scientific categories (chosen according to results obtained in Fig. 1) 
we perform Principal Component Analysis. Panel (a) presents the outcome for three most important principal 
components: each arrow represents the position of an original category (e.g., Physics, Multidisciplinary Sciences) in 
the new set coordinates. The colors of arrows are connected to the OECD classification29 (see legend). Panels (b) 
and (c) show the projection of PCA results onto, respectively, 2nd PC — 1st PC and 3rd PC – 2nd PC planes. Panel 
(d) presents the cumulative value of variance explained by the consecutive PCs. Panel (e) shows the outcomes of 
cluster analysis (k-means algorithm) for the results obtained by PCA (we set the number of clusters to 3).

Figure 3. (a) Representation of the university collaboration network. Each node is a university and links show 
the connections between them. The width of each link corresponds to the number of common publications 
between the nodes in question. (b) Link weight probability distribution function (PDF).
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observables as assortativity revealing its rich behavior. Our analysis shows that the scientific collaboration is 
highly embedded in the physical space - it seems that the key aspect that governs the number of common publica-
tions is the geographical vicinity of the universities which confirms previous observations25,32. On the other hand 
the dependence of network properties on the weight threshold cannot be explained just by using geographical 
distance rationale suggesting rather country-driven collaboration.

Discussion
The problem of the role of scientific categories and relations among them has intrigued the greatest minds of 
the past century. Lately, Dias et al.33 have explicitly quoted Karl Popper’s The Nature of philosophical problems 
and their roots in science34 where this great philosopher had questioned the traditional identification of scientific 
disciplines, convinced instead that one should rather look at cognitive and social aspect thereof. Dias et al. fol-
low this trail by comparing coincidences among disciplines retrieved by (i) classification given by experts29, (ii) 
Jaccard-like coefficient for citations and (iii) language-based Jensen-Shannon measure of dissimilarity35,36 in arti-
cles’ abstracts. The same aspect, although in much more indirect way, has been lately addressed by one of us, argu-
ing that scientific segregation is visible even while examining relations between text length (or emotional content) 
and citation patterns17. While these considerations may seem to be academic (e.g., detecting similarities among 
disciplines that are “obviously” similar) they earn an additional dimension when treated as a dynamical process. 
Given the masses of data the usage unsupervised methods that require no manual classification of documents 
is the best choice to track the evolution of science. In this way such phenomena as convergence and divergence 
of specific disciplines33, life cycles of paradigms37 or inheritance of scientific memes20 can be instantly spotted. 
When used for temporal data, our analysis of principal components basing on the number of published papers 
could also serve as an index for changing relations among disciplines. In particular, one may use it as indicator of 
the interest a certain scientific area gains over the years. It is possible to spot the emergence of certain trends in 
science and, in effect, react by for example establishing a new direction of research in the university.

Geographical distances among the nodes of the network usually come in the form of Tinbergen’s gravity 
model38. Manifestations of spatial embedding of networks39 are truly omnipotent, ranging from the original 
inter-country trade40,41 through inter-city telecommunication flows42 and online friendship43 to active protest-
ers44. In the case of scientific collaboration Pan et al. show a clear preference for researchers to seek partners 
in their geographical proximity25, however underlining that the very form of the gravity model (i.e., a power 
law) does not forbid long-distance interactions. In this study we restricted ourselves to only top universities 
showing which particular links break up first. Although the geographical proximity is an important factor, the 
results clearly show that in the case of small distances the connections are not formed distance-wise but rather 
country-wise. Moreover it also seems that the choice of data handling method (absolute values vs. normalized 
one) can play a crucial role: the description as well as Figs S2 and S3 in the Supplementary Material reveal a strong 
clustering between continents for the normalized data.

Methods
Dataset. We used two prominent data providers: QS World University Ranking45 and Web of Science46 ser-
vice. The first dataset consisted of 100 best universities ranked in the year 2009. The second dataset was obtained 
by querying the database of years 2008–2009 for publications coming from one of the above mentioned uni-
versities and store information about so-called subject category (i.e., the scientific category) and affiliation of 
co-authors. The obtained matrices Pij (100 universities by 181 categories) and Cij (100 by 100 universities) that 
were created on-the-fly without physically saving partial data contain, respectively, 1363821 and 496684 papers.

Abbreviations. The seemingly straightforward procedure of querying for a specific university name encoun-
ters some problems that could have a strong impact on the further results. Web of Science has a set of abbrevia-
tions commonly used for searching such as Univ for “University” or Coll for “College”. Moreover it is essential to 
notice that one has to form a very specific query in order to get rid of severe mistakes. Table 3 shows an exemplary 
list of the search universities together with the exact search phrase that had to be used.

Figure 4. Illustration of the weight threshold concept: (a) a weighted university network with weights 
proportional to the number of common publications, (b) an unweighted network constructed from the 
weighted network of panel (a) by imposing a weight threshold — only links with weights w > wT are kept.
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Ambiguity of queries. The ‘Search’ field is a search key that we use to associate with the authors of the pub-
lications and it can consist of one of the operators: + stands for AND operator in Boolean logic and | stands for 
NOT operator in Boolean logic. These operators are used to clearly assess the origin of the publication. Table 2 
shows that using just the names of universities from the list (first column) would lead in the case of number 98 to 
obtaining publications of both Technical University in Munich and University of Munich, instead of just the latter. 

Figure 5. Comparison of collaboration networks observable as functions of weight threshold wT: (a) number 
of nodes N (b) number of edges E, (c) average shortest path 〈l〉, (d) clustering coefficient C, (e) assortativity 
coefficient r, (f) size of the largest connected component S (red points) and number of components n (grey 
points).
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To avoid this problem one has to insert a query Univ Munich | Tech Univ Munich that ensures achieving proper 
results. On the other hand for instance for the case shown as number 78, it was not sufficient to enter Washington 
Univ, as there are many universities with such an abbreviation; it was necessary to add St. Louis in the query text.

Network analysis. Clustering coefficient Ci for node i is defined as the number of existing links among its 
nearest neighbors ei (i.e., nodes to which it has links) divided by the total number of possible links among them 
ki(ki − 1)/2

=
−

C e
k k

2
( 1) (1)i

i

i i

Figure 6. Snapshots of network topology for different thresholds: (a) wT = 100, (b) wT = 200 and (c) wT = 300. 
The colors of vertices correspond to the assignment from a community detection algorithm (fast greedy 
modularity optimization algorithm47) and therefore they can change from one panel to another. Plots were 
created combining open-source packages igraph31 (nodes and links) and maps48 (world map) for R language30.
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The total clustering coefficient for the whole network is calculated as the average over all Ci.
Assortativity coefficient r defined by

=
∑ − 

 ∑ + 


∑ + − 
 ∑ + 



r
j k j k

j k j k

( )
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Figure 7. Snapshots of network topology for different thresholds: (a) wT = 400, (b) wT = 500 and (c) wT = 1000. 
The colors of vertices correspond to the assignment from a community detection algorithm (fast greedy 
modularity optimization algorithm47) and therefore they can change from one panel to another. Plots were 
created combining open-source packages igraph31 (nodes and links) and maps48 (world map) for R language30.
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where i goes over all edges in the network. The coefficient is in the range [−1; 1], r = 1 means that the highly 
connected nodes have the affinity to connect to other nodes with high ki while r = −1 happens when highly con-
nected nodes tend to link to nodes with very low ki.

Average shortest path 〈l〉 is calculated as the average value of shortest distance (measured in the number of 
steps) between all pairs of nodes i, j in the network.
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