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Observations of deterministic chaos in financial time series
by recurrence plots, can one control chaotic economy?
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Abstract. Several economical time series such as exchange rates US$/British Pound, USA Treasure Bonds
rates and Warsaw Stock Index WIG have been investigated using the method of recurrence plots. The
percentage of recurrence REC and the percentage of determinism DET have been calculated for the original
and for shuffled data. We have found that in some cases the values of REC and DET parameters are
about 20% lower for the surrogate data which indicates the presence of unstable periodical orbits in the
considered data. A similar result has been obtained for the chaotic Lorenz model contaminated by noise.
Our investigations suggest that real economical dynamics is a mixture of deterministic and stochastic chaos.
We show how a simple chaotic economic model can be controlled by appropriate influence of time-delayed
feedback.

PACS. 05.45.Tp Time series analysis – 05.45.Gg Control of chaos, applications of chaos

1 Introduction

Financial time series are usually considered from the point
of view of stochastic processes [1], i.e. one assumes that
the behaviour of financial markets is mostly driven by un-
predictable stochastic variables. On the other hand it is
well known that even simple nonlinear deterministic sys-
tems can exhibit the phenomenon of deterministic chaos
[2–4] and it is not easy to distinguish between both types
of dynamics especially when the observed deterministic
system is high dimensional [5]. Here we use a recently de-
veloped method of nonlinear dynamics called recurrence
plots (RPs) to investigate properties of several financial
time series. In some cases we observe a large difference
between values of characteristic parameters for RPs cal-
culated from original and from surrogate data. These dif-
ferences can follow from the presence of so called unstable
periodic orbits that occur in chaotic deterministic systems.
The presence of such orbits allows the chaotic system to
change to a periodic one by use of appropriate control
methods. We will illustrate this possibility using a chaotic
microeconomical model controlled by time delayed feed-
back. In Section 2 we present the main principles of re-
currence plots analysis, Section 3 is devoted to our inves-
tigation of financial time series and Section 4 includes an
example of chaos control.
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2 Recurrence plots

The method of recurrence plots was used for the first time
by Eckman, Kamphorst and Ruelle [6] to study recur-
rences and nonstationary behaviour occurring in dynami-
cal systems. (For more recent review papers see [7,8].) The
method allows the identification of system properties that
cannot be observed using other linear and nonlinear ap-
proaches and is especially useful for analysis of nonstation-
ary systems with high dimensional and/or noisy dynamics.
Another advantage of RPs is the simplicity of the algo-
rithm used during numerical calculations. RPs are con-
structed on the basis of mutual distances between points
belonging to the same trajectory. According to the pri-
mary definition [6] the RP for a time series of N points
x(n) where n is time index, is a matrix N ×N filled with
white and dark points. A dark point, called a recurrence
point is put at the position of coordinates (i, j) provided
that the distance ρ(i, j) between the system states at mo-
ments n = j and n = i, is smaller than some value R. It
follows that the resulting plot is dependent on the metric
used and the assumed threshold value R. Usually one can
observe only one component of an unknown multidimen-
sional state and to reconstruct hidden variables one uses
the Takens embedding method [2,5,9]. In such a case the
system evolution is described by a d-dimensional vector
X(n) where the k-component of X(n) is x(n − (k − 1)τ)
while k = 1, 2, 3, . . . , d and τ is the delay time. The dis-
tance ρ(i, j) is calculated using the Euclidean or the max-
imal matrix defined in the d-dimensional Cartesian space
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Fig. 1. Recurrence plots for sine function, for a data chain from
random number generator and for the chaotic Henon map.

of vectors X(n). If the threshold value R is defined glob-
ally as a fixed number independent of the time index n,
then the resulting plot is symmetric against the main diag-
onal i = j. This symmetry can be broken when R = R(i)
and the local value R(i) depends on distances between the
state i and a few nearest neighboring states j. In any case
all points belonging to the main diagonal i = j are recur-
rence points and the total number of recurrence points is
an increasing function of the parameter R. The value of
the globally defined R is sometimes assumed as a percent-
age of the standard deviation of the primary series x(n) or
a percentage of the maximal distances between all pairs
of points X(i) and X(j).

Some typical examples of RPs are presented in Fig-
ure 1. One can see that in the RP corresponding to the
deterministic chaotic system (Henon map [10]) there oc-
cur short lines that are parallel to the main diagonal.
These are absent in the RP corresponding to the random
data series. The presence of such short segments mirrors
the deterministic character of the system and follow di-
rectly from the presence of so-called unstable periodic or-
bits (UPO-s) embedded in the chaotic attractor of a deter-
ministic system. The value of the inverse of the maximal
length lmax of these lines is related to the largest Lyapunov
exponent of the chaotic system [8]. For periodic signals the

largest Lyapunov exponent equals to zero and lmax equals
to the length N of the observed signal.

