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Abstract

The article explores the concept of infodemics during the COVID-19 pandemic, focusing on the propagation of false or

inaccurate information proliferating worldwide throughout the SARS-CoV-2 health crisis. We provide an overview of

disinformation, misinformation and malinformation and discuss the notion of “fake news”, and highlight the threats these

phenomena bear for health policies and national and international security. We discuss the mis-/disinformation as a

significant challenge to the public health, intelligence, and policymaking communities and highlight the necessity to design

measures enabling the prevention, interdiction, and mitigation of such threats. We then present an overview of selected

opportunities for applying technology to study and combat disinformation, outlining several approaches currently being

used to understand, describe, and model the phenomena of misinformation and disinformation. We focus specifically on

complex networks, machine learning, data- and text-mining methods in misinformation detection, sentiment analysis,

and agent-based models of misinformation spreading and the detection of misinformation sources in the network. We

conclude with the set of recommendations supporting the World Health Organization’s initiative on infodemiology.

We support the implementation of integrated preventive procedures and internationalization of infodemic management.

We also endorse the application of the cross-disciplinary methodology of Crime Science discipline, supplemented by Big

Data analysis and related information technologies to prevent, disrupt, and detect mis- and disinformation efficiently.
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Introduction

SARS-CoV-2 coronavirus and disease it has caused,
COVID-19, was identified in December 2019 in China
(Zhu et al., 2020). In January 2020, the World Health
Organization (WHO, 2020a) announced a Public Health
Emergency of International Concern and on 11 March
2020 declared it a pandemic (WHO, 2020b). Since then,
COVID-19 has developed into a global health crisis,
disrupting lives worldwide and causing unprecedented
disruption (Organisation for Economic Co-operation
and Development, 2020). The United Nations (2020)
assessed that the pandemic had wiped out decades of
development gains. By early April 2021, it had infected
over 132 million and resulted in the death of 2.8 million
people worldwide (Johns Hopkins University, 2020).

One of unique aspects of the COVID-19 pandemic
has been the proliferation of an enormous volume of
information, both accurate and incorrect, making it
challenging for the general public to find trustworthy
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and reliable sources of information (WHO, 2020d). The
extraordinary volume of misinformation, often based
on conspiracy theories, further amplified the informa-
tion chaos related to COVID-19 (Gradon, 2020). This
“fake news” has been viewed by investigators as one of
the greatest threats to democracy, journalism, and free-
dom of expression (Zhou and Zafarani, 2020). As
Gallotti et al. (2020) noted on the verge of the global
pandemic emergency, human communication is largely
characterized by the production of informational noise
and misleading or false information. Waves of unreli-
able, low-quality information have potentially danger-
ous impacts on society’s capacity to respond and may
prevent actions that could contribute to containing the
spread of the pandemic. False or misleading informa-
tion may prevent timely and effective public adoption
of appropriate behaviors and of health recommenda-
tions (Gallotti et al., 2020). The propagation of false
and misleading information is further amplified by the
activities of bots or automated social media accounts
(Caldarelli et al., 2020).

Information related to specific narratives, especially
conspiracy theories and politicized news, generates and
sustains polarized communities with similar informa-
tion consumption patterns (Del Vicario et al., 2016).
It has been noted that everyone on the Internet can
produce, access, and disseminate content thereby
actively participating in creation, diffusion, and rein-
forcement of different narratives, and that such a large
heterogeneity of information fosters the aggregation of
people around common interests, worldviews, and nar-
ratives (Bessi et al., 2015).

Infodemics

WHO noted the information issues early in the pan-
demic and, since March 2020, began to use the term of
infodemics, coined by Rothkopf (2003) during the
Severe Acute Respiratory Syndrome (SARS) epidemic,
to describe the phenomenon. As Cinelli et al. (2020)
observed, the term infodemic emphasizes the perils of
the misinformation phenomena during the manage-
ment of disease outbreaks, since it could even acceler-
ate the epidemic spread by influencing and fragmenting
both government and public response. The case of
COVID-19 shows the critical impact of this new infor-
mation environment: the erroneous information can
negatively influence public behavior and degrade the
effectiveness of public health measures (Cinelli et al.,
2020).

According to WHO (2020c), an infodemic is the
excessive amount of both accurate and inaccurate
health information that can spread misinformation,
disinformation, malinformation, and rumors during a
health emergency and can hamper an effective public

health response. In July 2020, WHO organized the

first-ever global Conference on Infodemiology to

design methods for managing an infodemic, establish-

ing research agenda to address the issues, and build an

international expert community of practice and

research (WHO, 2020d).
An issue raised during the WHO (2020d) conference

was the need for a lexicon to be used with infodemics.

