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a b s t r a c t 

High frequency psychophysiological data create a challenge for quantitative modeling based on Big Data 

tools since they reflect the complexity of processes taking place in human body and its responses to 

external events. Here we present studies of fluctuations in facial electromyography (fEMG) and electro- 

dermal activity (EDA) massive time series and changes of such signals in the course of emotional stimu- 

lation. Zygomaticus major (ZYG; “smiling” muscle) activity, corrugator supercilii (COR; “frowning” muscle) 

activity, and phasic skin conductance (PHSC; sweating) levels of 65 participants were recorded during 

experiments that involved exposure to emotional stimuli (i.e., IAPS images, reading and writing messages 

on an artificial online discussion board). Temporal Taylor’s fluctuations scaling were found when signals 

for various participants and during various types of emotional events were compared. Values of scaling 

exponents were close to one, suggesting an external origin of system dynamics and/or strong interac- 

tions between system’s basic elements (e.g., muscle fibres). Our statistical analysis shows that the scaling 

exponents enable identification of high valence and arousal levels in ZYG and COR signals. 

© 2016 Elsevier Ltd. All rights reserved. 
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. Introduction 

Easy access to massive amounts of high frequency data about

umans — their health [1,2] and their responses (also remote) [3–

] — is an important fruit of the so-called Big data science [7–9] .

n this scope psychophysiological information that can be trans-

ormed into undisputed facts/relations concerning our vitals or-

ans [10] is of utmost importance. 

In 1961, ecologist Lionel Roy Taylor published his famous pa-

er [11] in which he reported a power-law relation between a

ample variance of density and a mean density of a sample of

everal species in a study area. The data was taken from observa-

ions of many species, e.g., various kinds of larvae, worms, sym-

hylas, macro-zooplankton, shellfish, etc. Taylor was considering

he scaling exponents as a universal measure for aggregation of

opulation abundance. In his opinion [11] , the strong aggregation

hould correspond to a larger scaling exponent, and it should be a
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esult of mutual attractions between individuals belonging to a

iven species. Mutual repulsion should result in lowering of spa-

ial dispersion and in lowering of the scaling exponent. 

In fact, a similar scaling law was found already in 1938 by

tatistician H. Fairfield Smith who described it in the (often for-

otten) paper [12] entitled An empirical law describing heterogeneity

n the yields of agricultural crops . Smith compared yields of wheat,

aize, sorghum, mangolds and potatoes from different areas and

ound that the regression of the logarithms of the variances for plots

f different areas on the logarithms of their areas was approximately

inear [12] . Slopes of the regression curve (we call them scaling ex-

onents) varied from crop to crop and even from one plant’s region

o another. However, they were always smaller than a value re-

eived for uncorrelated plants and Smith connected a specific value

f regression slope with the crop heterogeneity. 

It is likely that the first observation of the power-law rela-

ion between between a mean and a variance was found by Bliss

13] who studied variations in populations density of Japanese bee-

le larvae in 1941 1 . 
1 We are thankful to an anonymous Referee for suggesting us this reference. 
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2 Let us note that for the ensemble fluctuation scaling there are i.i.d. processes 

with skewed distributions that can lead to other values of the parameter α, see 

[29] 
In general, Taylor’s theorem leads to relating the standard devi-

ation of an additive variable with its mean value in similar systems

as: σ i ∝〈 f i 〉 α where σ i – a standard deviation of a given additive

value for i -th subsystem, 〈 f i 〉 – a mean of the value. If the scaling

exists then the value of the exponent α allows to infer about un-

derlying dynamics of the analyzed system by comparing the results

with a behavior of agent-based models or stochastic dynamics

[14–16] . 

Studies of Smith and Taylor were devoted to observations of

variance between samples of some yields, or number of some an-

imals occupying different areas of the same surface. The proposed

relationship was later confirmed in several other empirical studies

in ecology (see for example Ref. [17,18] ), life sciences (e.g., scaling

of cell numbers in representatives of a given species [19] ), astro-

physics [20] , company growth rates [21] or the stock market [14] .

For more examples and for theoretical models that try to explain

the power law between the variance and the mean see, e.g., review

papers [14,22] . 

The above mentioned empirical studies considered so-called en-

semble fluctuations scaling (EFS) since variances were calculated

over an ensemble of samples (subsystems) belonging to the same

class (usually the class was labeled by a given surface of samples).

EFS can be called also a spatial Taylor’s law since in ecology it

shows how populations vary in spatial aggregation as a function

of their average size. It means points at the scaling plot are de-

scribed by means and variances of a set of spatially distinct loca-

tions within a population. 

