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The paper proposes a new model of spin dynamics which can be treated as a model
of sociological coupling between individuals. Our approach takes into account two dif-
ferent human features: Gregariousness and individuality. We will show how they affect
a psychological distance between individuals and how the distance changes the opinion
formation in a social group. Apart from its sociological aplications the model displays
the variety of other interesting phenomena like self-organizing ferromagnetic state or
a second order phase transition and can be studied from different points of view, e.g.,
as a model of ferromagnetic fluid, complex evolving network or multiplicative random
process.
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1. Introduction

Interdisciplinary research has been drawing much attention in the last decades.

Models and methods developed in theoretical physics proved to be fruitful in study-

ing complex systems,1,2 composed of relatively simple mutually interacting elements

and coming from domains as diverge as neural networks,3 disease spreading,4 pop-

ulation dynamics,5 etc. But the range of the investigations goes also beyond the

natural sciences and includes problems from sociology or economy, like pedestrian

motion and traffic,6 migrations7,8 or financial crashes.9 Another important subject

of this kind is the process of opinion formation in social groups. One way of its quan-

titative description consists in a macroscopic approach based on the master equation

or the Boltzmann-like equations for global variables.7,10,11 Alternatively, by mak-

ing some sociologically motivated assumptions on the mechanisms of interactions

between individuals “microscopic” models are constructed and investigated numer-

ically or analytically by means of methods known from statistical physics.12–14 One
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concludes that the variety of the emerging physical collective phenomena has much

in common with the complex social processes.

In particular, Nowak, Szamrej and Latane created a simple model based upon

the successful theory of social impact in human societes first introduced by Latane

in 1981.15 In the simplest form their model characterizes the strength of the psy-

chological coupling between the individuals by two qualities: Persuasiveness and

support. The former describes the ability of one individual to persuade the other

one to change his/her opinion. The later describes the ability of one individual to

support the other one in his/her opinion. Different variants of the model were ex-

plored numerically,16–18 and many of the observations were than explained in the

framework of a mean field approach19–21 and the Landau theory.22

In recent years new models of opinion formation have been presented, where

opinion dynamics interacts with a structure of underlying social network of personal

acquaintances.23–25

Here we would like to present a rather different approach to describe psycho-

logical coupling. Instead of persuasiveness and support we will study the effect of

gregariousness and individuality. We will show how the two features may affect

psychological distance between individuals and how the distance changes opinion

formation in the society. Finally, we will show that our model could be mapped to

ferromagnetic fluid not in Euclidean but in a social space.

2. The Model

Our system consists of N individuals (members of a social group); we assume that

each of them can share one of two opposite opinions on a certain subject, denoted

as σi = ±1, i = 1, 2, . . . , N . The Hamiltonian of the model reads:

H = −
∑

i<j

Ji,j(t)σiσj . (1)

Individuals can influence each other with the strength Ji,j(t) which can be

understood as an inverse of their distance in a social space. The above means that

a stronger impact corresponds to a shorter distance. We assume that social distances

are changing in time and we put on the following dynamics of the strength Ji,j(t):

Ji,j(t + 1) = Ji,j(t)(1 + η − ασiσj) . (2)

The parameter η > 0 is responsible for continous growth of the social strength

and can be identified as gregariousness of ith individual which leads to tightening of

ties with other people. In other words, people from their nature seek the company

of others. The parameter α > 0 describes another natural tendency of people which

is a need to be different than a surrounding crowd, i.e., it reflects the inclination of

an individual to demonstrate his/her individuality.

For completeness of the model we assume as an initial condition any positive val-

ues of Ji,j(t = 0). The condition assures that during the system evolution couplings

are always positive in the most interesting range of parameters η and α.
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Fig. 1. Phase diagram of the model (1)–(2). F — ferromagnetic phase, P — paramagnetic phase.
Detailed explanation in the text.

Now, let us concentrate on the phase diagram for the presented model (Fig. 1).

It is divided into four different regions by three curves. The curve 1 is the most

obvious one. For every set of parameters above this curve, i.e., for η > α, coupling

strengths will increase to infinity in exponential way. Parameters η < α−1, limited

by the curve 3, also make the system unstable, but now coupling strengths can

become negative. It means that in every step J will change its sign and |J | will

diverge to infinity. The stable region lies between two curves 1 and 3.

