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We present a method that uses distances between nearest neighbors in Takens space to evaluate
a level of noise. The method is valid even for high noise levels. The method has been verified by
estimation of noise levels in several chaotic systems. We have analyzed the noise level for Dow
Jones and DAX indexes and we have found that the noise level ranges from 25 to 80% of the
signal variance.
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1. Introduction

It is common that observed data are contaminated
by a noise (for a review of methods of nonlinear
time series analysis see [Kantz & Schreiber, 1997;
Abarbanel, 1996]). The presence of noise can sub-
stantially affect invariant system parameters as a
dimension, entropy or Lyapunov exponents. In fact
Schreiber [1993] has shown that even 2% of noise
can mislead a dimension calculation. It follows that
the assessment of the noise level can be crucial for
estimation of system invariant parameters. Even
after performing a noise reduction one is interested
to evaluate the noise level in the cleaned data. In
the experiment, noise is often regarded as an uncer-
tainty measurement which corresponds to a random
variable added to the system’s temporary state or
to the experimental outcome. This kind of noise

is usually called measurement or additive noise.
Another case is when noise influences the system
dynamics, corresponding to the Langevine equation
and can be called the dynamical noise. The second
case is more difficult to analyze because the noise
acting at moment t0 usually changes the trajectory
for t > t0. It follows that there is no clean trajec-
tory and instead, an ε-shadowed trajectory occurs
[Farmer & Sidorowich, 1991]. For real data a signal
(e.g. physical experimental data or economic data)
is subjected to the mixture of both kinds of noise
(measurement and dynamical).

Schreiber has developed a method of noise level
estimation [Schreiber, 1993] by evaluating the influ-
ence of noise on the correlation dimension of the
investigated system. The Schreiber method is valid
for rather small gaussian measurement noise and
requires values of the embedding dimension d, the
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embedding delay τ and the characteristic dimension
r spanned by the system dynamics.

Diks [1996] investigated properties of correla-
tion integral with the gaussian kernel in the pres-
ence of noise. The Diks method makes use of a
fitting function for correlation integrals calculated
from time series for different thresholds ε. The
function depends on system variables K2 (correla-
tion entropy), D2 (correlation dimension), σ (stan-
dard noise deviation) and a normalizing constant Φ.
These four variables are estimated using the least
squares fitting. The Diks method [Yu et al., 2000]
is valid for a noise level up to 25% of signal vari-
ance and for various measurement noise distribu-
tions. The Diks’s method needs optimal values of
the embedding dimension d, the embedding delay τ
and the maximal threshold εc.

Cawley et al. [Cawley & Hsu, 1992] devel-
oped a method of noise reduction and they used
this method for noise level estimation. The method
explored the local-geometric-projection principle
and is useful for various noise distributions but
rather small noise levels. To use the method one
needs to choose a number of neighboring points to
be regarded, an appropriate number of iterations as
well as optimal parameters values d and τ .

Oltmans et al. [Oltmans & Verheijen, 1997] con-
sidered the influence of noise on the probability den-
sity function fn(ε) but they could take into account
only a small measurement noise. They used a fit
of fn(ε) to the corresponding function which was
found for small ε. Their fitting function is simi-
lar to the probability density distribution that we
receive from correlation integrals (1/N2)DETn(ε).
The method needs as input parameter values of d,
τ and εc.

In [Urbanowicz & Ho�lyst, 2003] we presented
a method of noise level estimation by coarse-
grained correlation entropy (NECE). The crucial
point of this method is to fit a proper function to

the estimated correlation entropy. This method
does not demand any input parameters like the
embedding dimension d or the embedding delay τ .
The minimal and maximal values of the threshold
parameter ε can be automatically estimated. The
NECE method will be used further as the reference
method.

