
Procedia Computer Science

 Procedia Computer Science 101 , 2016 , Pages 35 – 44

YSC 2016. 5th International Young Scientist Conference on Computational Science,

doi: 10.1016/j.procs.2016.11.006

Peer-review under responsibility of organizing committee of the scientific committee of the
5th International Young Scientist Conference on Computational Science
© 2016 The Authors. Published by Elsevier B.V.

YSC 2016. 5th International Young Scientist Conference on Computational Science

Parallel Simulation of Adaptive Random Boolean Networks

Kirill Kuvshinov1, Klavdiya Bochenina1, Piotr J. Górski2, and Janusz A.
Ho�lyst12

1 ITMO University, Kronverkskiy av. 19, RU197101 Saint Petersburg, Russia
2 Faculty of Physics, Warsaw University of Technology, Koszykowa 75, PL 00-662 Warsaw, Poland

Abstract
A random Boolean network (RBN) is a generic model of interactions between entities with
binary states that has applications in different fields. As real-world systems often operate on
the border between order and chaos, algorithms simulating RBN’s transition to a critical state
are of particular interest. Adaptive RBNs (ARBNs) can evolve towards such a state by rewiring
of nodes according to their states on the attractor. Numerical simulation of ARBNs larger than
several dozens of nodes is computationally hard due to an enormous growth of attractor lengths
and transient periods. In this paper, we propose a GPGPU algorithm for parallel simulation of
ARBNs with modified activity-dependent rewiring rule which can be used with any sequential
algorithm for attractor’s search. In the experimental part of the study, we investigate the
performance of parallel implementation and the influence of parameters of the algorithm on the
speed of convergence to a steady state.

Keywords: adaptive random Boolean networks, GPGPU algorithm, parallel simulation

1 Introduction

One of goals of complex networks analysis is a better understanding, description and prediction
of the behavior of real-world systems. A starting point are usually simplified models that have
few parameters and are driven by random dynamics. The example of such a model is a random
Boolean network (RBN) [1, 2, 3, 4]. RBNs were initially introduced to describe gene regulatory
systems [5, 6] and due to their generic character they were also applied to other fields, e.g. to
neural or social networks [2].

An RBN is a directed network consisting of N nodes. A node i (i = 1, ..., N) has
three attributes: (a) a Boolean state σi(t) ∈ {0, 1}, (b) a sequence Ni containing all nodes
(σi1 , σi2 , . . . , σi|Ni|

) having a connection to the node i and (c) a randomly chosen Boolean func-

tion fi : {0, 1}|Ni| → {0, 1}. Note that we assume a network with no loops, that is i �∈ Ni.
Arguments of the function fi are states of the nodes from Ni. Boolean functions determine
nodes’ states in the next time step:

σi(t+ 1) = fi(σi1(t), σi2(t), . . . , σi|Ni|
(t)). (1)

35

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2016.11.006&domain=pdf

36

Parallel Simulation of Adaptive RBNs Kuvshinov, Bochenina, Górski, Ho�lyst

The function fi is randomly chosen from a set of 22
|Ni|

different Boolean functions. Taking also
into consideration all network topologies, the size of the network ensemble is enormous. That
is why RBNs are generic and despite their simplicity they can model many complex systems
[2].

We assume all the nodes are updated synchronously according to the Eq. (1). Let S(t) =
(σ1, σ2, . . . , σN)T defines a state of the whole network. Having N nodes in the network, the
network state space is 2N -dimensional. It can be huge, but it is finite. The update rule (1) is
deterministic, thus after a number of transient network states, the system will eventually reach
an attractor, i.e. a periodic orbit of S(t).

