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Noise-free stochastic resonance is investigated in two chaotic maps with periodically modulated
control parameter close to a boundary crisis: the Hénon map and the kicked spin model. Response
of the maps to the periodic signal at the fundamental frequency and its higher harmonics is
examined. The systems show noise-free stochastic multiresonance, i.e. multiple maxima of the
signal-to-noise ratio at the fundamental frequency as a function of the control parameter. The
maxima are directly related to the fractal structure of the attractors and basins of attraction
colliding at the crisis point. The signal-to-noise ratios at higher harmonics show more maxima, as
well as dips where the signal-to-noise ratio is zero. This opens a way to use noise-free stochastic
resonance to probe the fractal structure of colliding sets by a method which can be called “fractal
spectroscopy”. Using stochastic resonance at higher harmonics can reveal smaller details of the
fractal structures, but the interpretation of results becomes more difficult. Quantitative theory
based on a model of a colliding fractal attractor and a fractal basin of attraction is derived which
agrees with numerical results for the signal-to-noise ratio at the fundamental frequency and at
the first two harmonics, quantitatively for the Hénon map, and qualitatively for the kicked spin
model. It is also argued that the maps under study belong to a more general class of threshold-
crossing stochastic resonators with a modulated control parameter, and qualitative discussion
of conditions under which stochastic multiresonance appears in such systems is given.
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1. Introduction

Stochastic resonance (SR) is a phenomenon oc-
curring in systems driven by a combination of a
periodic signal and random noise, such that the
periodic component present in a suitably defined
output signal becomes most pronounced for opti-
mum, nonzero input noise intensity [Benzi et al.,
1981] (for review see [Jung, 1993; Moss, 1994; Moss

et al., 1994; Wiesenfeld & Moss, 1995; Gammaitoni
et al., 1998; Anishchenko et al., 1999; Moss, 2000]).
A related phenomenon is noise-free (deterministic)
SR which appears in periodically driven chaotic
systems without external random forcing, in which
the internal chaotic dynamics can be tuned, by
varying the control parameter, to achieve the max-
imization of the periodic component of the output
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signal. Noise-free SR was demonstrated, e.g. in pe-
riodically driven chaotic maps [Anishchenko et al.,
1993; Nicolis et al., 1993; Krawiecki, 1997; Sinha
& Chakrabarti, 1998; Horita et al., 1999; Ginzburg
& Pustovoit, 1999; Sinha, 1999; Zhou & Lai, 1999a,
1999b; Matyjaśkiewicz et al., 2001; Krawiecki et al.,
2001], in chaotic systems with continuous time [Car-
roll & Peccora, 1993; Anishchenko et al., 1994;
Crisanti et al., 1994; Kovaleva & Simiu, 2000; Arai
et al., 2002], in simulations of models of coupled bi-
ological neurons [Wang & Wang, 1997; Nishimura
et al., 2000; Yuqing et al., 2000], in experiments
with chaotic spin-wave dynamics [Reibold et al.,
1997] and with chaotic lasers [Pisarchik & Cor-
balán, 1998; Chizhevsky et al., 2000]. Characteri-
zation of SR is usually based on the power spectral
density (PSD) of the output signal, which consists
of peaks at the frequency of the input periodic sig-
nal (the fundamental frequency), and, possibly, its
higher harmonics, superimposed on a broadband
noise background. The strength of the periodic com-
ponent of the output signal can be expressed as
the signal-to-noise ratio (SNR) at the fundamen-
tal frequency, defined as the ratio of the output
power at the fundamental frequency to the noise
power in the vicinity of this frequency. The hall-
marks of SR and noise-free SR are that the SNR
has a maximum as a function of the input noise
intensity or the control parameter, respectively. In
systems with SR, investigation of the output sig-
nal power at higher harmonics of the fundamental
frequency is also of considerable interest [Bartussek
et al., 1994; Shneidman et al., 1994; Bartussek et al.,
1995; Jung & Talkner, 1995; Bulsara et al., 1996;
Grifoni & Hänggi, 1996; Grigorenko et al., 1997;
Krawiecki, 1997; Loerincz et al., 1999]. To charac-
terize the system response at higher harmonics the
respective SNR can be used, defined as the ratio
of the output power at the higher harmonic to the
noise power in its vicinity. The SNR at higher har-
monics as a function of the input noise intensity typ-
ically shows two or more maxima separated by dips,
where the SNR is zero. This behavior was observed,
and explained theoretically, in generic bistable [Bar-
tussek et al., 1994; Jung & Talkner, 1995; Bulsara
et al., 1996], monostable [Grigorenko et al., 1997]
and threshold-crossing (TC) [Loerincz et al., 1999]
models of SR, as well as in quantum [Grifoni &
Hänggi, 1996] and noise-free SR [Krawiecki, 1997].
Recently it has been shown that in certain systems
the SNR at the fundamental frequency can exhibit

several, or even infinitely many, maxima as the noise
intensity [Jung & Hänggi, 1991; Vilar & Rub́ı, 1997,
1999] or the control parameter in a chaotic sys-
tem [Matyjaśkiewicz et al., 2001; Krawiecki et al.,
2001] are varied, and these phenomena were given
names stochastic multiresonance (SMR) and noise-
free SMR, respectively. Several experimental obser-
vations of SMR or similar phenomena have been
reported [Hou et al., 1999; Tsindlekht et al., 2000;
Shiau & Néda, 2001; Zhang & Xin, 2001]. The
purpose of this paper is to review the results on
the noise-free SMR at the fundamental frequency in
periodically driven chaotic systems, and to extend
the investigation to study their response at higher
harmonics of the fundamental frequency.

As models of systems with noise-free SR
discrete-time chaotic maps in the vicinity of bound-
ary crises [Grebogi et al., 1986; Grebogi et al., 1987]
can be used. If the control parameter is below the
crisis point, such maps have at least one chaotic
attractor and associated basin of attraction (hence-
forth referred to as precritical attractor and basin
of attraction, respectively). At the crisis point the
attractor collides with the border of its basin of at-
traction. With the parameter increased further, it
turns into a chaotic saddle and the phase trajec-
tory starts leaking out, eventually escaping from its
neighborhood. A kind of reinjection mechanism, ei-
ther natural (e.g. in symmetric attractor merging
crisis, or interior crisis), or arbitrarily introduced,
provides for an intermittent postcritical dynamics:
consecutive escape events followed by returns on the
chaotic saddle. Such systems can be described as
TC systems [Wiesenfeld et al., 1994; Gingl et al.,
1995; Chapeau-Blondeau, 1995; Chapeau-Blondeau
& Godivier, 1997], with the escape events playing
a role of TC events. If a weak periodic in time
signal is added to the control parameter, a max-
imum of the SNR at the fundamental frequency,
and thus noise-free SR, is observed for the opti-
mum value of the control parameter in these model
systems. If the escape probability above the crisis
point increases monotonically with the control pa-
rameter, only one maximum of the SNR occurs,
in analogy with SR in generic TC systems with
external noise. In contrast, the models we study
in this paper are two-dimensional maps, in which
the precritical chaotic attractors and, possibly, their
basins of attraction are fractal sets. As a result,
the escape probability does not increase smoothly
and monotonically with the control parameter; in
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contrast, noticeable oscillations are superimposed
on this general trend. For small enough ampli-
tudes and low frequencies of the periodic signal
these oscillations lead to multiple maxima of the
SNR at the fundamental frequency as a function
of the constant part of the control parameter, and
thus to noise-free SMR [Matyjaśkiewicz et al., 2001;
Krawiecki et al., 2001]. Here we extend the latter
result to the case of the SNR at higher harmonics
of the input signal, and show that even more max-
ima, separated by dips where the SNR is zero, are
then observed. Thus the dependence of the SNR
at higher harmonics on the control parameter be-
comes very complicated. Nevertheless, we are able
to formulate analytic theory of the noise-free SMR
in our model systems, based on simple models of
fractal precritical attractors and their basins collid-
ing at the crisis point. From this theory, significant
features of the SNR at higher harmonics can be in-
ferred, as it has been done previously for the SNR at
the fundamental frequency [Matyjaśkiewicz et al.,
2001].