There is also another kind of scaling called temporal fluctuations

scaling that, in ecological systems, relates the variability of popula-

tions time-series to their mean [23] . In such a case, each point at

the scaling plot corresponds to a mean and a variance of a single

population time series. This kind of scaling was also observed in

many natural and man-made systems [14] , including various kind

of networks such as internet routers, river networks, highways net-

works or World Wide Web [24] . 

As far as we know at the moment there is no common agree-

ment on reasons of observed Taylor’s scaling and there are sev-

eral theories trying to explain this effect. Tem poral scaling in

ecology can be for example results of environmental and de-

mographic stochasticity [25,26] or interspecific competition [27] .

There are also attempts to find domain-independent general roots

of the Taylor’s scaling, e.g., in probabilistic models known as the

Tweedie exponential dispersion models that follow from central-

limit-theorem-like theorem [28] or i.i.d. processes with skewed

distributions [29] . 

A natural question is whether the origin of the observed tem-

poral fluctuations and the scaling law is an effect of a stochas-

tic external driving force or the randomness of complex system

internal dynamics [14,23] . In [16] , it was suggested that one can

separate both contributions and estimate the ratio of internal in-

teractions between the systems components and the influence of

external perturbations. Studies of temporal scaling for fluctuations

of traded values at NYSE and NASDAQ stock markets [14,30] have

shown that the scaling exponent strongly depends on the length of

the time window where the variability was observed, and this de-

pendence can provide information about correlations taking place

in the system in different time scales [14,23] . Comparative inves-

tigations of fluctuations scaling of quotation activity at an on-

line foreign exchange market (Forex) are presented in [31] and

[32] . Theoretical studies aiming to build agent-based models ex-

plaining the temporal scaling can be found, e.g., in [15] or [33] ,

where various kinds of network topology and random walks were

considered. 

The main focus of this paper is to study high frequency

fluctuations in facial electromyography (fEMG) and electrodermal

activity (EDA) time series in the course of various emotional
timulation episodes. Our goal is to check if biological subsystems

ensitive to human emotions, i.e., facial muscles responsible for

miling ( zygomaticus major ) and frowning ( corrugator supercilii ) ex-

ressions [34] , and skin sweat glands (their activity can be asso-

iated with a human’s arousal [35] ) follow the temporal Taylor’s

caling. Mean values and variances of the signals during visual

motional stimulation have been calculated in time windows of

ifferent sizes. To the best of our knowledge, the presence of such

 scaling was never reported for psychophysiological signals. The

hallenge is to distinguish between various human emotions using

bservations of the temporal scaling of Taylor’s law. 

. Description of temporal Taylor’s fluctuation scaling 

In the present paper, we will consider temporal Taylor’s scaling

14–16,23,24,33] . Let f i, t be a positive variable f i, t describing an ad-

itive measure of a given activity of the object i at time moment

 . Examples of such activities can be data packages coming to a

outer, or visits of a web page or activated muscle fibers. Let the

otal number of elements in time series of this activity be T , i.e.,

 = 1 , 2 , 3 , . . . , T (further we will assume that T is the same for all

bjects i ). Let us divide the series into Q windows of size �, i.e.,

� = T . The quantity [ f 
(q, �) 
i 

] stands for a cumulative value of the

ariable f i in a window of the size � ( q = 1 , 2 , 3 , . . . , Q is the win-

ow’s label) and (σ (�) 
i 

) 2 is a variance of this cumulative variable

n the whole data series. Then we have 

(σ (�) 
i 

) 2 = 

〈
[ f (q, �) 

i 
] 2 

〉
−

〈
[ f (q, �) 

i 
] 
〉2 

(1)

ere 

[ f (q, �) 
i 

] 
〉
= 

1 

Q 

Q ∑ 

q =1 

q �∑ 

t=(q −1)�+1 

f i,t = �

∑ T 
t=1 f i,t 

T 
(2)

nd 

[ f q, �
i 

] 2 
〉
= 

1 

Q 

Q ∑ 

q =1 

( 

q �∑ 

t=(q −1)�+1 

f i,t 

) 2 

(3)

hen the window � is kept constant for all objects i belonging to

 given system (e.g., a network of Internet routers or WWW) then

aylor’s scaling means 

(�) 
i 

∝ 

〈
[ f q, �

i 
] 
〉α(�) 

. (4)