For this purpose, we will use the definitions adapted

from Wardle (2018) and Wardle and Derakhshan

(2017):

• Propaganda is true or false information spread to

persuade an audience, but often has a political con-

notation and is connected to information produced

by governments.
• Disinformation is false information that is deliberate-

ly created or disseminated with the express purpose

to cause harm. Producers of disinformation typically

have political, financial, psychological or social

motivations.
• Misinformation is information that is false, but not

distributed with intent to cause harm. Individuals

who don’t know a piece of information is false

may spread it on social media in attempt to be

helpful.
• Malinformation is genuine information that is shared

to cause harm. This includes private or revealing

information that is spread to harm a person or

reputation.

The overlap between Disinformation,

Misinformation and Malinformation, highlighting

falseness and intention to cause harm is presented in

Figure 1 (FirstDraft, 2021).
It is also important to understand the problems

related to the ‘fake news’ expression. As Carmi et al.

(2020) noted, although the term fake news was coined

to capture the use of dis- and mis-information in news

reporting it is being used by political actors in attempt

to discredit news reporting and reported facts they dis-

like. Due to the lack of a definition of fake news, some

authorities such as the UK Government (Digital,

Culture, Media and Sport Committee (DCMSC),

2019) avoid using the term altogether. The UK

Government stated explicitly that fake news is a

poorly defined and misleading term that conflates a

variety of false information, from genuine error

through to foreign interference in democratic process-

es; instead the Government has sought to address dis-

information and wider information manipulation as

the deliberate creation and sharing of false and/or

manipulated information that is intended to deceive

and mislead audiences, either for the purposes of
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causing harm, or for political, personal or financial

gain (DCMSC, 2018).

Security threats

Like the WHO, international law enforcement agencies

have observed the emergence of infodemics, noting the

potential for new types of cybercrime that leverage

both the information overflow and health-related

panic (Europol, 2020). During the pandemic, Interpol

(2020) observed a shift in cybercrime targets from indi-

viduals and small businesses to major corporations,

governments, and critical infrastructure. Similarly, the

crisis has enabled campaigns bearing the characteristics

of hybrid warfare with the intelligence services of both

the European Union and United States recognizing the

intensified activity of foreign actors. Russia and China

especially have been targeting Western democracies

during the pandemic (European External Action

Service’s East StratCom Task Force News and

Analysis (EUvsDisInfo), 2020; U.S. Department of

State, 2020). As Moy and Gradon (2020) observed,

hostile nation states are likely to use effects of the

COVID-19 pandemic as part of their ongoing cam-

paigns to undermine Western democratic legitimacy

and active measures campaigns will continue to utilize

all types of influence activities.
The threat posed by a pandemic to global, regional,

and national security systems is not new and had been

recognized before COVID-19. The national security

and foreign policy communities have increasingly iden-

tified global health problems as threats to security

(Feldbaum et al., 2006). According to Bouskill and

Smith (2019), emergency health and security represent

a set of bidirectional relationships that are wedded to

achieving stability; they warned that the risk of epidem-

ics and the increased proximity of human, animal,

and environmental interaction are consistently

underestimated.
National security has been intertwined with public

health during the COVID-19 pandemic (Buckley et al.,

2020). Disinformation, coupled with the sheer volume

of data that needs to be analyzed, further exacerbates

these challenges. Information overload makes it more

difficult for people to process and understand ultimate-

ly leading to misinterpretation and poor decision

making (Tylutki, 2018). The complexity of data sour-

ces, especially those coming through social media, fur-

ther contributes to this (Nemr and Gangware, 2019).

The problems associated with disinformation aggravat-

ing the health crisis are not new. While examining the

Ebola epidemic in the Democratic Republic of the

Congo, Bouskill and Smith (2019) posited that social

media amplified the spread of misinformation and dis-

information, induced paranoia and chaos, and compli-

cated recovery efforts. The increasing prevalence of

disinformation has become a characteristic of crises

and disasters. The U.S. Department of Homeland

Security (2018) stated that rumors, misinformation,

and false information on social media proliferate

before, during, and after disasters and emergencies.
The prevention, combating, interdiction, and miti-

gation of disinformation during emergencies and disas-

ters are whole-of-society problems (M P et al., 2019). A

whole-of-society problem requires all sectors of the

population, including government, business, and civil

society, to be involved in terms of preparedness and

response. During critical health emergency situations,

Figure 1. The overlap between Disinformation, Misinformation and Malinformation, highlighting falseness and intention to cause harm.
Adapted from: FirstDraftNews under the CreativeCommons license CC-BY-NC-ND-3.0 (FirstDraft, 2021).
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concerted and collaborative effort is needed to sustain

essential infrastructure and mitigate impacts on the

economy and the functioning of society (WHO, 2009).
The volume of data generated during COVID-19

pandemic not only interferes with the management of

the disease, but also jeopardizes the capacity of govern-

ments to react (Gjorv, 2020; Pepper and Burton, 2020).