Our models with fractal-induced oscillations
of the TC probability belong to a more general
class of systems, in which the derivative of the TC
probability with respect to some parameter is non-
monotonic. If a small periodic signal is added to this
parameter, such systems can exhibit SMR. Below
we repeat the arguments of [Krawiecki et al., 2001]
leading to this general conclusion, and extend the
discussion to address also SMR at higher harmon-
ics. In the particular case of the model chaotic maps,
this enables us to understand the origin of multiple
maxima of the SNR at the fundamental frequency
and its harmonics, as well as to find certain rela-
tionships between the SNR curves at consecutive
harmonics.

The location and height of the maxima of the
SNR in the model chaotic maps, at the fundamental
frequency and at its higher harmonics, are directly
related to the fractal structure and distribution of
the invariant density on the precritical attractors
and basins in the collision region at crisis. Large
changes of the SNR with the rise of the control pa-
rameter correspond even to small changes of the
part of the invariant density of the precritical at-
tractor located outside its basin, and the SNR is
very sensitive to tiny details of the fractal struc-
tures of these sets. This leads to the idea of using
noise-free SR to probe the local (in the collision re-
gion) fractal structure of the attractors and basins

of attraction. More generally, this shows that eas-
ily observable quantities such as the SNR can be
examined to obtain information on the local struc-
ture of the colliding sets, a method which can be
called “fractal spectroscopy”.

2. The Model Systems and
Numerical Results

2.1. The model chaotic maps

We begin with introduction of two-dimensional
chaotic maps with crises, which are our model sys-
tems to study noise-free SMR. Chaotic crisis oc-
curs if a chaotic attractor which exists for q < qc,
where q is the control parameter and qc is the
crisis threshold, at q = qc collides with the bor-
der of its basin of attraction [Grebogi et al., 1986;
Grebogi et al., 1987]. For q > qc the attractor con-
verts to a chaotic saddle and chaotic transients can
be observed. During the transient the phase tra-
jectory bounces around the saddle for some time,
and then rapidly escapes to a distant part of the
phase space. This happens when the phase trajec-
tory pokes out the former basin of attraction into
its former complementary set which we call a basin
of escape. The mean escape time 〈τ(q)〉 obeys the
power scaling law

〈τ(q)〉 = C(q − qc)−γ , C = const. (1)

Due to the fractal structures of the colliding chaotic
saddle and, possibly, the basin of escape, in cer-
tain chaotic systems significant oscillations of 〈τ(q)〉
can be superimposed on the general trend given by
Eq. (1) [Kacperski & Ho$lyst, 1999a, 1999b]. The
normal oscillations are connected with the subse-
quent branches of the fractal saddle entering, with
the rise of q, the nonfractal basin of escape which
results in the modulation of the slope of the curve
〈τ(q)〉. The anomalous oscillations, including sec-
tions in which 〈τ(q)〉 increases against the general
trend, appear if the basin of escape has also a dis-
tinct fractal structure.

As a first example of a system with oscilla-
tions of the mean escape time the Hénon map will
be considered: xn+1 = p − x2

n − Jyn, yn+1 = xn,
where J = 0.3 and p is the control parameter. For
p < pc = 2.12467245 . . . the map has two coexisting
attractors: the chaotic precritical attractor, and an-
other one at infinity, with complementary basins of
attraction. At p = pc the chaotic precritical attrac-
tor is destroyed and for p > pc, after the transient,
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(a) (b)

Fig. 1. Mean escape time 〈τ 〉 versus q for the crises discussed in the text in (a) the Hénon map, q ≡ p − pc, and (b) the
kicked spin map, q ≡ B − Bc; dots — numerical results, blue solid line — theoretical fit using the theory of Sec. 3.1 with (a)
α = 0.00247, η = 0.138, β = 0.107, a = 9.0, b = 3.0, bE = 2.634996, ζ = 1.3, (b) α = 0.0108, η = 0.294, β = 0.125, a = 4.5,
b = 2.7, bE = 1.467291, ζ = 3.33.

the phase trajectory eventually enters the basin of
escape (i.e. the precritical basin of attraction of the
attractor at infinity) and diverges to infinity. The
curve 〈τ(q)〉, where q ≡ p−pc, is shown in Fig. 1(a).
It shows the basic power-law trend predicted by
Eq. (1), with oscillations superimposed on it. It can
be seen that the normal oscillations dominate, but
weak anomalous oscillations are also present. This
means that the basin of escape is almost nonfrac-
tal, and the oscillations originate mainly from the
distinct fractal structure of the saddle. The normal
oscillations are log-periodic with respect to p − pc,
which reflects the basic log-periodic fractal struc-
ture of the chaotic saddle in the collision region.
The fractal structure of the basin of escape is so
weak that it plays only a minor role in the occur-
rence of the SMR discussed further.

Another example is the kicked spin map [Ho$lyst
& Sukiennicki, 1992a, 1992b; Kacperski & Ho$lyst,
1997] which describes the motion of a classical
magnetic moment (spin) S, |S| = S, in the field of
uniaxial anisotropy and transversal magnetic field
in the form of δ-pulses with amplitude B and pe-
riod τ̃ , B̃(t) = B

∑∞
n=1 δ(t−nτ̃). The system is de-

scribed by the Hamiltonian H = −A(Sz)2−B̃(t)Sx,
where A > 0 is the anisotropy constant. The time
evolution is determined by the Landau–Lifschitz
equation with damping, Ṡ = S × Beff − (λ/S)S ×
(S × Beff), where Beff = −dH/dS is the effective
magnetic field and λ > 0 is the damping parame-
ter. Denoting by Sn the spin vector just after the
nth field pulse, the time evolution of the spin can be

written as a superposition of two-dimensional maps
Sn+1 = TB [TA[Sn]], where TA and TB describe the
motion of spin between the field pulses and the ef-
fect of the pulses, respectively. The explicit form of
the maps TA and TB is given in Appendix A.