As RBNs are applied to model biological structures, it is interesting to study the evolution of
RBNs. The core of the evolution process is a constant search for the most optimal configuration
[4, 7, 8]. An RBN modification that incorporates system evolution is adaptive RBN (ARBN)
[9, 10, 11, 12]. Nodes of RBNs can be described as active or frozen. When a network reaches
its attractor then active nodes change their state, while frozen nodes keep it. The foundation
of ARBN is a natural idea that overactive nodes should be quietened down and underactive
(frozen) ones should be stimulated. This concept is included in an activity-dependent rewiring
rule (ADRR) [13], which is as follows: if the node’s mean state 〈σi〉 during the network attractor
is exactly 0 or 1, then this node is considered to be frozen and one new incoming edge is added
to this node. Otherwise, this node is considered to be active and one of its incoming edges is
randomly chosen and deleted.

A single simulation of ARBN evolution consists of an a priori-defined number of epochs. In
each epoch the network attractor is found (evolution of nodes’ states) and incoming connections
of a randomly chosen node are updated according to the ADRR (evolution of network structure).
Simulation results demonstrate [9, 12] that after a number of transient epochs, the network
topology reaches a dynamical equilibrium and oscillates around steady-state levels of mean
connectivity.

In this paper, we perform ARBN simulations with slightly modified ADRR, where more
than one node is randomly chosen. We consider larger networks containing up to 1 000 nodes.
In such structures it is difficult to find an attractor because transient and attractor lengths
grow quickly with network size. In previous works there have been only few results with such
network sizes, e.g. networks considered in the original paper [9] contained less than 400 nodes.
In our previous work that was focused on modular Boolean networks with separate ARBNs
connected by a number of interlinks [12], the maximal network size was 80 nodes.

This research is a step towards large scale simulations of ARBNs since we have designed a
new parallel algorithm capable to simulate ARBN’s evolution that includes several algorithmic
improvements and makes possible a much faster system analysis.

The remaining part of the paper is organized as follows. Section 2 gives an overview of
related works on algorithms of RBN modeling. Section 3 presents a description of algorithms
and techniques which were used to speed up simulations (including an algorithm for parallel
simulation of ARBNs). Section 4 (an experimental investigation) has two-fold purpose: (i) to
study the performance of the parallel algorithm and the influence of proposed modifications on
simulation results, and (ii) to study the dynamics of evolution of non-modular ARBNs up to
1 000 nodes.

2 Related Works

In recent years, a variety of RBNs have been extensively studied by the means of computer
simulation. Basically, an initial topology, a set of Boolean functions and an updating scheme

37

Parallel Simulation of Adaptive RBNs Kuvshinov, Bochenina, Górski, Ho�lyst

(synchronous or asynchronous) [1] are fixed. In contrast, ARBN can evolve by changing links
and/or Boolean functions of nodes. Bornholdt and Sneppen in [14] introduced an algorithm for
RBN’s evolution under the constraint of continuity. In the algorithm, a degree of a randomly
chosen node is modified only when a network with this modification reaches the same attractor
as the mother system did. Paczuski, Bassler and Corral in [15] consider nodes of RBN as
competing agents at a market. The evolution of network is maintained by a random change
of the poorest player’s strategy at each epoch of simulation. The ADRR as a mechanism for
transition to a critical state was proposed in [13] for random threshold networks and then
extended in [9] for RBNs. Both in [13] and [9] the ADRR changes a single randomly chosen
node per epoch according to its average state on the attractor.

Depending on the goal of simulation, it could be necessary to find a single attractor for a
given initial state or all the attractors of a system. Zhang et. al. in [16] propose algorithms to
find singleton attractors of RBN using gene ordering. To find a single attractor of an arbitrary
length, there are two main algorithms: Knuth’s algorithm [17] (the example of its usage for
RBN’s simulation can be found in [18]) and the algorithm described in [9] (we denote it as
Liu-Bassler). We include a brief description of these algorithms in Section 3 of this paper as
they serve as a basis for our parallel algorithm. The second category includes algorithms to
find all attractors for a given network. These algorithms are usually based on constructing a
reduced ordered binary decision diagram (ROBDD), e. g. [19], or solving satisfiability (SAT)
[20] or aggregation[21] problems. For the asynchronous update mode, there was proposed an
approach based on an exhaustive enumeration of subspaces of a network space implemented in
Inet software package [22]. Some of the algorithms of this type allow parallel implementation
(e.g. [23]). Parallelization is performed by calculating different attractors (or sets of attractors)
for the same network on different processors, and is not appropriate for ADRR having data
dependency between epochs.