Recurrence plots usually include many complex pat-
terns and fine structure which is difficult to consider in
detail. Thus in their quantitative analysis one applies sev-
eral numbers. The most frequently used are: the recur-
rence percentage REC = Nr/Nt where Nr is the num-
ber of all recurrence (dark) points, Nt is the number of
all possible points (points belonging to the main diagonal
i = j are always excluded) and the percentage of deter-
minism DET = Nl/Nr, where Nl is the number of recur-
rence points belonging to lines parallel to the main diag-
onal. One has to stress that values of REC and DET are
strongly dependent on the parameters R, d, τ chosen for
the construction of a RP. It follows that for the interpre-
tation of results one needs to compare parameters REC
and DET obtained from the original time series with cor-
responding results received from surrogate data [5].

3 RPs for financial data

We have used RPs to perform the analysis of the following
financial data sets:

1. Exchange rates (US$/British Pound), monthly aver-
ages of daily figures, noon buying rates in New York
City for cable transfers payable in foreign currencies,
for the period January 1971–February 1999, 338 num-
bers.

2. A year constant maturity USA Treasury Bond rates,
weekly data, for the period 05 January 1962–30 August
1996, 1809 numbers.

3. Standard & Poor’s 500 Stock Index, close of month, for
the period January 1945–January 1999, 649 numbers.

4. Warsaw Stock Index (WIG), daily data, for the period
02 February 1995–28 January 1999, 993 numbers.

5. Okocim shares (Polish beer company), daily data, for
the period 02 February 1995–28 January 1999, 993
numbers.

To eliminate linear trends from the data sets we have
used the simplest filter, i.e. an original time series c(n)
has been substituted by x(n) = log[c(n)/c(n− 1)]. A few
resulting recurrence plots are shown in Figures 2, 3 and 4
where the plots on the left correspond to original time se-
ries, while those on the right correspond to surrogate data
surr1 and the bottom plots to surrogate data surr2. The
lower part of all figures (below the main diagonal) corre-
spond to the embedding dimension d = 1, upper parts to
d = 2, time-delay equals τ = 1, threshold parameter value
equals to R = 0.1σ where σ is a standard deviation calcu-
lated from the data chain x(n) and the Euclidean matrix
has been applied. We have used two types of surrogate
data. To create surr1 we have shuffled the data x(n) ran-
domly choosing a pair of points from the data chain and
exchanging positions of such points. This procedure has
been repeated N times where N is the number of all data
points. The shuffling preserves the statistical distribution
of the data but changes the correlation between points in
the data chain. On the other hand data set surr2 preserve
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Fig. 2. Recurrence plots for US$/BP exchange rates.
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Fig. 3. Recurrence plots for USA Treasury Bond rates.

the correlations of the original data but has a different
statistical distribution [5].

For the quantitative interpretation of these diagrams
we have calculated the parameters REC and DET de-
fined above. The values are presented in the Table 1 and
Table 2 together with corresponding values of the surro-
gate data. All calculations presented in the tables have
been performed using the embedding dimension d = 2
with the other values of parameters as given above.

Looking at Tables 1 and 2 one can see that the sur-
rogate data possess lower values of the REC and DAT
parameters as compared to the original data (with the ex-
ception of one result corresponding to Okocim shares). The
typical percentage change of these parameters is between
10% and 20%. The last two rows of both tables describe
REC and DAT values for a chain of N = 900 numbers
corresponding to the chaotic Lorenz model [2] and to the
Lorenz model contaminated by noise generated by a ran-
dom numbers generator. The amplitude of the added noise
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Fig. 4. Recurrence plots for Warsaw Stock Exchange index
WIG.

Table 1. The percentage of recurrence (parameter REC) for
various data series described in the text. TB stands for “USA
Treasury Bond rates” and Lorenz+n stands for “Lorenz model
contaminated by noise”. The percentage changes of REC for
surrogate data are written in brackets.

Data REC

org. surr1 surr2

US$/BP 0.69 0.60 (−13%) 0.61 (−12%)

TB 0.78 0.69 (−12%) 0.70 (−10%)

S&P500 0.61 0.58 (−4.9% 0.55 (−9.8%)

WIG 0.82 0.71 (−13%) 0.70 (−15%)

Okocim 0.75 0.70 (−6.7%) 0.69 (−8.0%)

Lorenz 1.18 0.52 (−56%)

Lorenz+n 0.58 0.48 (−17%)

Table 2. The percentage of determinism (parameter DET ) for
various data series described in the text. TB stands for “USA
Treasury Bond rates” and Lorenz+n stands for “Lorenz model
contaminated by noise”. The percentage changes of DET for
surrogate data are written in brackets.