If B is taken as the control parameter and
S = 1, τ̃ = 2π, λ = 0.1054942 . . . , A = 1 are
assumed, for B < Bc = 1 two symmetric chaotic
attractors of the spin map coexist, with comple-
mentary basins of attraction, corresponding to two
equivalent spin orientations, Sz < 0 and Sz > 0
(Fig. 2). At B = Bc the two precritical attrac-
tors merge and a common chaotic attractor ap-
pears (Fig. 2) [Ho$lyst & Sukiennicki, 1992a, 1992b;
Kacperski & Ho$lyst, 1997]. Thus in this map there
are two symmetric precritical attractors and basins
of attraction colliding with each other at the cri-
sis point, and the basin of attraction of each at-
tractor is turned into the basin of escape of the
symmetric saddle. As can be seen in Fig. 2 both
the precritical attractors and their basins of at-
traction have a distinct fractal structure. Owing to
structural stability above the crisis point the fractal
structures of the chaotic saddles and basins of es-
cape will be very similar to those of the precritical
attractors and their basins; in particular, the two
basins of escape will be interwoven, with parts of
each basins filling “holes” in the fractal structure
of the symmetric basin. Above the crisis point the
phase trajectory jumps chaotically between the two
spin orientations, and the mean escape time 〈τ(q)〉,
where q ≡ B − Bc, i.e. the mean time between
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Fig. 2. The two symmetric precritical attractors and basins
of attraction of the kicked spin model for B = 0.97 < Bc (up-
per panel) and B = 1.0 = Bc (middle panel); the attractor
corresponding to Sz > 0 is red and its basin of attraction is
yellow; the attractor corresponding to Sz < 0 is blue and its
basin of attraction is green. The postcritical attractor of the
kicked spin model for B = 1.01 > Bc (bottom panel).

jumps, shows strong oscillations superimposed on
the power-law trend [Fig. 1(b)]. In contrast with the
Hénon map, here the fractal structure of the basins
of escape is also distinct and the anomalous oscil-
lations dominate. Their rough log-periodicity with

Fig. 3. Overlap of the chaotic saddle and its basin of escape
above the crisis point in the kicked spin model for B = 1.0003
(upper panel), B = 1.0005 (middle panel), and B = 1.00065
(bottom panel); vertical axis is Sz, horizontal axis is φ. The
chaotic saddle corresponding to the precritical attractor with
Sz > 0 is red, its basin of escape, corresponding to the basin
of attraction of the other, symmetric precritical attractor
with Sz < 0, is green, and the complementary basin of es-
cape of the symmetric chaotic saddle, corresponding to the
basin of attraction of the precritical attractor with Sz > 0,
is yellow (cf. Fig. 1). The branches of the chaotic saddle are
shifted with the rise of the control parameter and overlap with
more stripes of the basin of escape. Note that the true fractal
structure of the chaotic saddles and basins of escape is more
complex than in the simple models given by Eqs. (3) and (4),
but the basic shape and size of the parabolic branches of the
saddle and stripes of the basin is captured by the models.
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respect to B − Bc reflects the log-periodic fractal
structure of the basins of escape in the collision re-
gion. If branches of the chaotic saddles enter parts
of the fractal basins of escape, 〈τ〉 decreases with q
(Fig. 3). The sections where 〈τ〉 rises with q appear
when branches of the chaotic saddles enter “holes”
in the fractal basins of escape (Fig. 3).

2.2. Methods of analysis and
numerical results

Let us start with numerical simulations of the noise-
free SR in the systems introduced in Sec. 2.1. For
this purpose the control parameter q was modulated
periodically, q → q(n) = q0 + q1 cos(ω0n), and the
systems were analyzed as dynamical TC systems.
The TC events were defined as the escape events,
i.e. the departure of the phase trajectory towards
infinity in the case of the Hénon map (after every
such event the trajectory was reinjected at random
on the precritical attractor and the time evolution
was continued without changing the phase of the
periodic signal), or jump between two equivalent
spin orientations Sz > 0 and Sz < 0 in the case
of the spin map. Since the periodic signal mod-
ulates the control parameter the systems studied
belong to the same class as TC systems with exter-
nal noise in which the information-carrying signal
modulates the noise strength rather than being ad-
ditive to the input [Lindner & Schimansky-Geier,
2001]. The output signal was defined as yn = 1
if at time step n the TC event took place, and
yn = 0 otherwise. The output PSD S(ω) was
evaluated from N = 215 points of the signal yn.
The SNR at the fundamental frequency and its
higher harmonics jω0, j = 1, 2, 3 was evaluated as
SNR(j) = SP (jω0)/SN (jω0), where SN (jω0) is the
noise background in the vicinity of ω = jω0, and
SP (jω0) = S(jω0) − SN (jω0) is the height of the
peak in the PSD at ω = jω0.

In [Matyjaśkiewicz et al., 2001; Krawiecki et al.,
2001] it was shown that the oscillations of the mean
escape time 〈τ(q)〉 always lead to the occurrence
of noise-free SMR at the fundamental frequency,
i.e. to multiple maxima of the curve SNR(1) ver-
sus q0 (cf. Sec. 3.2). The location and height of
the maxima of the SNR(1) can be directly related
to the shape of the functional dependence of 〈τ〉
on q. In turn, in this paper we aim at extension
of the latter results by establishing connections
between the curves SNR versus q0 at subsequent
harmonics.

Exemplary curves SNR(j), j = 1, 2, 3, versus the
control parameter for the Hénon and the spin map
are shown in Fig. 4. In Figs. 4(a) and 4(d) noise-free
SMR at the fundamental frequency is clearly seen.
In order to extend the investigation of the SMR
to higher harmonics, let us first observe that for
j = 2, 3 dips appear, i.e. points where SNR(j) = 0,
and that the total number of maxima of the SNR
increases when going from the lower to higher har-
monics. From the numerical results in Fig. 4 the
following correspondence rules between the max-
ima and dips of the SNR at subsequent harmonics
can be deduced. First, the dips of the SNR(j+1) ap-
pear roughly at the same locations as the broad,
smooth maxima of the SNR(j); such dips separate
two neighboring maxima of the SNR(j+1). This can
be easily seen in the case of the Hénon map: cf. the
location of the maxima and dips labeled by b, c,
d, e in Figs. 4(a)–4(c). Second, narrow sharp peaks
of the SNR(j+1) can appear at the same location
as sharp peaks of the SNR(j). This can be seen in
the case of the spin map: cf. the location of peaks
labeled by f , g in Figs. 4(d)–4(f). Justification of
these rules will be given in Sec. 4.1. At this point
let us only mention that the first above-mentioned
rule resembles the analogous correspondence be-
tween the maxima and dips of the SNR at subse-
quent harmonics in TC stochastic resonators with
external noise [Loerincz et al., 1999]. In such sys-
tems (with only one maximum of the SNR(1)) dips
of the SNR(j+1) appear at similar noise intensities
as smooth maxima of the SNR(j). The basic differ-
ence with the case of noise-free SMR is that in the
latter case the control parameter is varied instead
of the external noise intensity, and that there are
multiple maxima of the SNR at the fundamental
frequency which results in multiple dips of the SNR
already at the first harmonic.

3. Theory for the Signal-to-Noise
Ratio at Higher Harmonics

3.1. Theory for the model systems
with crises

Before discussing the above-mentioned numerical
results in more detail, in this section we derive
analytic formulae for the SNR at the fundamental
frequency and its higher harmonics versus q0 for a
class of systems introduced in Sec. 2. The following
theory is an extension of the theory for the SNR at
the fundamental frequency [Matyjaśkiewicz et al.,
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(a) (b)

(c) (d)

(e) (f)

Fig. 4. SNR(j), j = 1, 2, 3, versus q0 + q1 for (a)–(c) the Hénon map with p1 = 0.03, and (d)–(f) the spin map with
B1 = 1.2 × 10−3; dots — numerical results, blue solid line — theoretical fit using the theory of Sec. 3.1 with the parameters
as in Fig. 1. The objects labeled with the same letters correspond to each other as discussed in Sec. 4.3, the bars have length
2q1.