Another way to speed up a simulation of RBN is to choose appropriate data types and data
structures to keep the network, and use efficient implementations of nodes’ update function. The
example of this approach can be found in [24] where authors explore high-performance data
structures and algorithms for large-scale simulations of RBNs for D programming language.
They examine the memory complexity and the performance of the RBN simulation code for
256 iterations (for networks up to 2,5 million nodes) and for 8 iterations (for networks up to 20,5
million nodes). However, the applicability of the results for ARBNs is restricted as a simulation
of an evolution of large networks becomes computationally intractable because of an enormous
number of iterations rather than a large execution time of a single iteration.

Due to the exponential slowing down by long attractor periods for initial connectivityKini ≥
2, usually it is necessary to put the restrictions on a maximum number of iterations to be
examined during a single search for the attractor (it is denoted as Tmax). In [9], Tmax was set
to 100 000, and the maximum size of a studied network was equal to 400 nodes. Increase of
a size of a network with fixed Tmax leads to skipping a significant number of the attractors.
However, the authors of [9] did not consider a percentage of attractors found, and how the
results of simulation were influenced by skipped attractors.

3 Algorithms to Speed up Simulation of ARBNs

Modeling the evolution of ARBN larger than several dozens of nodes is hampered by a signif-
icant growth of transient and attractor lengths. This growth extremely prolongs the time of
a repeated calculation of nodes’ states during search for an attractor (which is the most time
consuming part of modeling). To speed up the modeling for large ARBNs, we propose to com-

38

Parallel Simulation of Adaptive RBNs Kuvshinov, Bochenina, Górski, Ho�lyst

bine algorithms and techniques described in this Section. We use existing sequential algorithms
for attractor’s search with a limitation on a maximum number of iterations as a basis of the
parallel algorithm, and extend ADRR to support larger number of nodes to be rewired.

I. Sequential heuristics for attractor’s search. A naive implementation of an algorithm
for attractor’s search is to compare a current state S(t) to all previous states at each iteration.
This requires O(l2) time and O(l) memory where l is a sum of attractor and transient lengths.
To speed up searching for attractors in comparison with the naive implementation a number
of sequential heuristics have been proposed. These algorithms do not perform the exhaustive
comparisons of states. Here, we briefly describe and discuss two sequential algorithms which
have been used in previous studies of ARBN [9, 12]. We also use them as basic algorithms for
a parallel algorithm introduced in this paper.

Liu-Bassler algorithm. This is the algorithm that was used in the original paper introducing
ARBNs [9]. It is based on a set of checkpoints T = {T0, T1, T2, ...Tn}. If at a certain time point
t current state S(t) equals to the state at the checkpoint S(Ti), an attractor is considered to
be found, and some nodes get rewired according to the ADRR presented above. If the program
reaches the next checkpoint (except the last one), and S(t) �= S(Ti) ∀t ∈ [Ti, Ti+1), all the
information gathered between the checkpoints is discarded as it most probably corresponds
to a transient period rather than the attractor, and Ti+1 becomes the new checkpoint. The
longest attractor that can be found using this algorithm equals to the maximum distance
between the checkpoints. However, if the distance between the checkpoints is too large, more
state updates than necessary are performed. Thus, values of the checkpoints are crucial to the
overall algorithm performance and correctness.