The value of the exponent α( �) can be dependent on the win-

ow size � [14,33] , and such a dependence can bring some ad-

itional information on dynamics of constituents forming a con-

idered system. The case α(�) = 1 / 2 can correspond to a system

onsisting of mutually independent elements as in the case of the

deal gas or for random processes obeying the Central Limit The-

rem 

2 . This value can also be observed when the variable f i cor-

esponds to a number of some events (e.g., data packages com-

ng to a given node i ) and when the time window � is so short

hat it is very unlikely that more than two events can emerge in

 single window [14] . Larger values of the exponent α( �) can cor-

espond to a larger degree of synchronization of elements form-

ng the system and a set of completely synchronized elements dis-

lays scaling α(�) = 1 . Let us stress that synchronization in eco-

ogical systems is frequently observed, see e.g., coupling of trees

eproduction cycles via pollen exchange [36,37] . A similar situa-

ion takes place when a system is driven by an external force,

or example when populations of separated groups of animals are
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Fig. 1. Graphic representation of the sequence of the main experimental blocs of the study. The arrows indicate randomizations of blocks between participants. “Relax- 

ation/baseline” – participants were asked to relax for 3 minutes; “IAPS 1” and “IAPS 2” – two rounds of IAPS images presentation, four images in each round, sequence for 

each image: 2 s of blank image, 6 s of IAPS exposition, emotion questionnaire; “post new thread”/“post reply” – parts of experiment not related to the study; “paper-and- 

pencil” – final questionnaire regarding demographics (not used in the study). 
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ynchronized by weather conditions [38] or by other environmen-

al influences [39] . 

A possible explanation of exponents α( �) > 1 can be provided

n several ways, e.g., by Tweedie distributions and impact inhomo-

eneity [14] . Bar-Lev and Enis have proved [40] that such expo-

ents can be also observed when the activity f i, t is governed by so-

alled stable distributions with characteristic exponents between 0

nd 1. 

Observations of Taylor’s scaling should not be confused

ith Detrended Fluctuation Analysis (DFA) [41] and other ap-

roaches [42,43] used to quantify long-range power-law correla-

ions in various signals [44] including psychophysiological data re-

ated to emotional states [45–49] . Let us stress then while the DFA

ramework uses a single time series the Taylor’s scaling approach

escribes properties of a set of similar objects (even when they are

ndependent). It follows that the exponent α′ of DFA scaling and

he exponent α( �) of Taylor’s scaling defined in Eq. (4) are not the

ame although there exists a relation between their derivatives 

d α′ 
d( log 〈 f i 〉 ) ∼

d α(�) 

d log �

here 〈 f i 〉 is the mean value of the analyzed signal. For a deriva-

ion of the relation and more information - see Ref. [14] . 

. Data 

Our data were gathered during an experiment conducted at Ja-

obs University Bremen, Germany. There were 65 participants (30

emale; mean age = 20.4 years; standard deviation in the sample

 1.9) that were subjected to emotional stimuli – pictures from

he International Affective Picture System (IAPS) [50] and forums

see Fig. 1 for schematic representation of the experiment). During

he course of the experiment, participants’ fEMG ( corrugator super-

ilii, zygomaticus major ) was recorded with the sampling frequency

s = 2 kHz , using the BIOPAC MP150 amplifier system (Biopac Sys-

ems, Inc., Santa Barbara, CA), and signal amplitudes ( μV) were

mplified with a gain factor of 50 0 0. EDA (left and right foot skin

onductance) was recorded with the same system at a rate of

00Hz, and an amplification of 5 μS/V. Corrugator supercilii refers

o the main facial muscles controlling eyebrow movements, such as

rowning; zygomaticus major refers to the facial muscles primarily

esponsible for raising lip corners in smiling. Markers were placed

n the time series to allow identification of an event taking place

t a given time. The total volume of the considered dataset was

round 25 GB. 

Emotions elicited during IAPS image presentations were scored

y the participants in questionnaires with three questions asking

eparately about experienced positive, negative emotion and arousal

n Likert-type scales from 1 to 7. The basis for this assessment

as a dimensional theory of emotions that focuses on “single sim-

le feelings” [51] , i.e., “Core Affect” that can be represented, or

apped, onto only two or three core dimensions [52] , whereas
ther emotion theories such Ekman’s Neurocultural Theory [53] dis-

inguish a small number of categorically distinct emotions such as

nger, fear, sadness, happiness, disgust, or surprise. One of the ba-

ic assumptions of dimensional models is that valence and arousal

re primary and automatically perceived, whereas categories are

nly perceived at a secondary stage [54] . In this sense, valence and

rousal are conceptualized as “Core Affect” in this type of emotion

heory in order to emphasize this distinction. Two-dimensional

odels of two orthogonal bipolar dimensions have been a tra-

itional structure in dimensional models of emotion [51,55,56] .