2001] valid under the same assumptions (the sys-
tem is close to crisis and the amplitude q1 is small)
and based on the same simple models of the fractal
chaotic saddle and the basin of escape.

In the adiabatic approximation ω0 → 0 the
SNR at the jth harmonic SNR(j) can be obtained
from the time-dependent TC probability p(n) =
Pr(yn = 1) ≡ p(q0 + q1 cos(ω0n)) using the formula
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Fig. 5. The model of the fractal chaotic saddle and the fractal basin of escape as defined in Eqs. (3) and (4); the colors
correspond to those in Fig. 3.

[Chapeau-Blondeau, 1995; Chapeau-Blondeau &
Godivier, 1997]

SNR(j) =MT0|Pj |2/(p− p2) ≈MT0|Pj |2/p , (2)

where Pj = T−1
0

∑T0−1
n=0 p(n) exp(−ijω0n) is the jth

Fourier coefficient of p(n), T0 = 2π/ω0 is the pe-
riod of the external signal, M is the number of
periods within the time interval from which the
data were stored (in our numerical simulations,
M = N/T0 = 215/T0), and the bar denotes the time
average over T0. The approximate equality holds for
p(n) 	 1 which is true in systems close to crisis.
In Eq. (2) the SNR is evaluated taking into ac-
count the finite frequency resolution of the PSD
∆f = 1/MT0 [McNamara & Wiesenfeld, 1989] so
it can be directly compared with the SNR obtained
numerically.

In systems with crises in the first approxima-
tion, neglecting the oscillations, the TC probability

can be assumed as p(n) = 1/〈τ(q0 + q1 cos ω0n)〉,
where 〈τ(q)〉 is given by Eq. (1). In order to take
into account the oscillations of the TC probabil-
ity we introduce a model approximating the fractal
structures of the chaotic saddle and the basin of es-
cape in the collision region above the crisis point
q = qc [Kacperski & Ho$lyst, 1999a, 1999b] (Fig. 5);
without loss of generality we assume qc = 0. The as-
sumption of our model is that the topological and
metric properties of these sets above the crisis point
are identical with those of the corresponding pre-
critical sets: the precritical attractor and the basin
of attraction, respectively. The effect of the increase
of the control parameter is only the shift of the rel-
ative position of the chaotic saddle and the basin
of escape. Let us start with the case when the con-
trol parameter q is constant in time. The suitable
model of the chaotic saddle A is a family of K + 2
parabolic segments Ak

A =
K+1⋃
k=0

Ak =
K+1⋃
k=0

{(x, y) : y = −x2 − (1− δk,K+1)aαk + q} , (3)
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with the relative density of invariant measure µ̃k =
(1 − η)ηk for 0 ≤ k ≤ K and µ̃K+1 = ηK+1,
where a > 0 and α, η ∈ (0, 1) are model param-
eters. The model (3) reproduces well the shape of
the branches of the chaotic saddle in the collision

region (cf. Fig. 3) and takes into account the ba-
sic log-periodic, with period log α, structure of the
saddle which can be deduced from the mean escape
times in Fig. 1. The model of the basin of escape B
is a family of L+ 2 stripes Bl

B =
L+1⋃
l=0

Bk =
L+1⋃
l=0

{(x, y) : (1− δl,L+1)(βlb− βlbE) ≤ y ≤ βlb} , (4)

where b > 0, 0 < bE < b and β ∈ (0, 1) are
again model parameters. Again, the model (4) ap-
proximates well the shape of the stripes of the
basin of escape in the collision region (cf. Fig. 3)
and their basic log-periodic structure, with period
log β, reflected in Fig. 1(b). Taking larger K, L
means to take a finer approximation of the infi-
nite fractal sets. The parabolic segments as well
as stripes accumulate at the line y = 0 at the
crisis threshold q = qc = 0. As q increases, the
chaotic saddle overlaps the basin of escape. The TC
probability is proportional to the measure of the
overlap, i.e. the total length of the parabolic seg-
ments inside all stripes times their relative measure
densities, p(q) = ζµ(q), ζ = const. The function
〈τ(q)〉 = 1/p(q) obtained in such a way shows
the power law trend with the scaling exponent
γ = log η/ log α+ 1/2 [Kacperski & Ho$lyst, 1999a,
1999b], and with irregular oscillations superimposed
on it. The model parameters α, β, η can be evalu-
ated from the eigenvalues of the periodic orbit me-
diating in the crisis or measured from the magnified
plots of the collision region between the chaotic sad-
dle and the basin of escape, like those in Fig. 3. The
model curves can be then fitted to the numerical
data by choosing properly the parameters a, b and ζ
(Fig. 1). For the case of periodically modulated con-
trol parameter the replacement q → q0+q1 cos(ω0n)
is made in Eq. (3) and the time-dependent escape
probability is obtained as

p(n) = ζµ(q0 + q1 cos(ω0n))

= ζ
K+1∑
k=0

L+1∑
l=0

µkl(n) , (5)

where the last term is a sum of contributions
to the TC probability from the segments Ak

overlapping the stripes Bl. Performing the time
averaging and Fourier transforming the above equa-
tion one obtains that p and Pj are similar sums

of contributions

p = ζ
K+1∑
k=0

L+1∑
l=0

µkl , Pj = ζ
K+1∑
k=0

L+1∑
l=0

Mkl,j . (6)

The contributions µkl and Mkl,j can be evaluated
analytically in the adiabatic approximation in the
limit of small q0 + q1; the results are given in
Appendix B.

3.2. General remarks and simple
approximations for the SNR

The theory of Sec. 3.1 is exact, however, limited
only to the case of the model for fractal-induced
oscillations of the mean TC probability. Besides, the
expressions in Eq. (6) are complex and do not allow
simple analysis of the curves SNR(j) versus q0. In
this section approximate treatment of the problem
of SMR in a certain class of TC systems is pre-
sented, based on direct examination of the depen-
dence of the TC probability on a control parameter
q [Krawiecki et al., 2001], which explains the origin
of SMR in this class of systems.

We consider TC systems in which the TC prob-
ability depends on a parameter q, to which a small,
slowly varying periodic signal is then added, so
that the time-dependent TC probability is p(n) =
p(q0+q1 cos(ω0n)). In order to evaluate SNR(j) one
has to obtain the Fourier coefficients Pj of p(n),
which in the continuous-time approximation are
functionals of p(q) on the interval (q0 − q1, q0 + q1).
If p(q) is an analytic function on this interval, p(n)
can be expanded in the Taylor series around q0 with
respect to q1 cos(ω0n) which yields

p(n) = p(q0) + q1
dp

dq

∣∣∣∣
q0

cos(ω0n)

+
1
2
q21
d2p

dq2

∣∣∣∣
q0

cos2(ω0n) (7)
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+
1
6
q31
d3p

dq3

∣∣∣∣
q0

cos3(ω0n) + · · ·

However, Eq. (7) does not approximate well the
function p(n) for a given q0 if p(q) varies fast, or
is not differentiable on the interval (q0−q1, q0+q1);
it can be so, e.g. in the case of the curves in Fig. 1.
Then it is better to replace the derivatives in Eq. (7)
with a sort of “average” derivatives on this interval.
They, in turn, can be approximated as difference
quotients, so that Eq. (7) takes a form

p(n) ≈ p(q0) + q1p(1)|q0 cos(ω0n)

+
1
2
q21p

(2)|q0 cos
2(ω0n)

+
1
6
q31 p

(3)|q0 cos
3(ω0n) + · · · (8)

where p(1)|q0 = [p(q0 + q1) − p(q0 − q1)]/(2q1),
p(2)|q0 = [p(q0 + q1) − 2p(q0) + p(q0 − q1)]/(2q1)2,
etc., are difference quotients of the first, second,
etc., order evaluated at the interval (q0−q1, q0+q1).
Evaluating the Fourier components of p(n) from the
above expansions it can be seen that in the first ap-
proximation Pj at q0 is proportional to (djp/dqj)|q0 ,
or, in a general case, to the respective difference
quotient p(j)|q0. Neglecting the dependence on p, the
SNR(j) given by Eq. (2) is proportional to |Pj |2.