Knuth algorithm [17]. The algorithm is based on the following observation: S(τ) = S(2τ)
if and only if τ is a multiple of an attractor length μ, i.e. τ = nμ. In order to find τ , two copies
of a Boolean network are launched, one copy performs one state update per iteration, and the
other one performs two. Then the states S(t) and S(2t) are compared, and τ is considered
to be found if they are equal. To apply ADRR, one needs to know node’s mean state on an
attractor. It can be found without determining the value of μ: mean state of the i-th node
on the attractor is 〈σi〉 =

∑t=2τ
t=τ σi(t)/τ . Having found τ it is possible to obtain the length of

the attractor by finding μ such that S(τ) = S(τ + μ). For a more detailed description of this
algorithm applied to RBNs see [18].

II. Updating states of nodes in parallel. Another way to reduce the execution time
of simulation is to parallelize calculations of nodes’ states at a particular iteration using
general-purpose computations on graphic processor units (GPGPU). In this study, we pro-
pose a GPGPU algorithm which speeds up sequential heuristics of type (I). As it does not
influence the logic of a search, this algorithm can be used in a combination with any sequential
heuristic. The main idea of the algorithm is to update states of different nodes in a network in
parallel on distinct Graphic Processor Units (GPUs). More formal description is presented in
Algorithm 1. During each of the predefined number of epochs, a network is converted into a
special representation described below. The network represented this way is then copied into
the GPU device memory along with a zero-filled stateSum vector of length N . Elements of
this vector would eventually contain node’s state sum on the attractor. As these preliminary
steps are completed, either Knuth or Liu-Bassler algorithm is launched. Both of these heuristics
require some number of state updates to be performed, which is denoted as the inner while loop

39

Parallel Simulation of Adaptive RBNs Kuvshinov, Bochenina, Górski, Ho�lyst

in Algorithm 1. After the attractor is found, the ADRR is applied and Nrew random nodes are
rewired based on the values of stateSum vector and the length of the attractor.

GenerateNetwork();
while epoch < epochsCount do

gpuNetwork ← ConvertNetworkToGpuRepresentation();
ZeroInitialize(stateSum);
CopyToGpu(gpuNetwork, currentState, stateSum);
while attractor not found do

UpdateStateOnGpu(currentState, stateSum);
end
CopyFromGpu(stateSum);
nodesToRewire ← ChooseRandomNodes(Nrew);
ActivityDependentRewiring(nodesToRewire, stateSum);
epoch ← epoch+ 1;

end
Algorithm 1: GPGPU algorithm for ARBN simulation.

The performance of the GPU implementation highly depends on the Boolean network rep-
resentation it uses. Since a node with inputs Ni has 2|Ni| possible combinations of inputs’
state, it is a common approach to store a Boolean function of the node as 1× 2|Ni| vector bi.
We can represent these vectors as N × 2max |Ni| matrix B.

Having Boolean functions stored this way, one can obtain the next state of the network
using one sparse matrix-vector multiplication (Eq. (2)) and one gather operation (Eq. (3)).
These operations are well-studied and efficient algorithms for GPGPU exist [25, 26].

v = A× S(t) (2)

σi(t+ 1) = Bi,vi+1 (3)

In these equations matrix B stores all the Boolean functions. Vector v contains proper
Boolean functions’ input numbers (vi + 1). Matrix A is an auxiliary matrix of size N × N
that is used to calculate the correct v based on current network state S(t). The matrix A is
constructed as defined in Eq. (4), (5). Value k in Eq. (4) is the index of j-th node in the
sequence Ni. The special case in Eq. (5) ensures that nodes with no in-connections do not
change their states.