mong these two-dimensional models, valence and arousal have

een used very frequently [57] , although variants have, e.g., sug-

ested additional (sub-)dimensions for arousal/activation [58] or

alence [59] . Valence reflects the emotional sign (pleasure vs. dis-

leasure) whereas arousal indicates a state of activation (activation

s. deactivation). While both dimensions are generally assumed to

e essentially orthogonal to one another [51,55,56] , there is some

vidence that suggests a weak V -shaped relationship between

rousal and valence [60] . However, the same research [60] simul-

aneously highlights a large individual variation as well as the pos-

ibility of different types of context-dependent relations between

oth measures, thereby questioning the existence of a lawful re-

ation between both variables. It therefore remains useful to ana-

yze both variables separately. Coordinates in the resulting valence

nd arousal space can further be projected back, with some limita-

ions, onto higher-dimensional discrete emotions models [55] , e.g.,

ear (negative and aroused), sad (negative and not aroused) etc..

owever, the use of a dimensional Core Affect structure as such

oes not require this translation, and has been argued to com-

lement rather than compete with categorical structures [51] . In

his study, arousal was scored using corresponding question in a

uestionnaire (1 ≤ a ≤ 7), and positive and negative emotion sub-

cales were merged and transformed into one value for valence

 v = 4 + 

1 
2 (positi v e − negati v e ) ; 1 ≤ v ≤ 7). There were 19 IAPS im-

ges shown to each participant. Each presentation lasted for 6 sec-

nds and was preceded by two seconds of baseline and followed

y an emotional questionnaire. The order of images within each

APS set as well as the order of positive and negative trials (both in

he post new thread and in the post reply sections) was varied ran-

omly between participants. To avoid statistical effects in the phys-

ological data that were due to fixed sequence of the stimuli, the

rder of both IAPS sets was furthermore randomized between par-

icipants and so was the order in which the post new thread and

n the post reply sections were presented. The sequence of main

xperimental blocks is presented schematically in Fig. 1 . The se-

uence of events (reading of a post/ thinking about topic, contem-

lating the topic, writing of a post, baselines for physiological and

ubjective ratings, and subjective ratings of valence and arousal)

ithin each block was always fixed and did not vary between or

ithin participants. The whole experiment (involving forum activ-

ties) usually took about 30–40 minutes. 
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Fig. 2. Example of signals’ responses to an emotional stimulus (IAPS 6260); colors indicate current event – brown - introduction to IAPS demonstration, green - baseline, 

dark blue - stimulus presentation. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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(  
Main analyses were carried out using MATLAB 

®[61] , the data

were stored in a PostgreSQL database. The statistical analysis of ex-

ponent comparison was performed using R language [62] . 

4. Signals characteristics 

4.1. Facial electromyography 

Facial electromyography (fEMG) is a well established method

for the measurement of facial activity, including facial muscle ac-

tivity associated with emotional valence [63] . In the present study,

this measurement focused on activation over two sites of facial

muscles. Corrugator supercilii (COR; exemplary response to a stim-

ulus - see Fig. 2 a) muscle activity is exhibited when frowning, and

shows a negative linear correlation with valence of experienced

emotion – less activity in response toward more pleasant stimuli;

activity at the zygomaticus major (ZYG; exemplary response to a

stimulus - see Fig. 2 b) muscle site is associated with smiling, and

a quadratic effect of valence (i.e., highest activities are obtained

for extreme emotions) [34] . One cannot exactly map the activity

of the muscles with corresponding emotions or even facial expres-

sions, because of the variety of uses of these muscles (e.g., during

speech), as well as their role in social interactions including, e.g.,

polite smiling that does not express an intense internal emotional

state as such. However, in the conditions of controlled laboratory

experiments such as the present research, facial activity unrelated

to emotions is occasional and can be regarded as error variance

across comparable conditions of emotional stimulation. 

All analyses were performed using raw signals because any

smoothing or filtering would cause a loss of information about sig-

nal fluctuations. 

The COR and ZYG signals are somewhat similar due to their ori-

gin, namely muscle activity. They differ in that COR is bilaterally

innervated as opposed to a greater contralateral innervation of ZYG

[64] . 