The above expansions, together with Eq. (2),
prove that if the TC probability has the “average”
derivative of order j which is a nonmonotonic func-
tion of the control parameter q, multiple maxima of
the SNR at the jth harmonic will occur. Hence, if
p(1) is a nonmonotonic function of q, SMR at the
fundamental frequency will appear. In particular,
distinct, broad maxima of the SNR at the funda-
mental frequency can be associated with oscillations
of p(q) wider than 2q1 around a general rising trend,
since then p(1)|q0 has certainly an extremum at some
q0 in the range of the oscillation. Narrow oscillations
of p(q) result only in small peaks or modulation of
the slope of the SNR. The above condition defines a
whole class of TC systems in which SMR occurs in
the adiabatic limit of slowly varying signals. From
Fig. 1 it is clear that the chaotic maps close to crisis,
with fractal-induced oscillations of the mean escape
time, belong to this class. Since the width of the
oscillations in the latter systems increases on aver-
age logarithmically with q − qc, broad oscillations
of 〈τ(q)〉, and thus distinct maxima of the SNR(1),
can appear, approximately, only for q0 ≥ 2q1, far

enough from the crisis threshold, which is roughly
confirmed by Figs. 4(a) and 4(d).

The proportionality of the SNR(j) to the differ-
ence quotient p(j) also explains why there are more
maxima of the SNR at higher harmonics. For exam-
ple, by definition, p(1)|q0 depends only on the values
of p(q) at q = q0 ± q1, while p(2)|q0 depends also
on p(q0). In general, p(j)|q0 depends on the value of
p(q) in j points on the interval (q0−q1, q0+q1). This
amounts to more sensitive probing of the function
p(q) on this interval, which reveals even narrow os-
cillations of the TC probability as clear maxima of
the SNR at higher harmonics.

4. Discussion

4.1. Relationships between the SNR
at consecutive harmonics

Taking advantage of the expansions in Eq. (7) and
(8), certain relationships between the SNR at sub-
sequent harmonics in TC systems can be also de-
duced. In the discussion below, derivatives should
be understood in the sense of “average” derivatives
approximated by the difference quotients in the case
of nonanalytic or fast varying functions p(q). If at
some q0 the curve Pj has a distinct, broad extremum
characterized by dPj/dq|q0 ≈ (dj+1p/dqj+1)|q0 =
0, at the same q0 there should be Pj+1 = 0.
This condition defines the location of dips of the
curve SNR(j+1) versus q0, defined as points where
SNR(j+1) = 0. Since the SNR(j) is proportional
to |Pj |2 [Eq. (2)], the extrema of Pj correspond
to maxima of the SNR(j). Hence, the dips of the
SNR(j+1) should appear approximately for such q0
that the curve SNR(j) has distinct maxima. Simi-
larly, if at a certain q0 the derivative (dPj/dq)|q0 ≈
(dj+1p/dqj+1)|q0 has an extremum, at the same q0
an extremum of the curve Pj+1 versus q0 appears.
This condition defines the location of the maxima
of the SNR(j+1): they should be associated with in-
flexion points of the curve SNR(j) versus q0. When
applied to the model systems from Sec. 2, the above
arguments explain the correspondence between the
broad maxima and dips of the SNR at subsequent
harmonics in Fig. 4, noticed in Sec. 2.2. As men-
tioned above, such distinct maxima of the SNR, as
well as clear inflexion points, appear only for large
enough q0, far from the crisis threshold, and the cor-
respondence rule is true in this region. On the other
hand, if at some q0 the function Pj has a narrow ex-
tremum, whose width is smaller than 2q1, so that
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the SNR(j) has a narrow peak, the difference quo-
tient p(j+1) (mimicking the local derivative of Pj ,
but on the interval wider than the peak width) need
not be zero at this q0. This means that the SNR(j+1)

need not have dips at the locations of narrow max-
ima of the SNR(j). In contrast, it can happen that
p(j+1) has a narrow extremum close to this point,
too. Then both curves SNR(j) and SNR(j+1) have
maxima at the same point. This explains the corre-
spondence between the narrow, sharp peaks of the
SNR at consecutive harmonics found in the model
systems in Sec. 2.2. As mentioned above, narrow
peaks of, e.g. the SNR at the fundamental frequency
can be connected with narrow oscillations of p(q).
Such a situation is impossible in generic TC sys-
tems with noise [Loerincz et al., 1999], in which the
TC probability is always a smooth, slowly varying
function of the noise intensity.

4.2. Influence of the fractal
structures on the SNR at the
fundamental frequency and
higher harmonics in the model
systems

In this section we constrain our attention to the
model case of chaotic maps with fractal precriti-
cal attractors and basins of attraction, colliding at
the crisis point. On the basis of the analytic theory
of Sec. 3.1 and general considerations of Secs. 3.2
and 4.1, we analyze the origin of simple “building
blocks” (maxima and dips) of the SNR versus q0
curves at subsequent harmonics of the fundamental
frequency. This aims at providing intuition on how
the overlap of the parabolic segments of the chaotic
saddle and stripes of the basin of escape leads to
complex curves in Fig. 4.

Let us start with a simple case and neglect the
fractal structure of the chaotic saddle and basin
of escape at crisis. The mean TC time is then
given by Eq. (1). As a simple example let us take
a single parabolic segment A0 entering the half-
plane y > 0 which yields γ = 0.5 in Eq. (1);
the results are similar for γ > 0.5 which is al-
ways fulfilled for two-dimensional maps [Grebogi
et al., 1986; Grebogi et al., 1987]. In Fig. 6 the
curves SNR(j), j = 1, 2, 3, obtained using the the-
ory of Sec. 3.1 are shown. By inspection of the
difference quotient p(1) it can be easily proved that
|P1| has a single maximum at q0 ≈ q1 [Kraw-
iecki et al., 2001]. The maximum of the SNR(1) in
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Fig. 6. SNR(j), j = 1, 2, 3 versus q0 + q1 for a single
parabolic segment A0 entering the half-plane y > 0, and
for q1 = 3 × 10−4, ζ = 3.3; red line — SNR(1), blue line —
3 × SNR(2), green line — 6 × SNR(3).