Aij =

{
2k−1, if j ∈ Ni

0, otherwise
∀i �= j (4)

Aii =

{
1, if |Ni| = 0

0, otherwise
(5)

III. Limiting the number of state updates. For RBN in a critical state, lengths of
attractors and transients tend to have a power-law distribution with an exponent of -1 [27].
This implies that a number of attractors with a given length is inversely proportional to that
length, i.e. the major part of attractors have comparatively small lengths. During evolution
of ARBN, the goal is to find an attractor at each epoch, and then modify the topology of a
network according to a state of a randomly chosen node on the attractor. While searching

40

Parallel Simulation of Adaptive RBNs Kuvshinov, Bochenina, Górski, Ho�lyst

for an attractor, one can add a limitation on a maximum number of iterations which will be
examined for a single epoch. In Liu-Bassler algorithm this limitation is a part of the algorithm
itself (as it has predefined checkpoints) while in Knuth’s algorithm is can be added artificially.
The logic behind this approach is that longer attractors are rare, so the limitation can be set in
a way that will not significantly influence the dynamics of convergence to the steady state. In
this study we address the question: to what extent such a limitation influences the qualitative
results of simulation? In other words, we study how the results of ARBN evolution will differ
if we eliminate from consideration a part of longer attractors (extending the results which were
reported in [12]).

IV. Rewiring different number of nodes per epoch. Paragraphs I (heuristics for attrac-
tor’s search), II (parallel algorithm of updating the states) and III (limiting the number of state
updates) are aimed to reduce an execution time of a single epoch. The total execution time
is equal to sum of times for all epochs, and the total number of epochs should be sufficient to
reach the steady state. Therefore, another way to speed up the modeling process is to reduce
a number of epochs which is required to achieve the steady state. In this paper, we propose to
perform it by a modification of the ADRR introduced in [13]. Instead of rewiring a single node
per epoch, we suggest to use several nodes as it could speed up the convergence to a steady
state (especially for large networks) and, as a result, significantly decrease the total time of
simulation.

4 Experimental Study

The modified algorithm of ARBN evolution consists of a set of consecutive epochs. In each
epoch the network attractor is found and Nrew nodes are rewired according to the modified
ADRR. The maximum length of attractors μmax is limited ether by predefined checkpoints in
Liu-Bassler algorithm, or artificially in Knuth’s algorithm in order to speed up the computations
as described in Section 3. Due to this limitation only a fractionR of attractors are found. During
the evolution process the system reaches a dynamical equilibrium, which can be observed by
measuring network’s mean in-degree connectivityK, defined in Eq. (6). As the network evolves,
K tends to some steady-state value Kss.

K = N−1
N∑
i=1

|Ni| (6)

Intuitively, Liu-Bassler algorithm of attractor search would have shown better performance
than the Knuth’s one, as the latter requires at least 3μ state updates to find an attractor of
length μ. But in order to use Liu-Bassler algorithm one needs to choose the checkpoints cor-
rectly, which requires an a-priori knowledge of attractor and transient period distributions. This
distribution depends on a network size, connectivity and structure (e.g. modular networks tend
to have longer attractors than non-modular ones [12]). We obtained an empirical distribution
of attractor and transient lengths for different kinds of networks in our preliminary experiments
with Knuth’s algorithm. The checkpoints T = [100, 200, 1 000, 2 000, ...μmax, 2μmax] seem to be
the best trade-off between the number of state updates and the percentage of attractors found.
However, with these checkpoints the difference in the number of state updates between the two
algorithms is negligible. We used Knuth’s algorithm in most of our experiments, as it is more
general and requires no a-priori knowledge of the network’s behavior.

41

Parallel Simulation of Adaptive RBNs Kuvshinov, Bochenina, Górski, Ho�lyst

We implemented the algorithm for parallel ARBN simulation, which supports both Liu-
Bassler and Knuth’s algorithms of attractor search. We used C++ programming language
with CUDA extension. The implementation is cross-platform and requires a GPU with CUDA
compute capability (version) at least 1.2. We chose compressed sparse-row (CSR) matrix storage
format to store matrix A from Eq. (2) and implemented a sparse matrix-vector multiplication
kernel as described in [25]. Our implementation assigns one thread per matrix row, and each
thread computes the sparse dot product between the matrix row and vector S(t). This approach
suffers from non-coalesced memory access, but according to [25] it shows the best performance
on unstructured matrices with low number of non-zero elements. The gather operation (3) is
implemented within the same kernel to eliminate the latency between the kernel calls, since this
latency significantly affects the performance.