To explain the curve 2 let us concentrate on a single coupling and investigate

the following process: J(t) → J(t + 1) → J(t + 2) = J(t). As one can see from

Eq. (2), in every step J grows or decreases by some well defined value. The above

process is the simplest one in which J stays at some fixed level, i.e., it grows and

then it decreases to the same value. Let us assume that J(t+1) > J(t) (the opposite

case is analogous). It means that J(t + 1) = J(t)(1 + η + α). Then, in next step J

should decrease, i.e., J(t+2) = J(t+1)(1+ η−α). From above one can obtain the

following condition:

ηc =
√

1 + α2 − 1 . (3)

It is easy to see that a corresponding critical condition for a generalized process

J(t) → J(t+1) → J(t+2) → · · · → J(t+2n) = J(t) is equivalent to the condition

(3).

If we set η below the critical value ηc then the above process will result in

decreasing J to zero. Then it is obvious that two spins for which this coupling J

is investigated become disconnected and independent, what leads to paramagentic

state.
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To complete discussion of the phase diagram one has to note that it is useful to

assure α � 1. If one rewrites the Eq. (2) in the following form:

Ji,j(t + 1) − Ji,j(t)

αJi,j(t)
=

∆Ji,j(t)

Ji,j(t)α∆t
=

η

α
− σiσj , (4)

then one can see that α plays the role of time scale. It means that for large α the

succesive values of Ji,j are very distant (Ji,j changes very fast) and spin dynamics

can not follow to compensate changes of Ji,j . It manifests itself in long time observed

paramagnetic states interrupted by long time observed ferromagnetic states.

In summary, from the sociological point of view the interesting range of param-

eters is ηcritical < η < α � 1.

The dynamics of changes of individual’s opinion is given by a simple Monte

Carlo procedure based on the Metropolis algorithm. A temperature T given in

the algorithm may be interpreted as a “social temperature” describing degree of

randomness in the behavior of individuals, but also their average volatility. The

procedure consists of two steps. In the first step we update states of N randomly

chosen individuals. In the second step we update coupling strengths for all nodes

according to Eq. (2).

As we will show for a wide range of parameters η and α, regardless of choosing

a temperature the system tends to be in a ferromagnetic regime. It means that

despite a tendency to manifest individuality most of individuals interact with the

other people who share the same opinion.

3. Results

A typical dependence of magnetization per spin |m| on system parameters η/α is

shown in Fig. 2. Considering η as an order parameter, a continous (second order)
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Fig. 2. Dependence of average magnetization per spin on the system parameter η/α.
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phase transition occurs for ηc given by Eq. (3). Open points presented in Fig. 1

obtained from simulations confirm that the above derivation is correct.

One can see from the Fig. 2 that the absolute value of the mean magnetization

is an (increasing) function of η/α but it is completely independent on the system

temperature T . The effect can be understood as follows. According to Eq. (4) we

can write the following equation for the mean value for the logarithm of Ji,j

1

α

〈

d ln Ji,j

dt

〉

=
η

α
− 〈σiσj〉 . (5)

However, the mean value of the product 〈σiσj〉 is related to the mean system

magnetization 〈m〉 which on the other hand is a certain function of the Boltzmann

factors exp(−Ji,j/T ). Thus taking andvantage of the mean field approximation we

can write that

1

α

〈

d ln Ji,j

dt

〉

=
η

α
− g

(

〈Ji,j〉

T

)

. (6)

When the system is close to equilibrium the left hand side of the last equation in

average equals to zero and the equation simplifies to the following relation

〈Ji,j〉

T
= g−1

( η

α

)

. (7)

In this sense the average value of the coupling constant is always proportional to

the temperature and a function of a ratio η/α.

Since m is a function of the ratio 〈Ji,j〉/T , it only depends on the ratio η/α

and does not depend on the system temperature. The numerical confirmation of

the statement is presented in Fig. 3.
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Fig. 3. Average coupling strength in the system as a function of temperature. Log–log fit is
presented by straight lines with slopes 1.03 for open points and 1.01 for filled points. Inset: the

same dependence in linear scale. Slopes of two fitted linear functions represent a proportionality
factor given by function g−1(η/α) from Eq. (7).
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Fig. 4. Schematic picture of processes occuring in the system during the changing of the tem-
perature T and η/α = const; (a) equilibrium (initial) state of the system; (b) The change of the
temperature T from T1 to T2 forces magnetization curve to reshape to new equilibrium conditions.