4.2. Electrodermal activity 

Electrodermal activity (EDA), or skin conductance (SC) analyses

are based on Galvanic skin responses, i.e., changes in the electri-

cal conductivity of the skin that are most typically recorded at

the subject’s hands (palmar) or feet (plantar) [65] . As has been

known already since the late 1920s [66,67] , these changes are re-

lated to the opening and closing of sweat glands in the skin that

produce sweating, which in turn is known to be related to arousal
65,67,68] . These changes in phasic EDA can be caused by experi-

ncing an emotion (such as being exposed to various visual stim-

li) [35] . More specifically, both tonic changes in skin conductance

evel (SCL) as well as phasic skin conductance responses (SCRs) have

requently been used in the literature as indicators of sympathetic

motional arousal [65] . The tonic part of the signal reflects a slowly

hanging global trend that is not directly in response to short-

erm visual stimulation, and therefore was not used for the present

uctuation-dissipation analyses. The phasic part is a so-called rapid

hanging factor. SCRs are a type of phasic response that are widely

sed in scoring event-related arousal exhibited by experimental

ubjects. SCRs are typically defined within the psychophysiological

iterature [67] as requiring a certain minimum amplitude of peak

uch as 0.01-0.05 μS (microsiemenses – unit of electric conduc-

ance). In addition, event-related SCRs must occur within a specific

ime window (e.g., 1-4 s latency) in order to qualify as likely re-

ated to an external event, whereas non-specific SCRs (NS-SCRs)

an occur at any time during the recording. SCRs will subsequently

e referred to simply as phasic SC (PHSC; exemplary response to a

timulus - see Fig. 2 c). In the study, we analyzed only 6 seconds

ntervals of stimuli presentation thus we assume that all observed

eaks were event related. 

The present research involved a bilateral plantar recording of

DA, i.e., from the subjects’ feet. As opposed to so-called non-

almar non-plantar sites [65] , an adequate recording at this site

s non-controversial since it has been shown to exhibit good mea-

urement properties and is to be preferred over recordings from,

.g., the wrist, which is more affected by thermoregulation [65] .

almar recording sites (i.e., at the palms or fingers) are even

ore typical for laboratory measurements of EDA. However, in the

resent study, participants had to type on a keyboard during the

xperiment. This would have resulted in substantial movement ar-

ifacts for a palmar measure. The plantar recording sites greatly

inimized this issue, and further allowed a bilateral recording, al-

owing a validation of the recording quality in the event of any

emaining movement artefacts. However, no significant intraindi-

idual differences between left and right foot EDA signals were ob-

erved (mean Pearson correlation coefficient = 0.97; standard devi-

tion in the population = 0.02). Unless stated otherwise, the right

oot SCL signal was analyzed. 

. Results 

We are interested in quantifying temporal fluctuation scaling

TFS) for time series obtained by facial electromyography (two sets:



J. Chołoniewski et al. / Chaos, Solitons and Fractals 90 (2016) 91–100 95 

Fig. 3. Temporal fluctuation scaling for the whole signals with � = 1 /νs = 0 . 0 0 05s . Standard deviation as a function of the mean values of signals; each point represents 

a signal of one participant; least squares linear regression was applied to log-log data ( y = ax b ⇒ log y = log a + b log x ); errors are standard errors obtained using the least 

squares method. 
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Table 1 

Results of the analysis of covariance (ANCOVA) for different signals and different 

time windows �. The following significance codes to express p-values p of the AN- 

COVA F -test are used: ∗∗∗ for p < 0.0 01, ∗∗ for 0.0 01 < p < 0.01, ∗ for 0.01 < p < 

0.05, . for 0.05 < p < 0.1 and empty space for p > 0.1. 

Signal/ �[s] 0 .005 0 .01 0 .02 0 .04 0 .09 0 .18 0 .36 0 .74 1 .51 

ZYG v ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗ ∗∗∗ ∗∗∗

ZYG a . ∗ ∗ ∗ . . 

COR v . ∗ ∗ . . 

COR a ∗ ∗ ∗∗

PHSC v 

PHSC a ∗ ∗∗ ∗ ∗∗ ∗ . ∗∗
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ggregated activity of COR and ZYG muscles separately) and elec-

rodermal activity (one set: aggregated effect from sweat glands —

HSC). Our first analysis concerns the whole signal, i.e., a complete

ime series acquired during the experiment that include, inter alia,

pisodes of emotional simulations with IAPS images. In the second

tage, we try to use additional data to separate series connected to

pecific levels of emotions (valence/arousal levels). The third and

ast set of results contains an analysis of the windows size influ-

nce on the obtained scaling exponents. 

.1. Taylor’s scaling 

Fig. 3 presents a scatter plot of standard deviation versus mean

haracteristics for all the participants and different signals — COR

 Fig. 3 a), ZYG ( Fig. 3 b) and PHSC ( Fig. 3 c). When considering a

ime series for the whole experiment, one has to realize that the

ach participant experiences different kinds and magnitudes of

timulation. It follows that the measured variances originate not

nly from fast fluctuations of muscle activity or skin conductance

ut also from passing through several emotional states induced

y different types of IAPS images. Nonetheless, for all the men-

ioned signals we are able to observe Taylor’s scaling character-

zed by exponents (values shown with standard error), respectively

COR = 0 . 89 ± 0 . 05 (goodness of fit: R 2 = 0 . 83 ), αZYG = 1 . 03 ± 0 . 09

 R 2 = 0 . 68 ) and αPHSC = 0 . 86 ± 0 . 07 ( R 2 = 0 . 86 ) that are signifi-

antly higher than α = 0 . 5 . Such results might suggest a partial

ynchronization of elements which contribute to the value of the

ignal. 