To test the applicability of the approaches presented in Section 3, a set of experiments was
performed. The experiments were conducted on a hybrid cluster consisting of 20 nodes with
NVidia GeForce GT 640 graphic cards. In this study we considered only the networks with
initial in-degree connectivity Kini = 2. The results were averaged over 10 realizations of the
evolution process. Each realization was launched on a separate node.

Speedup obtained by GPU acceleration. We measured the execution times of both se-
quential and parallel versions of state updates. We used Liu-Bassler algorithm with checkpoints
T = {100, 200, 1 000, 2 000, ..., 107, 2 · 107}, μmax = 107. To decrease the number of random
samples required to compare the versions, we did not stop the epoch as soon as an attractor
was found. Instead, we performed all 2 · 107 state updates per epoch. Such simulation corre-
sponds to the worst-case scenario when no attractors were found, i. e. R = 0%. The results
presented in Figure 1 indicate that the GPU implementation is more efficient than the serial
one for networks consisting of more than 200 nodes. For smaller networks, however, the serial
version shows better performance due to the GPU kernel launch overhead. Thus, implementing
a multi-threaded CPU version could also be useful for studying ARBNs.

Figure 1: Execution time of the GPU algo-
rithm compared to the sequential one.

Figure 2: Evolution of mean connectivity K
for different number of rewired nodes Nrew;
N = 1 000.

Rewiring more than one node per epoch. In order to determine how Nrew influences the
rate of convergence to a dynamical equilibrium, we performed 1 000 epochs of evolution with

42

Parallel Simulation of Adaptive RBNs Kuvshinov, Bochenina, Górski, Ho�lyst

N = 1 000 and Nrew ∈ [1, 5]. The results of these simulations are shown in Figure 2. With
increased value of Nrew mean connectivity grows faster and the system reaches steady state at
approximately 500th epoch for Nrew = 5. Therefore, we conclude that by rewiring Nrew > 1
nodes per epoch one can lower the number of epochs required to reach steady state. We limited
the attractor length to μmax = 107. In these experiments and in all the experiments presented
below we used Knuth algorithm, as it does not require tuning of the checkpoint values.

Limiting the maximum attractor length. Introducing a limit on attractor length leads
to a situation when an attractor can not be found. In these cases Nrew nodes are rewired
according to their activity during the last μmax state updates. These states can belong either
to a transient period or to an attractor. However, results of our experiments, presented in
Tables 1, 2, indicate that low percentage of attractors found does not influence the steady-state
connectivity obtained as a result of the evolution process.

Nodes count
μmax 100 200 300 500 750
5 · 104 99.77 88.19 71.19 45.48 29.62

2.5 · 105 99.99 95.92 81.24 56.10 35.96
5 · 105 100.00 97.43 86.58 59.36 38.73

2.5 · 106 100.00 99.14 92.99 68.74 46.46
5 · 106 100.00 99.53 94.40 73.00 49.22
1 · 107 100.00 99.75 96.08 77.73 53.81

Table 1: Percentage of attractors found R for
different network sizes N and maximum attrac-
tor length μmax.

Nodes count
μmax 100 200 300 500 750
5 · 104 2.64 2.59 2.58 2.52 2.47

2.5 · 105 2.66 2.60 2.56 2.51 2.48
5 · 105 2.68 2.59 2.55 2.51 2.48

2.5 · 106 2.69 2.60 2.55 2.51 2.48
5 · 106 2.69 2.59 2.55 2.52 2.48
1 · 107 2.68 2.62 2.55 2.51 2.48

Table 2: Steady-state connectivity Kss for
different network sizes N and maximum at-
tractor length μmax.