Law enforcement agencies realize that data overload

cannot be resolved by continuing to hire more analysts,

but instead they must leverage technology

(Brueggemann, 2008). Shahi and Nadini (2020) noted

that detecting misinformation is a cumbersome task

requiring a specially trained workforce to distinguish

between fake news and real news. The velocity, verac-

ity, and diversity of fake news available on social media

platforms, newspapers, and news channels occur in

multiple domains. Due to the volume of information

and resource constraints, an automated tool for misin-

formation detection is required (Shahi and Nadini,

2020).
According to the United National Interregional

Crime and Justice Research Institute (UNICRI,

2020), information technology experts are developing

new solutions to identify the spread of large-scale dis-

information using data science, Big Data visualization,

and machine learning (ML). These technologies help

researchers visualize the spread of disinformation and

potentially track down the origin of false narratives.

Data-driven techniques allow experts to extract infor-

mation from millions of human and social bots, find

similar texts, and visualize disinformation and misin-

formation themes. A promising starting point is the

design of a repository called ReCOVery that provides

multimodal information of news articles on

COVID-19, including textual, visual, temporal, and

network information, to facilitate a reliability assess-

ment of news (Zhou et al., 2020).

Misinformation detection by data science

and complex systems’ approaches

It is not the objective of this article to explore all of the

opportunities for applying technology to study and

combat disinformation, but we find several areas of

Big Data analysis especially promising. In the following

sections we outline several interdependent theoretical

approaches currently being used to understand,

describe, and model the phenomenon of misinforma-

tion and disinformation. These methods come from

different areas of science: sociology (complex net-

works), computer sciences and linguistics (text

mining), mathematics and statistics (ML), and physics

(agent-based modeling). When combined they create a

powerful tool set to potentially restrain the propaga-

tion of dis/misinformation.

Complex networks as universal paradigm

for infodemic modeling and restraining

An epidemic of information or infodemic has emerged

from interactions between constantly evolving informa-

tion sources, networks, and social groups. The devel-

opment of the Internet and social media platforms

made the information transmission and human-to-

human communication fast and cheap. Increasingly,

the platforms are misused for propagation of spam,

misinformation, and so called fake-news. If we are to

restrain these misuses, we need to better understand the

structure and functions of these technologically

enabled social networks. Social groups are complex.

It is impossible in practice to fully describe and under-

stand characteristics, motivation, or decisions of those

involved, including choice of friends or contacts. The

complex networks approach solves this by considering

all unknown factors to be random, and focusing only

on selected features of the whole network, most often

expressed in terms of statistical regularities (Albert and

Barabási, 2002). If the real system is too complex to

understand each connection, focus should be placed on

the features or behaviors that matter. For example, the

density of network connections determines whether an

illness becomes an epidemic or quickly disappears. It

does not matter if a specific person has three or five

friends, but it does matter if the average is three or five.

This approach allows us to find the relations between

statistical features of networks and phenomena that

occur there.
A network (Figure 2(a)) is a system of nodes, e.g.,

Twitter or Facebook users, and links connecting these

nodes such as followers’ relations on Twitter or friend-

ship links at Facebook. Facebook links are undirected

(B and D at Figure 2(a)) but links on Twitter are direct-

ed (A follows B). It is common that directed connec-

tions between two users are not reciprocal (as A and B)

but some can be bidirectional links (like A and C). The

number of links coming to a node, followers of the user

A, is called its in-degree kin(A). If the user A is follow-

ing kout other users then kout(A) is called the out-degree

of this node. Usually kin(A) 6¼ kout(A). For undirected

networks such as Facebook or power grids, the node

degree kA means just the number of nearest neighbors

of the node A.
Twitter, Facebook, other social media, and net-

works possess a complex architecture that can be sta-

tistically described by several measures, most tied to

specific effects they produce:
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• degree distribution – number of nodes N(k) possess-
ing certain degree k. Social networks often contain
hubs, meaning nodes possessing very large degrees,
such as nodes D (in-degree hub with kin ¼ 5) and E
(out-degree hub with kou t¼ 4) in Figure 2(a). In
Twitter, the kin hubs correspond to users that possess
many followers like Barack Obama, who has over 120
million followers, while kout hubs correspond to
account holders, such as press agencies that observe
many other Twitter users. Presence of hubs may
amplify the small world property (see next point)
and accelerate information spreading.

• distribution of distances between all pairs of nodes,
understood as the number of links one needs to pass
to come from one node to another. Complex networks
demonstrate the small world property, which means
the distance between two randomly taken nodes is
small even for very large networks (Albert and
Barabási, 2002). The mean distance in Twitter
between any two accounts is 10, although the total
number of monthly active Twitter users is over
300,000,000.

• betweenness-centrality of nodes. In Figure 2(a), node
B has only k ¼ 2, but is a part of many paths between
other nodes (e.g. A–D, C–F, E–G). Betweenness-
centrality of a node B is the fraction of shortest
paths between any two nodes that pass through B.
Nodes with high value (like B) are often responsible
for the spreading of information between different
parts of the whole network, while those with low
(like K or H) do not influence the process significant-
ly even if they participate in it.