Fig. 6 corresponds to this maximum of |P1|. The
correspondence between the distinct maxima and
dips, and between the inflexion points and maxima
of the SNR(j) at subsequent harmonics, predicted
in Sec. 4.1, is only approximate. This is mainly
because the maxima of the SNR(j) do not appear
exactly for q0 such that Pj has analytic extrema, due
to the dependence of the SNR(j) on p [Eq. (2)] which
is a function of q0, too. Besides, for higher j the
contributions to Pj from the terms of order j′ > j
in Eqs. (7) and (8) become significant, which have
not been taken into account in the discussion in
Sec. 4.1.

For the nonfractal chaotic saddle and basin of
escape the curves SNR(j) versus q0 are relatively
simple and very similar to those observed in TC
systems versus external noise intensity [Loerincz
et al., 1999]. In particular, there is only one smooth
maximum of the SNR(1) versus q0. Let us now con-
sider how the presence of the fractal structures
complicates the shape of the SNR at the fundamen-
tal frequency and higher harmonics. This will be
done separately for the case of the fractal attractor
and the fractal basin of escape.

To analyze the effect of the fractal structure of
the saddle we take K+1 = 1 in Eq. (3) and consider
two parabolic segments A0, A1, distant by a, enter-
ing the half-plane y > 0 modeling the nonfractal
basin of escape. For simplicity, only the SNR versus
q0 at the fundamental frequency and its first har-
monic for this case are shown in Fig. 7 for decreasing
a. If a ≥ 2q1 there are two separate distinct, smooth
maxima of the SNR(1), located at q0 ≈ q1 and
q0 ≈ q1 + a [Krawiecki et al., 2001], connected with
A1 and A0, respectively. To each of these maxima
the correspondence rules from Sec. 4.1 between the
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(a) (b) (c)

(d) (e) (f)

Fig. 7. SNR(j), j = 1, 2 versus q0 + q1 for two parabolic segments A0, A1, distant by a, entering the half-plane y > 0, and
for q1 = 3 × 10−4, η = 0.5, ζ = 3.3, (a) a = 10−3, (b) a = 6 × 10−4, (c) a = 4 × 10−4, (d) a = 3 × 10−4, (e) a = 2 × 10−4,

(f) a = 10−4; violet line — SNR(1), green line — 3 × SNR(2), the bars have lengths 2q1 (black) and a (red).

distinct maxima and dips, and the inflexion points
and maxima of the SNR at subsequent harmonics
can be applied separately. Hence there are two dips
of the SNR(2) located at similar q0 as the max-
ima of the SNR(1), and four maxima of the SNR(2),
the three most rightward corresponding to the in-
flexion points of the SNR(1) [Figs. 7(a) and 7(b)].
As a is decreased below 2q1 the maxima in both
curves merge [Figs. 7(c)–7(f)]. The number of dis-
tinct maxima decreases; instead, the slopes of the
remaining maxima are slightly modulated. Since the
maxima of the SNR(2) are narrower, the neighbor-
ing maxima can remain distinct and smooth even
for a 	 2q1, although the maxima of the SNR(1)

had already merged [Figs. 7(d) and 7(e)].
The effect of the fractal structure of the basin

of escape can be analyzed using a model Eq. (3)
with K +1 = 0 and Eq. (4) with L+1 = 0, i.e. one
parabolic segment A0 entering a single stripe B0

located at 0 < y < b. The SNR versus q0 at the
fundamental frequency and its first harmonic are

shown in Fig. 8 for decreasing b. If b ≥ 2q1 there are
two distinct, smooth maxima of the SNR(1): one lo-
cated at q0 ≈ q1 and connected with the oscillations
of the top of the parabolic segment (under the in-
fluence of the periodic forcing) within the stripe,
and another at q0 ≈ q1 + b, connected with the
oscillations of this top above the stripe [Krawiecki
et al., 2001]. The correspondence rules of Sec. 4.1
apply to each maximum separately so that there are
two dips and four maxima of the SNR(2) located as
expected [Figs. 8(a) and 8(b)]. As b is decreased
approximately below 2q1, the first maximum of the
SNR(1) is cut and turns into a sharp nonanalytic
peak at q0 = b − q1 [Figs. 8(c)–8(f)]. This is be-
cause the stripe is too narrow and the top of the
parabolic segment cannot for any q0 remain within
the stripe during the whole period of the periodic
forcing. Similarly, the first maximum of the SNR(2)

is also cut and turned into a sharp peak, but for
smaller b [Fig. 8(f)]. In the latter case the sharp
peaks of both curves appear at the same q0 = b−q1,
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(a) (b) (c)

(d) (e) (f)

Fig. 8. SNR(j), j = 1, 2 versus q0 + q1 for a parabolic segment A0 entering the stripe B0 located at 0 < y < b, and for
q1 = 3 × 10−4, ζ = 3.3, (a) b = 10−3, (b) b = 6 × 10−4, (c) b = 4 × 10−4, (d) b = 3 × 10−4, (e) b = 2 × 10−4, (f) b = 10−4;

violet line — SNR(1), green line — 3 × SNR(2), the bars have lengths 2q1 (black) and b (red).

and the dip of the SNR(2) is located further to the
right rather than at the location of the first peak of
the SNR(1).

From Figs. 7 and 8 it can be seen that the col-
lision of fractal structures at crisis leads to multi-
ple maxima of the SNR at all harmonics. The col-
lision of fractal structures whose scale (the largest
relevant distance) is larger than, approximately, 2q1
(both wide stripes and distant parabolic segments)
results in broad, smooth maxima of the SNR at
the fundamental frequency and its lower harmon-
ics. The multiple broad, smooth maxima of the
SNR(j) correspond in general to multiple dips of
the SNR(j+1). The fractal structure of the chaotic
saddle at a scale smaller than 2q1 leads mainly to
the modulation of the slope of the SNR curves, or
to the appearance of narrow and smooth maxima
of the SNR both at the fundamental frequency and
its higher harmonics. The fractal structure of the
basin of escape at a scale smaller than 2q1 can in
turn lead to the appearance of sharp nonanalytic
peaks of the SNR. Such peaks can appear at the

same values of the control parameter at consecutive
harmonics. In general the curves SNR(j) result from
the superposition of many basic events like in ex-
amples above occurring simultaneously on different
scales. This leads to complex structures of the SNR
versus q0 like in Fig. 4.

4.3. Discussion of numerical
results and comparison with
theory

The origin of certain maxima and dips of the nu-
merical curves of the SNR at higher harmonics in
Fig. 4 can be traced using the simplified examples
of Sec. 4.2. The objects corresponding to each other
in Fig. 4 are labeled by identical letters.

The case of the Hénon map is simpler to analyze
since the basin of escape is almost nonfractal and
only smooth maxima connected with subsequent
branches of the fractal chaotic saddle entering the
basin of escape are visible in the curves SNR(j),
j = 1, 2, 3. The effect of the weak structure of



154 A. Krawiecki et al.

the basin of escape can be neglected in this case.
The maxima b and e of the SNR(1) in Fig. 4(a) are
broad and resemble those in Fig. 7(a). To each of
these maxima correspond dips b and e of the SNR(2)

in Fig. 4(b), each separating two maxima. A simi-
lar correspondence between the maxima c and d in
Fig. 4(b) and dips of the SNR(3) in Fig. 4(c) can be
seen. Besides, the object a in Fig. 4(a) is a remain-
der of a maximum which merged with the maximum
b, but there are still narrower maxima of the SNR
at higher harmonics in Figs. 4(b) and 4(c), like in
Figs. 7(d) and 7(e).