.2. Separation of specific emotions 

In addition to raw time series the dataset contains also informa-

ion about participants’ answers included in the emotional ques-

ionnaires. We further assume that those answers reflect emotional

tate of participant, and that they are comparable between par-

icipants (the same scores given by different participants describe

imilar emotion). Owing to the set of markers that had been placed

n the time series (see Section 3 ) we were able to divide the signals

onnected to each participant and IAPS image into groups of short

six seconds — time of IAPS exposition) time subseries related to

ifferent emotional states. Such a setting gives us an opportunity

o check if the fluctuation scaling exponents characterize each of
he states and if they can be distinguished basing on them. In or-

er to conduct this analysis one also needs to address the choice of

he time window size �. The plots shown in Fig. 3 were obtained

sing the smallest possible time window, i.e., � = ν−1 
s = 0 . 0 0 05s ,

here νs = 2 kHz is the sampling frequency. Knowing that the size

f time window might influence the results, an analysis with ag-

regation for each IAPS–participant pair with a given score was

erformed using different � in order to find one which should

llow to distinguish between emotions. The values of � ranging

rom 5 ms (minimum of 10 samples per window) to 1.5s (mini-

um of 4 full windows per IAPS-participant pair) were considered.

To address the above presented issues we performed analysis

f covariance (ANCOVA) for each signal and each observation win-

ow size �. In this way we are able to check if the interaction

erm (average × level of valence/arousal) is statistically significant,

hich in turn allows us to test the hypothesis of equal slopes ( α
xponents) for different values of valence/arousal. The results of

he analysis are presented in Table 1 leading to two instant conclu-

ions for valence levels: (i) there is a strong difference among the

caling exponents for ZYG signal and (ii) there is no statistical dif-

erence among the scaling exponents in PHSC signal. For COR sig-

al we observe a mixed effect. In the case of arousal the interpre-

ation is also far from being straightforward: arousal levels seem

o distinguishable for the majority of � windows in PHSC signal,

hile in case of COR the difference is seen only for large �. Op-

osite to that there is some mild statistical evidence that arousal

evels can be distinguished for small � in ZYG signal. The win-

ow sizes which yield the highest significance ( � = 0 . 04s for ZYG

nd PHSC, � = 0 . 36s for COR) were used in the next part of the



96 J. Chołoniewski et al. / Chaos, Solitons and Fractals 90 (2016) 91–100 

Fig. 4. Results of temporal fluctuation measured for ZYG by standard deviations as functions of mean values of this signal during IAPS stimulation. Different colors correspond 

to specific values of IAPS emotional (left) valence score, from very negative emotions ( v = 1 - light green) to very positive ( v = 7 , dark red) ones, (right) arousal score, from 

very calm ( a = 1 - light green) to very aroused ( a = 7 , dark red) states. The black line – all IAPS data aggregated. Results are binned logarithmically in 25 bins (each point 

is a logarithm of mean value of σ ZYG in all time windows with log 10 〈 ZYG 〉 in a given bin) and shifted both vertically and horizontally for the sake of readability; Insets show 

values of exponents α, i.e slope of the plotted lines as a function of a given score (black horizontal line – exponent for all IAPS data aggregated, dotted black lines α ±
σ ( α).). Observation window � = 0 . 04s was used. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 5. Results of temporal fluctuation measured for COR by standard deviations as functions of mean values of this signal during IAPS stimulation. Different colors correspond 

to specific values of IAPS emotional (left) valence score, from very negative emotions ( v = 1 - light green) to very positive ( v = 7 , dark red) ones, (right) arousal score, from 

very calm ( a = 1 - light green) to very aroused ( a = 7 , dark red) states. The black line – all IAPS data aggregated. Results are binned logarithmically in 25 bins (each point is 

a logarithm of mean value of σ COR in all time windows with log 10 〈 COR 〉 in a given bin) and shifted both vertically and horizontally for the sake of readability; Insets show 

values of exponents α, i.e slope of the plotted lines as a function of a given score (black horizontal line – exponent for all IAPS data aggregated, dotted black lines α ±
σ ( α).). Observation window � = 0 . 36s was used. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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analysis. For those windows a mean value of a given signal was ob-

tained and then the mean and standard deviations of those mean

values were calculated for each IAPS-participant pair. For pairs

with a given emotional score, results were divided into 25 loga-

rithmic bins and a linear regression using a least squares method

was performed. Results of the fluctuations scaling analysis for each
ignal and emotional score is presented in Figs. 4—6 . Insets present

alues of scaling exponents α as a function of valence/arousal

evels. 