To illustrate the effect one can perform the following procedure. First, set val-

ues of the parameters η and α, and also temperature T1 of the system. (These

values result in a given spin magnetization depicted in Fig. 4 by m∗, and they

also correspond to a certain distribution of couplings between spins P (J).) Now

we would like to reconstruct the whole magnetization curve passing through the

point (T1, m
∗). Unfortunately, as we have already shown any change of T modifies

coupling strengths, which in consequence modify the shape of the magnetization

curve. Reconstruction of m(T ) will be possible if we freeze P (J), i.e., we make each

Ji,j constant.

Once we have determined m(T ), we restore dependence of J on T and

change temperature to new value T2 > TC1. A new pair (T2, m
∗) determines a

new critical temperature TC2. The curve in Fig. 4(a) adjusts to new conditions and

transforms to the shape shown in Fig. 4(b) (obtained by the same method as be-

fore). It means that regardless of a choice of the system temperature we are always

below the critical temperature, i.e., in the ferromagnetic state.

The sociological conclusion could be as follows: Regardless of a “social temper-

ature” people always try to correlate their opinions with others (create groups of

interest). This tendency to share the same opinion with other people, regardless of

some external forces, make us, people, so resistant to trials of despots to make the

people unorganized and disoriented. Of course the parameter η/α characterizes our

own (not social) point of view which gives us some independency respecting other

people opinion.

The authors fatherland history confirms that in times when Poland was under

successive occupations or dominations of different neighboring countries and the in-

vaders tried to destroy the national identity (what corresponds to high temperature

in our model), ties between Polish citizens (coupling strengths Ji,j) were growing

stronger. On the other hand, in periods of national sovereignty these ties were be-

coming weaker, what encouraged new invaders. It means that a weaker affiliation to
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Fig. 5. Distribution of coupling strengths for different values of parameters η/α and T .

a Nation results from a lack of serious threat for a country sovereignty or religion.

In the above example the parameter η/α determines a national identity of a given

country.

From the point of view of complex networks domain26,27 it is interesting to con-

sider the model as a weighted network, where nodes correspond to individuals and

links have assigned weights equal to coupling strength. One of nontrivial observa-

tions is a distribution of coupling strengths P (J) which is presented in Fig. 5. As

one can see for large temperature T the distribution has a form of power law with

the exponent γ ≈ 0.85.

It seems that there should be a strong relation between the observed power-law

distributions and distributions obtained due to a more general class of multiplicative

random processes.28,29 If fact, one can easily find some similarity of Eqs. (1) and

(2) in Ref. 28. The differences occur when one takes into account the temperature

and its influence on distributions in Fig. 5. We suspect that the model studied by us

settles somewhere between two multiplicative random processes studied in Refs. 28

and 29. This hypothesis is still under investigation and the results will be published

elsewhere.

Now let us draw attention to similarity of the presented model to magnetic

fluids which are widely studied for the last thirty years.30 Magnetic fluids are de-

scribed by interacting molecules with both translational and spin degrees of free-

dom. They interact due to weak long-ranged exchange interactions in addition to

spin-independent isotropic attractive forces. The most simple physical parameter

used in phase diagrams of magnetic fluids has a form

R =

∫

φex(r)dr
∫

φattr(r)dr
, (8)
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where φex(r) describes exchange integral, φattr(r) some attractive-type integral and

r is Euclidean distance between molecules. One can easily see a correspondence

between the above parameter and the main parameter of our model η/α. In that

sense η and α have respectively attractive and spin-dependent properties, and our

distance in social space reflects Euclidean distance r.

4. Conclusions

In this paper we propose a new model of spin dynamics which could be treated

as a model of sociological coupling between individuals. Apart from its sociological

aplications the model displays the variety of other interesting phenomena like self-

organizing ferromagnetic state or a second order phase transition and can be studied

from different points of view, for example as a model of ferromagnetic fluid, complex

evolving network or multiplicative random process.
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(1996).
18. A. Nowak, J. Szamrej and B. Latané, Psych. Rev. 97, 362 (1990).
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