In the case of the spin map many sharp peaks in
the curves SNR(j), j = 1, 2, 3 can be seen. For exam-
ple, these are peaks f and g of the curve SNR(1) in
Fig. 4(d) and corresponding peaks of the SNR at the
second and, possibly, third harmonic in Figs. 4(e)
and 4(f). These peaks appear in the SNR at all
harmonics for the same B0 which resembles the rel-
ative location of maxima in Fig. 8(f). The origin
of peaks and maxima of the SNR for higher values
of B0 are difficult to explain using simple exam-
ples of Sec. 4.2. This is because the amplitude B1

is high and every peak and maximum are a result
of overlap of many branches and stripes belonging
to two complex incommensurate fractal structures.
However, the amplitude of the periodic signal has
to be high enough in order to obtain reliable numer-
ical results for the SNR at higher harmonics which
are much lower than the SNR at the fundamental
frequency.

The agreement between numerical and theoret-
ical results based on the theory of Sec. 3.1 is quan-
titatively good for the Hénon map [Figs. 4(a)–4(c)]
and qualitatively good for the spin map [Figs. 4(d)-
4(f)]. The latter discrepancy is again a result of
the high value of B1, and the fact that the mod-
els of Sec. 3.1 neglect further fine branching of
the parabolic segments and stripes in real frac-
tal chaotic saddles and basins of escape (Fig. 3)
[Matyjaśkiewicz et al., 2001].

5. Fractal Spectroscopy

The oscillations of the mean escape time and mul-
tiple maxima of the SNR in noise-free SMR in the
investigated maps close to crisis are deeply rooted
in the fractal structures of the precritical attractors
and, possibly, basins of attraction in the collision
region. Oscillations of 〈τ〉 and maxima of the SNR
of different shape and width correspond to the col-
lision of fractal structures of different origin and

scale. Thus, by direct thorough inspection of such
curves, it is possible to reconstruct, e.g. the local (in
the collision region) distribution of invariant mea-
sure on the precritical attractor, or the local mean
log-periodicity of the fractal branches and stripes
of the chaotic saddle or basin of escape. Using this
information, one can deduce the important param-
eters of the model equations (3) and (4) from the
measurement of 〈τ〉 or the SNR, without the need to
examine directly the collision region or the eigenval-
ues of the periodic orbit mediating in crisis. While
for the two-dimensional maps the gain in the time of
numerical simulations need not be significant, there
are experimental systems close to crisis in which
the oscillations of the mean escape time are prob-
ably fractal-induced [Sommerer & Grebogi, 1992].
In fact, at least normal oscillations should be quite
common, since the precritical attractors are always
fractal sets. In the experiment it is usually difficult
to investigate the local structure of colliding sets di-
rectly, but it can be examined indirectly, from the
measurements of experimentally available quanti-
ties which can be obtained by simple changes of the
control parameter. We call these methods of indirect
measurements “fractal spectroscopy”.

In fact, the whole information about the two
colliding sets is contained in the curves 〈τ(q)〉. From
the width of normal and anomalous oscillations the
parameters α, β in Eqs. (3) and (4) can be ob-
tained, and the parameter η can be evaluated from
the slope of the curve 〈τ(q)〉 and the relationship
γ = log η/ log α+1/2 [Kacperski & Ho$lyst, 1999b].
Since SNR(1) ∝ |(dp/dq)|q0 |2 even small oscillations
of the mean escape time lead to large changes of the
SNR, and the effect of fractal structures on SMR
is easily visible and more spectacular. However,
only oscillations of 〈τ〉 far from the crisis threshold,
whose width is larger than 2q1, lead to distinct max-
ima of the SNR. Location of these maxima shows
also log-periodicity connected with the dominating
oscillations of the mean escape time (shifted only
approximately by q1 with respect to that of 〈τ(q)〉,
cf. Figs. 7(a) and 8(a)), although in the case of dom-
inating anomalous oscillations it may be difficult to
distinguish between the maxima related to entering
and leaving the stripes of the basin of escape by
the segments of the chaotic saddle [Fig. 8(a)]. Thus
the parameters α and β in Eqs. (3) and (4) can be
in principle obtained from the data on SR. On the
other hand, collision of tiny fractal structures whose
scale is smaller than 2q1 leads to narrow oscillations



Fractal Spectroscopy by Noise-Free Stochastic Multiresonance at Higher Harmonics 155

of 〈τ(q)〉 located mainly close to the crisis thresh-
old, and to the modulation of the slope or narrow
peaks of the SNR(1) which are difficult to interpret.
The amplitude q1, although small, must be finite
in order to obtain reliable values of the SNR within
reasonable time. This sets the lower border q0 ≥ 2q1
for the range of q0 and for the scale of the fractal
structures for which the “fractal spectroscopy” by
noise-free SMR can be used.

Going to the SR at higher harmonics we ob-
serve that the effect of collision of fractal structures
of small scale, smaller than 2q1, can be still visi-
ble as clear maxima in the SNR, though it almost
completely disappeared in the SNR at the funda-
mental frequency (cf. the discussion of Figs. 7(d)
and 7(e) and 8(d) and 8(e) in Sec. 4.2, and of the
object a in Figs. 4(a)–4(c) in Sec. 4.3). In this sense,
SR at higher harmonics is a more sensitive tool for
“fractal spectroscopy” with a finite periodic signal
amplitude, able to detect collisions of fractal objects
at a smaller scale. However, the curves SNR(j) for
j > 1 can contain many maxima separated by dips,
connected with the collision of a single branch of
the chaotic saddle with a single stripe of the basin
(Sec. 4.2), which makes them hard to interpret. In
practice, it is difficult to retrieve information on the
model parameters in Eqs. (3) and (4) from the SNR
at higher harmonics of the fundamental frequency.

6. Summary and Conclusions

In this paper we investigated numerically and theo-
retically noise-free SR at the fundamental frequency
and its higher harmonics in chaotic systems close to
crisis, in which the oscillations of the mean transient
time versus the control parameter are observed. As
models we used two-dimensional chaotic maps: the
Hénon map and the kicked spin model. These mod-
els were analyzed as TC systems in which the escape
events from the precritical attractor were treated as
TC events. The curves of the SNR at the external
periodic signal frequency versus the control param-
eter exhibited multiple maxima which is a signa-
ture of the noise-free SMR effect. The curves of the
SNR at higher harmonics of the fundamental fre-
quency were shown to possess even a more com-
plicated structure consisting of many maxima and
dips whose origin was explained using a model of
the fractal chaotic saddle and the basin of escape
colliding at the crisis point. The analogy with TC
systems enabled us to show that our model systems

belong to a more general class of TC systems with a
nonmonotonic derivative of the TC probability with
respect to some control parameter, in which SMR
appears if the periodic signal is added to this param-
eter. Finally, we discussed the possibility to measure
macroscopic and experimentally observable quanti-
ties, including the SNR used typically to charac-
terize SR, to retrieve information on the local (in
the collision region) fractal structure of the chaotic
saddles and basins of escape colliding at the crisis
point. We coined the term “fractal spectroscopy”
for this kind of indirect measurements.