• clustering that is related to loops in the network topol-
ogy. The shortest loops of length 3 are connected tri-
angles such as FKL, JGH, or GHI. They correspond
to a relationship frequently met in social networks: if
K and L are familiar with F then K and L are also
familiar with each other. Existence of loops makes

networks less vulnerable to failures but makes it

more difficult to reverse-engineer the spreading pro-

cess since it is usually unknown which path misinfor-

mation actually took.
• community structure. Cliques, groups of nodes that

are fully connected with one another (e.g. GHIJ),

are examples of network modules or communities,

parts of a network with a denser internal connections.

The modular structure of many social networks is

responsible for the phenomenon of social echo cham-

bers, the situation in which beliefs in a social

group drift away from the rest of the network, rein-

forced by internal communication while being almost

isolated from the beliefs and criticism from the out-

side. This enables misinformation to take hold and

persist for a long time, even if a proof of it being

false exists.

The social networks can also display multilayer or

multidimensional structure (Kivel€a et al., 2014). The

example of such a structure is a multiplex network as

presented in Figure 2(b). Every user is represented in

both network layers, e.g. vertices A–A’, B–B’ and C–C’

and so on. Each layer may correspond to a different

social networking platform, such as one to Facebook

with friendship connections and Twitter with follow

connections. Spreading of information from one

person to another can include paths in both networks,

e.g., Twitter user A cannot reach Twitter user C using

only the Twitter platform, but does so via Facebook

accounts A’ and B’, and continue via Twitter from B to

C as shown by the path marked with blue arrows in

Figure 2(b). Such a multilayer structure means control-

ling and monitoring of only one platform is likely

insufficient to stop proliferation of erroneous and mali-

cious messages. Multidimensional networks are also a

challenge for detection of the origin of misinformation.

Figure 2. Social contacts or interactions can be represented as models (a) featuring complicated structure that arises from
interactions of many persons. As exact quantitative description of human characteristics and decisions escapes grasp of any model,
they are often described statistically and called complex networks. Among features of real social networks is ability of people to interact
on different levels (such as offline and online, or via different online platforms), which can be represented by multiplex network
structure (b).
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Data science approach to misinformation

Machine learning

Misinformation detection relies on text analysis accom-
panied by additional characteristics connected to spe-
cific properties of agents in the social network and/or
the way the message propagates in the system. In order
to describe methods devoted to identifying misinforma-
tion we use the fundamentals of ML and text mining.
We divide ML into two large branches: supervised and
unsupervised learning with the former being the core of
this discussion. In this case, we are in the possession of
the so-called training set allowing teaching the algo-
rithm so that it is in position to recognize the class
(i.e., the label) of a new observation based on its
properties.

Various statistical techniques have been introduced
during last century. These range from Straight forward
ones such as Linear Discriminant Analysis (LDA) to
complex approaches including the “wisdom of crowds”
concept (Breiman, 2001; Hastie et al., 2009). Although
many of these methods use sophisticated mathematical
approaches, the basic idea is similar, we seek to divide
one class from another. Figure 3(a) presents this idea in
a simplified form taken from a real-world example.
Suppose we have two variables (properties) describing
our data, the number of words in a text document and
number of users that shared this text. We also know
that some of these text messages are misinformation
and others not. A supervised ML method will find a
line that optimally divides the data into two groups.
This decision line is then used to “guess” the class,
true or false information, of a new observation, repre-
sented by X sign in Figure 3(a). Due to randomness,
classes often overlap making it difficult or impossible
to create a perfect classifier. One usually aims to

achieve high level of accuracy such as the ratio of cor-

rectly classified cases to the total number of cases.

Text representation

Misinformation is often conveyed as message text.

While a reader usually does not have a significant prob-

lem comparing two documents, performance on a mas-

sive scale creating a representation of text is necessary.

This representation fulfills two primary goals of text

mining, first the ability to perform some statistical

operation on a set of documents and second, a com-

parison of two or more documents. The text will need

to go through a series of operations such as tokeniza-

tion (division of the text into primary elements, usually

single words) and lemmatization or stemming – bringing

inflected words to their lemma or dictionary form, e.g.,

“cats” -> “cat”.
Using the output of this process gives us the poten-

tial to create a bag-of-words model (BOW), in which

each text is a group of unique words marked with the

number of times they appear in the text. We can then

go from BOW to a Vector Space Model, Figure 3(b) in

which we treat each word as an axis (a direction) rep-

resenting the whole document as point in this space, the

proximity of two documents being the angle between

them (Salton et al., 1975). If documents can be labeled

with classes then we may use in a straightforward way

the methodology shown in Figure 3(a), trying to find a

division among some text. This can be understood, as a

prototype method of misinformation detection, provid-

ed the wording in documents is a key factor distin-

guishing these classes.
In the last 30 years, several new methods have been

created to support text interpretation using distribu-

tional semantics that assumes items with similar

Figure 3. (a) An example of supervised ML approach: an algorithm, here an instance of Linear Discriminant Analysis, is fed with two
classes of observations (e.g., triangles – misinformation and circles – true news) that are described by two properties – number of
words and number of users. As an output we obtain a line that divides these two sets and allows for classification of a new coming
observation. (b) Illustration of the Vector Space Model: each axis (direction) is a single word, here, “man”, “bite” and “dog” and a
document such as “dog bite man” is a point defined by these directions, i.e., a point in a space constructed from single terms.
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distributions tend to have similar meanings. This has

led to new methods such as topic modeling such as

Latent Dirichlet Allocation and embedding methods

like Word2vec (Blei et al., 2003; Mikolov et al.,

2013). Although the methodology behind these techni-
ques is sophisticated, they are used like the Vector