Let us now briefly inspect those insets to describe the results

n qualitative way. Surprisingly for ZYG signal we have α > 1

or all valence and arousal levels. Moreover for extreme values of



J. Chołoniewski et al. / Chaos, Solitons and Fractals 90 (2016) 91–100 97 

Table 2 

Comparison among pairs of α exponents for different values of valence (left) and arousal (right) in ZYG 

signal ( � = 0 . 04 s). Significance codes are the same as in Table 1 . The table is deliberately symmetrical 

to enhance comparison feasibility. The last column contains coefficient of determination R 2 values for 

corresponding fits from Figs. 4 a and 4 b. 

v ij 1 2 3 4 5 6 7 R 2 a ij 1 2 3 4 5 6 7 R 2 

1 ∗ . ∗ . .95 1 . .97 

2 ∗ ∗ ∗∗ .96 2 .97 

3 . . ∗ .98 3 .98 

4 ∗ ∗ ∗∗ .98 4 ∗ .98 

5 . ∗ ∗ .97 5 .97 

6 ∗ . ∗ ∗ .98 6 .97 

7 ∗∗ ∗ ∗∗ ∗ .98 7 . ∗ .92 

Table 3 

Comparison among pairs of α exponents for different values of valence (left) and arousal (right) in COR 

signal ( � = 0 . 36 s). Significance codes are the same as in Table 1 . The table is deliberately symmetrical 

to enhance comparison feasibility. The last column contains coefficient of determination R 2 values for 

corresponding fits from Figs. 5 a and 5 b. 

v ij 1 2 3 4 5 6 7 R 2 a ij 1 2 3 4 5 6 7 R 2 

1 ∗ .85 1 ∗ .76 

2 .82 2 .87 

3 ∗ .86 3 . .91 

4 ∗ .90 4 .84 

5 ∗ .87 5 .87 

6 ∗ .84 6 ∗ . .77 

7 ∗ ∗ ∗ ∗ ∗ .61 7 .75 

Fig. 6. Results of temporal fluctuation measured for PHSC by standard deviations 

as functions of mean values of this signal during IAPS stimulation. Different colors 

correspond to specific values of IAPS emotional arousal score (for valence no signif- 

icant differences were found), from very calm ( a = 1 - light green) to very aroused 

( a = 7 , dark red) states. The black line – all IAPS data aggregated. Results are binned 

logarithmically in 25 bins (each point is a logarithm of mean value of σ PHSC in all 

time windows with log 10 〈 PHSC 〉 in a given bin) and shifted both vertically and hor- 

izontally for the sake of readability; Insets show values of exponents α, i.e slope of 

the plotted lines as a function of a given score (black horizontal line – exponent 

for all IAPS data aggregated, dotted black lines α ± σ ( α). The observation window 

� = 0 . 04s was used. (For interpretation of the references to color in this figure leg- 

end, the reader is referred to the web version of this article.) 

Table 4 

Comparison among pairs of α exponents for different values 

of arousal in PHSC signal ( � = 0 . 04 s). Significance codes are 

the same as in Table 1 . The table is deliberately symmetrical 

to enhance comparison feasibility. The last column contains 

coefficient of determination R 2 values for corresponding fits 

from Fig. 6 . 

a ij 1 2 3 4 5 6 7 R 2 

1 .88 

2 . . ∗ .85 

3 . .92 

4 . .94 

5 ∗ .76 

6 ∗ ∗ .97 

7 .78 
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motional valencies ( v = 1 , 6 , 7 ; Fig. 4 a) α reaches its lowest val-

es that seem to be different than those for other scores. Addi-

ionally highly aroused state ( a = 7 ; Fig. 4 b) can be separated from

ll other scores with its exponent being the lowest one. In COR

ignal, scaling exponents for the majority of the series show α
1 but they drop to α ≈ 0.85 for very positive ( v = 7 ; Fig. 5 a)

nd very aroused states ( a = 6 , 7 ; Fig. 5 b). Finally the results in the

ase of PHSC signal for arousal ( Fig. 6 ) are very noisy and no clear

rends are visible except for outlying character of a = 2 , 5 , 6 levels.

here is no figure for valence as results were statistically insignif-

cant (see below). The assumption of non-negativity of the signal

s not fulfilled — some results had negative means (which is an ar-

ifact of separating measured signal to phasic and tonic parts) and

hus they were discarded. 