When extending the previous studies of noise-
free SMR to the case of SMR at higher harmonics,
certain correspondence rules between the maxima
and dips of the SNR at subsequent harmonics were
derived. It was shown that the dips of the SNR at a
higher harmonic, i.e. points where the SNR is equal
to zero, correspond to broad, smooth maxima of
the SNR at a lower harmonic. In the model systems
close to crisis this happens in general far from the
crisis point, where the broad maxima of the SNR at
the fundamental frequency correspond to wide nor-
mal or anomalous oscillations of the mean escape
time. On the other hand, sharp peaks of the SNR at
the fundamental frequency and its higher harmon-
ics can appear at the same value of the control pa-
rameter. This happens, in general, in systems with
a distinct fractal structure of the basin of escape,
when fractal structures collide whose scale (the
largest relevant distance) is smaller than, approx-
imately, twice the periodic signal amplitude. The
above-mentioned correspondence rules are modifi-
cation and extension to the case of noise-free SMR
of the rules reported in [Loerincz et al., 1999] for
SR in TC systems with external noise.

Since SMR should be ubiquitous in systems in
which the derivative of the TC probability depends
on the control parameter in a nonmonotonic way,
we expect that complicated curves of the SNR at
higher harmonics of the fundamental frequency can
also be often observed, with properties analogous to
those obtained from our models. The complex shape
of the TC probability may have all sorts of other
reasons apart from the overlap of fractal sets, as in
our examples. They may include, e.g. periodic win-
dows, interplay of chaotic dynamics and external
noise, etc. Whatever the reason, this would always
lead to multiple maxima of the SNR at the fun-
damental frequency and higher harmonics. In par-
ticular, there are examples of experimental systems
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with crises and probably fractal-induced oscillations
of the mean escape time [Sommerer & Grebogi,
1992]. We briefly discussed the applicability of var-
ious kinds of “fractal spectroscopy” to characterize
the local fractal properties of the sets colliding at
the crisis point in such systems. When going from
the method based on the measurement of the oscil-
lations of the mean escape time to the SNR at the
fundamental frequency to the SNR at its higher har-
monics, the effect of the fractal structures becomes
more spectacular: small oscillations of the mean es-
cape time are turned into maxima of the SNR. Even
small details of the fractal structure are clearly re-
flected in the large changes of the SNR with the rise
of the control parameter. This is, however, at the
expense of the increasing complexity of the curves
SNR versus the control parameter which makes the
interpretation of results difficult. Also the scale of
the fractal structures which can be investigated by
the “fractal spectroscopy” via the noise-free SMR
is constrained by the amplitude of the periodic sig-
nal, which must be high enough to obtain reliable
results.
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Appendix A
The Explicit Form of the Spin Map

The explicit equations for the kicked spin map were
derived in [Ho$lyst & Sukiennicki, 1992a, 1992b].
The map TA can be written as

TA

[
φ

Sz

]
=

[
φ+∆φ
WSz

]
, (A.1)

where φ is the angle between the x axis and the
projection of the spin on the x–y plane,

∆φ = (1/λ) ln[(1 + S/Sz)/(1 + S/(WSz))]

− 2ASτ̃ ,

and W = [c2 + (Sz/S)2(1 − c2)]−1/2, c =
exp(−2λASτ̃ ).

The map TB can be written as

TB

[
Φ
Sx

]
=

[
Φ−B

S − 2S(S − Sx)D2U

]
, (A.2)

where Φ is the angle between the y axis and the pro-
jection of the spin on the x–z plane, D = exp(−λB)
and U = [S + Sx +D2(S − Sx)]−1.

Appendix B
Evaluation of the Functions in the
Analytic Formulae for the SNR

The expressions for the coefficients µkl andMkl,j in
Eq. (6), resulting from the overlap of the segment
Ak with the stripe Bk, can be obtained as combi-
nations of analogous coefficients resulting from the
time-dependent overlap of the parabolic segment
Ak with a half-plane y > c, c = const. Introduc-
ing the continuous time approximation, the measure
µk[c, t] of the latter overlap for small distance be-
tween the top of the parabola and the border of the
plane, q0+ q1 cosω0t− (1− δk,K+1)aαk − c	 1, can
be approximated as

µk[c, t] = µ̃k

√
q0 + q1 cos ω0t− (1− δk,K+1)aαk − c

×Θ[q0 + q1 cos ω0t− a(1− δk,K+1)αk − c] , (B.1)

where Θ(·) is the Heaviside step function. It follows that µk[c, t] is an even, periodic function of t. Following
the notation of [Matyjaśkiewicz et al., 2001] let us introduce the quantities

mk(c) =
√
2q1/[q0 − (1− δk,K+1)aαk + q1 − c] , (B.2)

tk(c) =

{
ω−1

0 arccos{[c − q0 + (1− δk,K+1)aαk]/q1} if q0,min ≤ q0 ≤ q0,full ,

T0/2 if q0 > q0,full
(B.3)

where q0,min = c+ (1− δk,K+1)aαk − q1 and q0,full = c+ a(1− δk,K+1)αk + q1. The time tk(c) in Eq. (B.3)
is defined so that Ak overlaps the half-plane y > c for 0 ≤ t < tk(c) and T0 − tk(c) < t ≤ T0; the overlap
is nonzero during at least part of the period T0 if q0 > q0,min, and it is nonzero during the whole period if
q0 > q0,full. Using this notation the time average µk(c) and the jth Fourier coefficients Mk,j(c), j = 1, 2, 3,
of the function µk[c, t] can be evaluated as

µk(c) =
1
T0

∫ T0

0
µk[c, t]dt

=
2µ̃k

π

√
q0 + q1 − (1− δk,K+1)aαk − cE

[ω0

2
tk(c),mk(c)

]

×Θ[q0 + q1 − (1− δk,K+1)aαk − c] (B.4)

Mk,j(c) =
1
T0

∫ T0

0
µk[c, t] cos(jω0t)dt

=
2µ̃k

π

√
q0 + q1 − (1− δk,K+1)aαk − c (B.5)
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×
{
Qk,j(c)E

[ω0

2
tk(c),mk(c)

]
−Rk,j(c)F

[ω0

2
tk(c),mk(c)

]}

×Θ[q0 + q1 − (1− δk,K+1)aαk − c]
where F (φ,m) =

∫ φ
0 (1 −m2 sin2 x)−1/2dx and E(φ,m) =

∫ φ
0 (1 −m2 sin2 x)1/2dx are the elliptic integrals

of the first and second kind, respectively, and

Qk,1(c) =
2−m2

k(c)
3m2

k(c)
,

Rk,1(c) =
2− 2m2

k(c)
3m2

k(c)
,

Qk,2(c) =
−16 + 16m2

k(c)−m4
k(c)

15m4
k(c)

,

Rk,2(c) =
16 − 24m2

k(c) + 8m4
k(c)

15m4
k(c)

,

Qk,3(c) =
256 − 384m2

k(c) + 134m4
k(c)− 3m6

k(c)
105m6

k(c)
,

Rk,3(c) =
−256 + 512m2

k(c) − 310m4
k(c) + 54m6

k(c)
105m6

k(c)
.

(B.6)

Thus the coefficients in Eq. (6) become

µkl = µk[(1− δl,L+1)(βlb− βlbE)]− µk(βlb) ,

Mkl,j =Mk,j[(1 − δl,L+1)(βlb− βlbE)]−Mk,j(βlb) .
(B.7)

It follows that in the adiabatic approximation the SNR at all harmonics is independent of the periodic
signal frequency ω0.