Using the approaches discussed above we were able to perform simulations on networks
consisting of up to 1 000 nodes. Figure 3 shows the evolution of mean in-degree connectivity.
The steady-state connectivity Kss decreases with growth of N , which corresponds to the results
obtained in [9]. The empirical distribution of attractor lengths for networks in steady state is
shown in Figure 4. Attractors seem to have a power-law distribution as described in [9]. The
peaks near μ = 107 are caused by the limit of the attractor length μmax = 107.

5 Conclusion

The enormous size of RBN ensemble makes them appropriate to model various complex systems
but it raises also significant challenges for their numerical investigation. Even a problem of
search for a single attractor of RBN is computationally hard for networks larger than several
dozens of nodes because of an exponential growth of the number of iterations with an increase
of a network size.

Finding an attractor for RBN with a given initial state is a basic operation performed
for ARBN which change their topology using information about the activity of nodes on the
attractor. In this study, we propose a parallel algorithm for GPGPU to speed up simulation
of ARBNs which can be used with different sequential algorithms for attractor’s search. In
addition to updating states for distinct nodes in parallel, we use modified activity-dependent
rewiring rule to reduce the number of epochs required for a single run.

Using the algorithm, we performed simulation of networks up to 1 000 nodes on a hybrid
cluster with NVidia graphic cards. The parallel algorithm demonstrates the increasing perfor-

43

Parallel Simulation of Adaptive RBNs Kuvshinov, Bochenina, Górski, Ho�lyst

Figure 3: Evolution of mean network connec-
tivity K for different network sizes N .

Figure 4: Empirical distribution of steady-
state attractor lengths for different network
sizes N .

mance during a growth of a network size (for 1000-node network it is approximately 8 times
faster than a sequential one). However the communication between CPU and GPU affects
the performance. Thus, the simulation of ARBNs on systems with shared memory could also
benefit from introducing a multi-threaded CPU version. Furthermore, our results show that
the proposed modification of the rewiring rule allows to reduce the number of epochs needed
to reach a steady state making calculations less time-consumable. We also present the results
for a percentage of attractors found for different combinations of network sizes and maximum
number of iterations examined during search for a single attractor. These values together with
the results of the mean steady-state connectivity can be used to choose the most appropriate
values of checkpoints in the sequential algorithms of attractor’s search.

6 Acknowledgements

This paper is financially supported by The Russian Scientific Foundation, Agreement #14-21-
00137 (15.08.2014). J.A.H. has been partially supported by the Russian Scientific Foundation,
proposal #14-21-00137.

References

[1] Carlos Gershenson. Introduction to Random Boolean Networks. In Workshop and Tutorial Pro-
ceedings, Ninth International Conference on the Simulation and Synthesis of Living Systems (ALife
IX, pages 160–173, 2004.

[2] Barbara Drossel. Random boolean networks. Rev. Nonlinear Dyn. Complex., 1:69–110, 2008.

[3] Daizhan Cheng, Hongsheng Qi, and Zhiqiang Li. Random Boolean Networks. In Analysis and
control of Boolean networks: a semi-tensor product approach, pages 431–450. Springer London,
2011.

[4] Maximino Aldana, Susan Coppersmith, and Leo P Kadanoff. Boolean dynamics with random
couplings. In Perspectives and Problems in Nolinear Science, pages 23–89. Springer, 2003.

[5] Stuart A Kauffman. Metabolic stability and epigenesis in randomly constructed genetic nets.
Journal of theoretical biology, 22(3):437–467, 1969.

44

Parallel Simulation of Adaptive RBNs Kuvshinov, Bochenina, Górski, Ho�lyst

[6] Stuart Kauffman. The ensemble approach to understand genetic regulatory networks. Phys. A,
340(4):733–740, 2004.

[7] Ricard V Solé and Susanna C Manrubia. Extinction and self-organized criticality in a model of
large-scale evolution. Physical Review E, 54(1):R42, 1996.

[8] Mart́ın G Zimmermann, Vı́ctor M Egúıluz, and Maxi San Miguel. Coevolution of dynamical states
and interactions in dynamic networks. Physical Review E, 69(6):65102, 2004.