Data DET

org. surr1 surr2

US$/BP 22.1 14.8 (−33%) 12.6 (−43%)

TB 19.3 15.7 (−19%) 15.8 (−18%)

S&P500 15.4 15.2 (−1.2% 13.1 (−15%)

WIG 20.0 15.8 (−21%) 17.2 (−14%)

Okocim 15.7 16.5 (5.2%) 13.9 (−11%)

Lorenz 67.4 13.0 (−81%)

Lorenz+n 15.6 12.4 (−20%)

was 50% of the amplitude of the original signal. One can
see that the influence of shuffling on the purely determin-
istic Lorenz model is much larger than the corresponding
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influence on the analyzed economical data. For the former
we have obtained a REC parameter that is lower by 56%
and the DET parameter that is lower by 81% compared
to the original data. On the other hand the corresponding
changes observed for the noisy Lorenz model are milder
(17% and 20% respectively) and are in the range observed
for economic data. The results suggest that the analyzed
economical data are mixtures of (unknown) deterministic
and stochastic processes. As the largest impact of shuf-
fling has been observed for exchange rates (US$/British
Pound) these data can be considered as the most deter-
ministic among the analyzed processes. It is interesting
that according to our results a single share from the Pol-
ish stock market is much more noisy then the total Polish
market index WIG. Such a behaviour can be expected be-
cause the total index is a weighted mean value of shares of
individual firms and hence should be more robust against
stochastic fluctuations.

4 Chaos control

If the economic evolution possesses at least in part a
deterministic character then methods of chaos control
[10,11] can be used to stabilized the market on the desired
periodic orbit. Probably the most convenient approach for
such a purpose would base on the Pyragas time-delayed
feedback method [11]. A theoretical background of this
method can be found in [12–14]. In the simplest case one
needs to influence the system behaviour by the term

FK = K(zn − zn−m) (1)

where zn is a system variable that can be observed (e.g.
the exchange rate or stock market index), m is the period
of the controlled orbit, and K is an appropriate control co-
efficient. Let us illustrate this approach using the microe-
conomic model of a chaotic market proposed by Behrens
and Feichtinger [15]. The model describes the evolution of
sales x(n) and y(n) of two firmsX and Y competing on the
same market of goods. Due to the active and asymmetric
investment strategies of both firms sales evolve according
to the equations

xn+1 = (1− α)xn +
a

1 + exp[−c(xn − yn)]
(2)

yn+1 = (1− β)yn +
b

1 + exp[−c(xn − yn)]
· (3)

The constants α and β (with 0 < α, β < 1) are the time
rates at which the sales of both firms decay in the ab-
sence of investment while the second terms on the r.h.s of
equations (2–3) describe the influence of investments at
time n on the sales at time (n + 1), where positive con-
stants a, b and c are investment parameters. The detailed
analysis of control in this model by the Ott-Grebogi-Yorke
method and by the Pyragas method can be found in refer-
ences [16–18]. Here we present one example of the success-
ful control of chaos in this model. Adding a control force
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Fig. 5. Time dependence of the control amplitude Kyy, the
control force FK (Eq. (1)) and sales xn, yn. The results of the
stabilization procedure are clearly seen. Thin lines depict mean
values of the sales in various time intervals.

FK = Kyy(yn − yn−m) to the r.h.s of equation (3) can be
interpreted as market control by the firm Y due to ap-
propriate changes of its investment strategy [17]. Figure 5
shows the results of numerical simulations of the control
of m = 1 and m = 2 periodic orbits. One can observe
that changes of the control parameter Kyy induce sub-
stantial changes in the market evolution, i.e. the system
switches between chaotic and period behaviour (chaos →
period–one orbit → chaos → period–two orbit → chaos).
We stress that the control is local in time, i.e. values of
the control force FK tend to zero after switching the sys-
tem to the desired state. One can see that although the
control of the market was introduced by the firm Y as
the result the whole system has been stabilized and the
sales xn of the firm X have also become periodic. It is
interesting that the sales of the firm X have decreased for
the period-one orbit and increased for the period-two or-
bit similarly to the sales of firm Y . This effect is at the
cost of all other firms acting on the market and influenc-
ing the dynamics of the firms X and Y due to nonzero
values of decay parameters α, β in equations (2–3). The
fact that the period-one orbit leads to a decrease of sales
while period-two orbit leads to an increase of sales is a
direct consequence of the location of these periodic orbits
in the chaotic attractor [16–18].
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5 Conclusions

We have applied properties of recurrence plots to show
that financial time series can be seen as a mixture of de-
terministic and stochastic behaviour because of the pres-
ence of unstable periodic orbits. The orbits can be used
to control the chaos in economic dynamics by appropriate
feedback methods.
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