Space Model and are useful in misinformation recog-

nition. Text properties including length, complexity

and sentiment are important to the analysis. In addi-

tion to representing text using models, we can also ana-

lyze its reception by an audience, assuming reader
profiles. A basic text property is length, measured by

the number of words or number of characters. Text-

length often plays a pivotal yet nuanced role in its

reception as has been shown with scientific publications

(Sienkiewicz and Altmann, 2016).
Another dimension is text complexity which relates

to the level of difficulty the document poses to poten-

tial readers. We can determine on reliance on unique

words as opposed to more common words in a text

(Herdan, 1960). Another tool is the Gunning-Fog or

readability index, often used in journalism, that consid-

ers the number of complex words, in English, words
with three or more syllables, used as a proxy for the

number of formal years of education needed to under-

stand the text (Gunning, 1952).
As with all forms of communications, we convey

emotions, defined as rapid, unstable reactions pro-

voked by a preceding event. In contrast to face-
to-face communications in which humans are taught

from early childhood to recognize emotions and use

them in social context, detecting emotions in text

seems to be difficult. To address this, we assume that

emotions are discrete states, such as joy, hate, or sad-

ness, and describe them in two coordinates: valence and
arousal (Russell, 1980). The first value is the emotional

content of the message, negative to neutral-positive,

and the latter connected to the intensity of emotion,

low to high. The simplest approach to extract the emo-

tional content in text is to employ lexicon-based meth-

ods, i.e., using a dictionary with assigned values of

valence and arousal; however, following this path
results in low accuracy in contrast to supervised meth-

ods (Warriner et al., 2013). In this case, we follow the

same scheme represented in Figure 3(a) and (b) – pro-

vided that a group of competent referees produced a set

of training documents with valence and arousal. Such

studies have shown to produce a very high level of

accuracy (Paltoglou and Thelwall, 2010). Progress in
automated detection of emotions has greatly contrib-

uted to findings pointing to phenomena in social scien-

ces including on the collective character of online

emotions and their role in sustaining discourse in e-

communities or emotional dynamics in the presence

of misinformation (Chmiel et al., 2011; Zollo et al.,
2015).

Misinformation detection

Automatic misinformation detection, either by examin-
ing the text itself or inspecting its environment, requires
that we first consider the user that initially spreads the
information, the path of the message in the social net-
work and the reaction that it has provoked (Zhou and
Zafarani, 2020). When considering the message, we can
address it by knowledge-based methods that either check
fact manually using expert knowledge or automatically
by such fact extractors and news aggregators as
EventRegistry (Leban et al., 2014). The output of this
approach gave rise to a set of online services such as
PolitiFact (http://www.politifact.com/), FactCheck
(https://www.factcheck.org/, or TruthOrFiction
(https://www.truthorfiction.com/), that gather news.
The majority of these services are connected to US pol-
itics and provide annotations for misinformation which
serves as reference for testing supervised models.

Another option is to focus on style-based features
that reveal the underlying intention behind the news
that is contrary to knowledge-based methods, reflecting
the authenticity of names, places, and time. These fea-
tures can belong to the measures of length, complexity,
and sentiment but can also express uncertainty. Factors
to consider include the number of modal verbs and
question marks, informality, typographical errors, pro-
fanity, and the use of passive voice. Apart from explic-
itly observed features it is also possible to obtain latent
ones as the output of a topic model or text embedding
method. Style-based features can be formed and might
serve as an input for supervised methods leading to
high prediction values. As an example, a combination
of non-latent features classified with Random Forest
resulted in over 80% accuracy (Zhou and Zafrani,
2020). Another option is to examine patterns of style-
based features separately for accurate news and misin-
formation, as the latter is associated with higher infor-
mality, diversity, and emotional content (Zhou et al.,
2020).

The third set of methods consider propagation-based
features, applying the concept of a cascade, with a tree-
like structure depicting how a message propagates in
social media, and examining the maximum number of
steps the news travelled, how many users were present
in the cascade, or the structure of the underlying social
network. These attributes may be directly applied in a
ML approach or inspected for indicators that
distinguish misinformation from accurate news.
Misinformation spreaders form much more dense net-
works in comparison with the disseminators of accu-
rate news (Zhou and Zafarani, 2019). As observed in

Grado�n et al. 7
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Twitter data, misinformation is known to penetrate

deeper and wider, creating larger cascades and reaches

users much faster in comparison with accurate news.