In this paper we present another method for
evaluation of a noise level. The method makes use
of neighboring distances in the embedding space
(NEND) and will be introduced in the next sec-
tion. In the further section we show an application
of this method to stock market data. Although it
is a common belief, that the stock market behav-
ior is driven by stochastic processes [Voit, 2001;
Bouchaud & Potters, 2000; Mantegna & Stanley,
2000] it is difficult to separate stochastic and deter-
ministic components of market dynamics. In fact
the deterministic fraction follows usually from non-
linear effects and can possess a nonperiodic or even
chaotic characteristic [Peters, 1997; Ho�lyst et al.,
2001]. With the help of the NEND and NECE
methods [Urbanowicz & Ho�lyst, 2004] we try to
demonstrate that stock market data are not purely
stochastic and a deterministic part can be some-
times dominant.

2. Method of Noise Estimation by
Use of Neighboring Distances in
Takens Space (NEND)

Let {xi} where i = 1, 2, . . . , N be a time series
and xi = {xi, xi+τ , . . . , xi+(d−1)τ } a corresponding
d-dimensional vector constructed in the embedded
space where d is an embedding dimension and τ
is an embedding delay. The method is based on
the assumption that the minimal distance between
nearest neighbors is described by the standard devi-
ation of noise. The nearest neighbor is found using
the Euclidian norm i.e. the distance is measured
using the following formula

disi,j =
√

(xi − xj)
2 + (xi−τ − xj−τ )

2 + · · · + (
xi−(d−1)τ − xj−(d−1)τ

)2
. (1)

The nearest neighbor of the vector xn is the vector
xj such that

{xj : ∀kxk, (k �= j, n),disn,j ≤ disn,k} . (2)

We will assume that the distance between the
vector xn and its nearest neighbor (disNN

n ) is calcu-
lated in a large embedding dimension d� 1.

For linear systems without a noise the minimal
distance between nearest neighbors should decrease
with an increasing number of data in time series and
for N → ∞ this distance will tend to zero since the
trajectory reaches the final periodic orbit. For deter-
ministic chaotic systems such minimal distances
depend on the system entropy but they also tend
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to zero for an infinite number of data when the tra-
jectory densely fills the chaotic attractor.

In the case when we add to an observed
deterministic trajectory a Gaussian noncorrelated
noise the corresponding minimal distance disNN

n

is increased. For a large value of the embedding
dimension d � 1 the distances can be estimated as
a standard deviation of a superposition of 2d inde-
pendent stochastic variables, i.e.

disNN
n ≈

√
2dσ, (3)

where σ is the standard deviation of a noise added
to the signal.

The approximation (3) is valid only in limits of
very long time series and a large embedding dimen-
sion d. If we generate surrogate data {surri} by the
random shuffling of the original data [Ho�lyst et al.,
2001] then this kind of surrogates preserves mean,
variance and histogram but removes any determin-
ism in data. The minimal distance between near-
est neighbors calculated in an embedded space for
surrogate data should be proportional to standard
deviation of data.

Now let us define the Noise-To-Signal ratio as
the proportion of σ to the standard deviation of
data σdata

NTS =
σ

σdata
. (4)

In the first step of the method we calculate all
distances between nearest neighbors in the origi-
nal and in the surrogate data. Then we search for
the smallest distance for each data set: disNN

min =
minn

{
disNN

n

}
and dissurr, NN

min = minn

{
dissurr,NN

n

}
.

Using the approximation (3), i.e. the linear depen-
dence of the distance disNN

min on the noise level, we
can introduce the output parameter of the method
ADETd [Urbanowicz et al., 2004], which is related
to the Noise-To-Signal ratio (NTS) as follows:

NTS ≈ ADETd ≡ disNN
min

〈dissurr,NN
min 〉

. (5)

Here we denoted 〈dissurr, NN
min 〉 as an average of m

realizations of the surrogate data (m appears as the
parameter of the method).

3. Noise Estimation: Examples and
Application to Stock Market Data

The NEND method described in the previous sec-
tion is very simple to use. A drawback of this
method is a large error of the estimated noise level

Table 1. Results of the noise level estimation for different
systems. In the case of NEND method we used d = 9,
m = 20 and N = 3000.