[9] Min Liu and Kevin E Bassler. Emergent criticality from coevolution in random boolean networks.
Phys. Rev. E, 74(4):41910, 2006.

[10] Thimo Rohlf and Stefan Bornholdt. Self-organized criticality and adaptation in discrete dynamical
networks. In Adaptive Networks, pages 73–106. Springer, 2009.

[11] Taichi Haruna and Sayaka Tanaka. On the Relationship between Local Rewiring Rules and Sta-
tionary Out-degree Distributions in Adaptive Random Boolean Network Models. In ALIFE 14:
The Fourteenth Conference on the Synthesis and Simulation of Living Systems, volume 14, pages
420–426, 2014.

[12] P. J. Górski, A. Czaplicka, and J. A. Ho�lyst. Coevolution of information processing and topology
in hierarchical adaptive random Boolean networks. European Physical Journal B, 89(2):1–9, 2016.

[13] Stefan Bornholdt and Thimo Rohlf. Topological evolution of dynamical networks: Global criticality
from local dynamics. Phys. Rev. Lett., 84(26):6114, 2000.

[14] Stefan Bornholdt and Kim Sneppen. Neutral mutations and punctuated equilibrium in evolving
genetic networks. Physical Review Letters, 81(1):236, 1998.

[15] Maya Paczuski, Kevin E Bassler, and Álvaro Corral. Self-organized networks of competing boolean
agents. Physical Review Letters, 84(14):3185, 2000.

[16] Shu-Qin Zhang, Morihiro Hayashida, Tatsuya Akutsu, Wai-Ki Ching, and Michael K Ng. Algo-
rithms for finding small attractors in boolean networks. EURASIP Journal on Bioinformatics and
Systems Biology, 2007(1):1–13, 2007.

[17] DE Knuth. The art of computer programming vol. 2: Seminumerical methods, 1981.

[18] Amartya Bhattacharjya and Shoudan Liang. Median attractor and transients in random boolean
nets. Physica D: Nonlinear Phenomena, 95(1):29–34, 1996.

[19] A. Garg, I. Xenarios, L. Mendoza, and G. DeMicheli. An efficient method for dynamic analysis
of gene regulatory networks and in silico gene perturbation experiments. In Annual International
Conference on Research in Computational Molecular Biology, pages 62–76. Springer, 2007.

[20] Elena Dubrova and Maxim Teslenko. A sat-based algorithm for finding attractors in syn-
chronous boolean networks. IEEE/ACM Transactions on Computational Biology and Bioinfor-
matics (TCBB), 8(5):1393–1399, 2011.

[21] Yin Zhao, Jongrae Kim, and Maurizio Filippone. Aggregation algorithm towards large-scale
boolean network analysis. IEEE Transactions on Automatic Control, 58(8):1976–1985, 2013.

[22] N. Berntenis and M. Ebeling. Detection of attractors of large boolean networks via exhaustive
enumeration of appropriate subspaces of the state space. BMC bioinformatics, 14(1):1, 2013.

[23] Wensheng Guo, Guowu Yang, Wei Wu, Lei He, and Mingyu Sun. A parallel attractor finding
algorithm based on boolean satisfiability for genetic regulatory networks. PloS one, 9(4):e94258,
2014.

[24] KA Hawick, HA James, and CJ Scogings. Simulating large random boolean networks. 2007.

[25] Nathan Bell and Michael Garland. Efficient sparse matrix-vector multiplication on cuda. Technical
report, Nvidia Technical Report NVR-2008-004, Nvidia Corporation, 2008.

[26] Bingsheng He, Naga K Govindaraju, Qiong Luo, and Burton Smith. Efficient gather and scatter
operations on graphics processors. In Proceedings of the 2007 ACM/IEEE conference on Super-
computing, page 46. ACM, 2007.

[27] Florian Greil and Kevin E Bassler. Attractor period distribution for critical boolean networks.
arXiv preprint arXiv:0911.2481, 2009.