This phenomenon has also been noted in a wider con-

text of misinformation (Del Vicario et al., 2016;

Vosoughi et al., 2018).
Finally, the last option is to examine the credibility

of the source of the information, understood as the first

spreader. For this we either need to reconstruct the

author’s network, indicating which nodes were emitting

accurate or inaccurate news, or utilize specialized algo-

rithms that can detect the source of information in the

network based on observations (Sitaula et al., 2020).
In conclusion, we must point to Chołoniewski et al.

(2020) who suggest that when using the data coming

from the Media Bias/Fact Check service (https://media

biasfactcheck.com), it is possible to quantify the report-

ing style of news outlets with a single measure based on

outlets’ activity. They found that news sources with a

liberal bias react less in comparison with conservative

outlets that react faster and more strongly. Although

this approach does not specifically allow detecting mis-

information, it opens new perspectives for research on

the connections between the content and user activity.

Agent-based models

Agent-based models are mathematical constructs that

represent people, institutions, companies, websites, or

any other entities commonly called agents that possess

some internal variables and are subject to a set of rules

dictating what they do. Such models resemble a com-

puter program, with specified variables (agents) and

operational code (rules) expressed in a mathematical

formulation. Agent-based models are easy to simulate

but potentially hard to describe analytically, even if the

rules are simple. Agent-based models are different from

ML approaches. The focus is on most accurate repre-

sentation of the variables and rules rather than on pre-

dictive power.
The strength of agent-based modeling is in predict-

ing how rules followed by individual agents produce

phenomena observed on the scale of the system. An

example of that is a Susceptible-Infected-Removed/

Recovered (SIR) epidemic model which could tell us

whether a disease with given infectivity will spread as

epidemic or quickly disappear. The more infectious the

disease, the more chance it will develop into an epidem-

ic, but the model can help predict when it might happen

and how fast the number of the infected will grow

(Figure 3). The relation between individual rules and

system phenomena can be also modeled backwards, as

agent-based models that reproduce observed phenom-

ena could be used for explaining the unknown rules.

The spread information is similar to the spread of
infectious disease (Daley and Kendall, 1965).
Information, like a pathogen, multiplies as it spreads
from person-to-person, place-to-place, or online. At
the base of many models aimed specifically at
information spreading are epidemic models such as
the Susceptible-Infected (SI) or the SIR models
(Hethcote, 2000). Both assume that individuals or
agents have single discrete variable representing their
state: Susceptible (not infected yet, but can be in the
future), Infected (and spreading infection to others), or
Removed/Recovered (in the SIR model, the person
recovered, became isolated, or died, and no longer
spreads infection). A Susceptible agent that interacts
with Infected agent has a fixed probability b to
become Infected itself, and in SIR model, an Infected
agent has fixed probability c to become Removed per
unit of time. The population SIR model, where every-
one in a population can interact with every else gave us
important results including predicting the increase of
infections in time (Figure 4) and, based on reproduc-
tion ratio b/c, whether the infection spreads (b/c> 1) or
declines (b/c< 1). The critical b/c point is called epi-
demic threshold.

In agent-based models with network of interactions,
the network can be a critical factor. Reproduction rates
now depend on average number of neighbors since an
infected agent exposes all neighbors simultaneously. If
the network has large hubs, like many actual social
networks, then the epidemic threshold vanishes and it
becomes statistically likely that infection would result
in global epidemic (Pastor-Satorras and Vespignani,
2001). But local structure such as clustering may pre-
serve the existence of threshold even in scale-free net-
works (Eguı�luz and Klemm, 2002). The SI model is a
simplified version of SIR and has no concept of

Figure 4. The number of Susceptible, Infected and Removed
agents in SIR epidemic model in time. Thin lines show numbers
from analytical description, while thick ones show an example
numerical simulation of agent-based model.
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epidemic threshold since infection of all agents directly
or indirectly connected with infected one is guaranteed
over time. The spreading rate b impacts the speed at
which the infection will progress, just as it does in full
SIR model.

The SIR model has been expanded with different
variants (Hethcote, 2000) including more states (e.g.,
MSEIR) or adding extra variables (e.g., SIS, SIRS).
Disease-specific models have been introduced, such as
the SEIRA model with an asymptomatic stage, for
COVID-19 modeling (Contreras et al., 2020). It is pos-
sible to adapt models to fit information spreading more
precisely by adding an Active super-spreader state,
which can describe the behavior of microblogs better
(Liu et al., 2016). A noteworthy modification in rumor
models is the introduction of stifling that accounts for
long-known discrepancies and turn them into addition-
al rules in a SIR-like model. Infected agents can
become Recovered if they interact with another
Infected or Recovered agent (Daley and Kendall,
1965; Moreno et al., 2004). This recognizes the fact
that realization that others already know the rumor,
it is old news and not worth spreading further.
Similar model fit Twitter hashtag use better than
most epidemic models (Skaza and Blais, 2017).