Estimated σ Estimated σ
System NTS σ Using NEND Using NECE

Henon 0 0 0.0 ± 0.05 −0.0023 ± 0.0001
Henon 0.09 0.1 0.05 ± 0.06 0.1 ± 0.0007
Ikeda 0.1 0.07 0.05 ± 0.04 0.07 ± 0.0005
Lorenz 0.43 4 3.7 ± 0.5 4.4 ± 0.4
Lorenz 0.85 15.7 16.6 ± 1 14.9 ± 0.08
Lorenz 0.96 30 32.8 ± 1.5 30.5 ± 0.7
Roessler 0.33 7.4 4.7 ± 1.2 6.4 ± 0.8
Roessler 0.84 15 14.46 ± 0.8 14.7 ± 1.1
Roessler 0.93 33.4 37 ± 1.8 33.8 ± 1

for short time series and too low embedding dimen-
sions d. The estimation error increases if we take a
smaller number of random surrogates data that are
used for the averaging formula (5). In Table 1 exam-
ples of noise estimation by the NEND method are
presented in comparison to results of NECE method
(see [Urbanowicz & Ho�lyst, 2003]). The estimation
error of the NEND method is based on a standard
deviation of temporary values of ADETd for differ-
ent realizations of surrogate data. One can see that
the NEND method, despite its simplicity, works
quite well for considered cases. Although the NECE
method gives better accuracy as compared to the
NEND method but the first method is much more
sophisticated and difficult for computer implemen-
tation. CPU times needed by computers are com-
parable for both methods.

Both methods were applied to evaluate the
noise levels in stock market data. Here we present
results for Dow Jones Industrial Average (DJIA)
during the time period 1896–2002 (daily returns,
see Fig. 1) and DAX (German Stock Market
Index) during the time period 1998–2000 (4 min-
utes returns, see Fig. 4). Returns xn are defined as

xn = ln
(

Pn

Pn−1

)
, (6)

where Pn is the value of an index at the time n.
Noise levels for both indexes are in the range
NTS ≈ 0.5–0.9 as one can see in Figs. 2, 3, 5
and 6. It follows that considered stock market data
are not purely stochastic because the percent of
determinism ranges (1 − NTS2) · 100% ≈ 20–75%
and the stochastic part is about 25–80%. In
Figs. 2 and 5 we present noise levels ADET9 cal-
culated with the NEND method for DJIA and
DAX indexes, respectively. For the comparison
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Fig. 1. Plot of daily returns of Dow Jones Index (1896–
2002).
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Fig. 2. Plot of noise levels ADETd for d = 9 calculated
with the NEND method and the value of Dow Jones Index
(1896–2002).
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Fig. 3. Plot of noise levels NTS calculated with the NECE
method and the value of Dow Jones Index (1896–2002).

Fig. 4. Plot of 4 minutes returns of DAX Index (1998–2000).
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Fig. 5. Plot of noise levels ADETd for d = 9 calculated with
the NEND method and the value of DAX Index (1998–2000).
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Fig. 6. Plot of noise levels NTS calculated with the NECE
method and the value of DAX Index (1998–2000).
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in Figs. 3 and 6 we show noise levels NTS calculated
with the NECE method. The NEND method and
the reference method NECE give similar results.
Since both methods are different approaches thus
similar results suggest good accuracy of both meth-
ods. Some differences in noise level estimations
between both methods appear in the periods of
increased volatility (1930–1940 for DJIA and from
August to November of 1998 for DAX), which sug-
gests that extreme events have different impact in
both methods. We think that the NECE method
gives more relevant results in high volatility regions
and the NEND method underestimates the noise
level in such cases.

4. Conclusions

In conclusion we have developed a new method of
noise level estimation from time series. The method
makes use of the minimal distance between nearest
neighbors in Takens space. The method has been
tested for several systems and it has brought simi-
lar results to the method described in [Urbanowicz
& Ho�lyst, 2003] but it is much easier for computer
implementation. The application of the method to
stock market data gives the percent of noise ranging
from 25 to 80% of signal variance.
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