All the models above assume that people want to
and will share information that they get. But often
that is not exactly what happens. Most people only
want to pass information that we agree with. Sharing
information then is dependent on wanting to convince
others instead of informing them. This proclivity may
be modeled using the threshold model in which a
person must know some of their friends already sup-
ports a given message would spread it themselves
(Watts, 2002). This is similar to innovation or opinion
spreading than simple messaging, but misinformation
or conspiracy theories are often more opinion
than fact.

There are also models, such as SAR, which interpo-
late between regular threshold and typical SIR model
(Wang et al., 2015). Of special interest may be various
co-evolutionary models in which both the state of
agents and the links between them vary. These are
termed adaptive networks (Gross and Blasius, 2008).
A significant result of co-evolutionary models is frag-
mentation of a network in an opinion model (Vazquez
et al., 2007). The interaction between the opinion-based
spread of information and the changing the shape of
contact network can lead to polarization of opinions
and creation of echo chambers (T€ornberg, 2018).

The study of how conspiracy theories and scientific
news spread online shows that the models, including
polarization, can explain the characteristics of real mis-
information cascades (Del Vicario et al., 2016). Other
works consider the role of similarity of interests in

information transmission or sentimental content of

the messages and emotions of people involved in trans-

mission of true and false information (Myers and

Leskovec, 2014; Zollo et al., 2015). Most studies incor-

porate these as adjustments to probability based on

data, rather than building a dedicated model. The

effects of emotions and interests impacting the spread

of information from a model standpoint require more

research.

Locating sources of (mis)information

Identifying the source of information, whether accurate

or not, can be very difficult. The original source of re-

tweet or share of previous post may seem obvious but

that is not necessarily the case. People may receive

information and pass the content in their own message,

the working may be altered, or the content changed

entirely (Adamic et al., 2016). It must be questioned

if the original source on content can even be found

online. There are, however, methods that can locate

likely sources provided we can track or identify the

information itself.
If the entire history of how specific content has

spread, determining the source is a straight forward

task. But that’s rarely the case. There are common

challenges with locating patient zero in epidemic out-

breaks, locating the first postings of specific, or the

origin of malicious Trojan software spreading.

Generally, there is limited knowledge about the

actual process by which the contagion is spread and

there is a complex network of interactions that is

responsible for the spreading process. Tracing misin-

formation is further complicated because it may be par-

tially shared on private social networks such as

Facebook.
There are two scenarios that are most common in

the spread of information. Up to a specific point in

time, it can be known where it has spread and the

state of the spreading process can be assessed. The

spread of information to specific agents can be deter-

mined through, for example, public pages on Facebook

and the exact time information can be identified or

there is time information from a set of observers in

the network. In both cases, there are two things that

create difficulty. First is the complex, deterministic

structure of networks and, second, the stochastic

nature of the spreading process. The first issue can

often be solved by mathematical methods, but the

second means that the information is fundamentally

uncertain. All algorithms assume we know exact or at

least the approximate network responsible for the

spreading process. This unfortunately places significant

restrictions on when the methods can be applied as the
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network structure may be partially or completely
hidden.

There are several methods developed for estimating
the source of the spreading process in complex net-
works, but most are snapshot- or observer-based
(Jiang et al., 2017). Snapshot methods often calculate
an estimator for each agent, which shows how likely it
is that a given agent is the actual source. This can be a
simple measure such as betweenness centrality for an
infected subgraph, but more specialized centrality
measures such as rumor centrality, and Jordan central-
ity based on eccentricity perform better and can locate
the true source to a certain degree even in incomplete
snapshots (Luo et al., 2014; Shah and Zaman, 2011;
Zhu and Ying, 2016). It is also possible to calculate
more complex estimators based, for example, on
dynamic message passing algorithms with better accu-
racy than centrality-based methods, in most cases
(Lokhov et al., 2014).

Observer-based methods also make use of estima-
tors calculated for potential sources. These range
from correlations between arrival times and distances
from a supposed source to comparisons between actual
arrival times and those expected from the spreading
model. If the spreading uses independent cascades,
then the time to arrive at an agent should correlate
with distance from the true source. By observing this
relationship, the most likely source can be estimated.
These methods offer relatively good accuracy and are
resilient to variation in the spreading process including
the precise means or variances of the time to spread
along each link (Brockmann and Helbing, 2013; Xu
et al., 2019).

An additional approach is to calculate the distribu-
tion of times of arrival at all observers for each poten-
tial source, then compare this with the actual
observations (Pinto et al., 2012). This approach has
better accuracy than simple distance–time correlation
methods because it uses the correlations between arriv-
al times at observers. It is, however, computationally
expensive and approximates a tree network which leads
to discrepancies for networks with a local structure.
These drawbacks have been alleviated by optimized
methods that are much faster, or those that take full
network structure into account, offering improved
accuracy at a higher computational cost (Gajewski
et al., 2019; Paluch et al., 2018). Other methods seek
to reduce the assumptions required about the spreading
process, either by estimating the time distribution from
the data or by considering local correlation of arrival
times and distances (She et al., 2016; Wang and Sun,
2020).

The methods discussed have been developed from
propagation models and tested on either artificial or
real networks. The scarcity of time data on real

information cascades means that they have not been
tested against actual information spreading processes
in social networks. Some, however, have been devel-
oped for and tested against spreading of infectious dis-
eases (Brockmann and Helbing, 2013; Pinto et al.,
2012). The accuracy of these methods varies with
both spreading process parameters including random-
ness, network structure, and observers for observer-
based methods. The placement of observers can also
play a role although random placement performs
quite well (Paluch, 2020).

While locating a source is particularly important,
the contact network is particularly important. Often
it is the network that identify the source with certainty.
The network may be estimated by examining the
spreading history. The structure of real contact net-
works may be determined that might be otherwise
unobtainable. This is known as network tomography
and relies mainly on a method known as compressed
sensing to determine most likely network based on his-
tory of spreading processes (Han et al., 2015; Kakkavas
et al., 2020; Shen et al., 2014). A single spreading cas-
cade does not have enough information to estimate N
(N � 1) potential connections from dynamic informa-
tion events of at most N agents. A multiple number of
information spreading events may be required for reli-
able estimates.

Conclusions and recommendations

The WHO’s initiative on infodemiology is a fundamen-
tal advance in handling the volume of information flow
that impedes the progress of health policy and
affects behavior on a global scale (WHO, 2020d).
Disinformation campaigns and the propagation of mis-
information are among the major impediments to the
effective implementation of public health strategies
and, in the case of the current pandemic, to the miti-
gation of the crisis affecting lives worldwide. According
to threat assessments related to disinformation, the
prevention, interdiction, and mitigation must be
given priority using a full spectrum of measures
(Europol, 2020; Interpol, 2020; UNICRI, 2020; U.S.
Department of State, 2020).

One of the issues to be addressed is the massive
volume of data. The information flow with a broad
range of narratives, both true and false, cannot be ana-
lyzed quickly, accurately, and efficiently even aided by
fact-checking organizations. The enormous volume of
data renders traditional approaches impossible.

The opportunities to analyze large data sets, origi-
nating in the numerous types of media must rely on the
application of properly calibrated Information
Technologies. Traditional media, electronic media,
and, perhaps most critically, social media need to be
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included in the analysis. Medical information gathered
at national, regional, and local levels must inform this
effort. Finally, spatial and temporal data related to
demographics and mobility must be considered.
Technology tools may enable national and internation-
al agencies responsible both for the administration of
health policies and policing of disinformation to exam-
ine and process real-time information on potential
threats.

It is essential to evaluate the opportunities for the
use of artificial intelligence, data science, and ML to
aid responsible government agencies, health care pro-
viders, news media of all types, and civil society organ-
izations to process and analyze information to deliver
reliable information to stakeholders and decision
makers. Such approaches require collaborative action
on a global scale. Crises such as the ongoing
COVID-19 pandemic are borderless and they cannot
be handled by individual states, regardless of their
wealth and power. The implementation of integrated
preventive measures necessitates the internationaliza-
tion of infodemic management.

There are several potential techniques for the appli-
cation of Big Data analysis to the infodemic problem.
There is not a definitive list of the opportunities but
these will shape the direction that the Information
Technologies applied to countering disinformation
should take. The effectiveness of the methods applied
to combat and prevent disinformation relies heavily not
only on the internationalization of this effort, but also
on a multidisciplinary approach. The methodology rep-
resented by the Crime Science could be applied to the
understanding and mitigation of disinformation. Crime
Science is the application of science to crime control:
reducing crime by its prevention, disruption, and
detection (Laycock, 2008). It focuses on the near or
immediate causes and circumstances of crime and
is problem driven and evidence based, relying
heavily on collecting and analyzing empirical and ver-
ifiable data (Gradon, 2013). In essence, it is the use of
scientific methods and knowledge from many disci-
plines to the development of practical and ethical
ways to reduce crime and increase security (Wortley
et al., 2018). It has already been proven that Crime
Science can be successfully applied to the “non-
traditional” categories of delinquency such as cyber-
crime (Hartel et al., 2010).

As an interdisciplinary field, Crime Science
offers techniques to the problem of dissemination of
false information with intent to cause harm,
instigating malign influence operations, or countering
organized disinformation campaigns. Utilizing
Information Technologies, Intelligence Analysis,
Natural Language Processing, and Psychology would
provide empirically tested solutions for the prevention,

interdiction, and mitigation of disinformation. This

strategy would support the early detection of disinfor-

mation, the study of its propagation, and the exposure

of its original sources. Empirically investigating inci-

dents would explain disinformation rules and patterns

as well as the factors influencing the spread of false

information through networks. It would also explain

the online environment of disinformation creation

and propagation and describe what affects the choices

to share false information on particular occasions.

Finally, Crime Science would highlight potential inter-

ventions and measures. Thus, it would allow for the

formulation of prevention and mitigation strategies.

The creation of an international, interdisciplinary info-

demiology research center of excellence under the aus-

pices of the WHO could coordinate the design of

prevention and mitigation countermeasures.
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