In order to statistically infer differences between specific expo-

ents, we treat valence and arousal levels as dummy variables in

he regression analysis and compare coefficient by t -tests treating

onsecutive levels (i.e., v = 1 , v = 2 , etc.) as reference values. We

se false discovery rate [69] to adjust originally obtained p -values

ontrolling the expected proportion of false discoveries among the

ejected hypotheses. The exponents’ comparison for selected � ( �

iving the highest significance in Table 1 ) is shown in Tables 2–4 ,
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Fig. 7. Temporal fluctuation scaling exponent α( �) for (a,b) ZYG , (c,d) COR , (e,f) PHSC during IAPS stimulation depending on (left) valence score, (right) arousal score (from 

1 to 7) as function of window size �; black points – all IAPS data aggregated. 
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where we use significance codes to express p-values that allow for

an instant inspection of the differences among the results. 

Statistical analyses back up our previous conclusions. Indeed,

in the case of valence in ZYG (see Table 2 -left), the extreme

cases ( v = 1 , 6 , 7 ) are different from the rest ( v = 2 , 3 , 4 , 5 ), which

in turn are indistinguishable. On the other hand, the differences

among v = 1 , 6 , 7 levels are not significant which might suggest

a parabola-like relation between α exponent and valence v . In

the case of arousal (see Table 2 -right) only the most aroused

state ( a = 7 ) differs from a = 1 and a = 4 . For valence in COR
ignal ( Table 3 -left), the situation is even more obvious — only

 = 7 is significantly different in this set, other points seem to

orm a stable level (with a single exception of v = 2 ). The case

f arousal in COR ( Table 3 -right) resembles the same variable in

YG: here a = 6 differs from a = 1 and a = 3 . We do not per-

orm exponents comparison for valence in PHSC because of the

ack of significance in the analysis of covariance (see Table 1 ).

inally, for arousal in this signal ( Table 4 ) we have two levels

 a = 2 , 6 ) that are significantly different from the majority of other

cores. 
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.3. Window size analysis 

In the last part of this Section, we show α exponents values for

arious sizes of observation window � ( Fig. 7 ). In all plots X-axes

re logarithms of time windows size � and Y-axes correspond to

alues of the exponent α( �). Colors of the lines mark question-

aire scores in the same way as in the previous graphs. In the case

f ZYG and COR signals ( Figs. 7 a–7 d), differences between expo-

ents grow as well as do error bars for both valence and arousal

cores. PHSC results ( Figs. 7 e and 7 f) are comparatively noisy

or all considered window sizes. The increase of α standard er-

ors with the growth of � is probably an effect of smaller num-

er of full windows in each IAPS-participant pair, which results in

 smaller number of values taken to calculate means in each bin.

he number of bins has been kept constant for every � value. 

. Conclusions 

In this paper, we investigate scaling of fluctuations in signals

f psychophysiological human activity (facial muscles, skin conduc-

ance) that were elicited in response to emotional stimuli. The ex-

eriment conducted at Jacobs University with over 60 participants

llowed us to test the hypothesis that emotional states can be rec-

gnized by examining the scaling exponent of the relation between

he standard deviation and the mean. 

We underline that our primary observation in this study is that

f the existence of Taylor’s scaling in the whole time series, where

e observed scaling exponents α ranging from 0.83 to 1.03. Such

alues, that are significantly higher than α = 0 . 5 lead us to specu-

ate on the origin of the influence exerted on participants. As it is

ell known, the value of α = 0 . 5 for temporal fluctuations scaling

s found for example [14] in systems consisting of non-interacting

lements. Larger values of α are observed when interactions take

lace and elements are partially synchronized, and/or there is an

xternal impact acting on the system. The results obtained in this

aper can not exclude any of these scenarios, since muscle fibers

re interacting with one another, and there is also a complex in-

uence of external emotional signals on these muscles. While the

tandard assumption in the field of psychophysiological research

n facial EMG [63,70,71] has been that of a quasi-random firing

f muscle units (MUs), our results are consistent with more recent

ndings [72] , suggesting a certain degree of synchronization of MU

rings. 

The second part of our analysis was devoted to separating scal-

ng relations for different levels of subjectively reported emotional

alence and arousal that were elicited in participants by expos-

ng them to (emotionally) standardized pictures, as reflected by

he questionnaire data. Based on values of scaling exponents ob-

ained by grouping the series with similar emotional scoring, we

re able to distinguish series connected to extreme emotions. Inter-

stingly, the results for facial activity ( zygomaticus major , respon-

ible for smiling, and corrugator supercilii that controls frowning)

how that time series for very positive and highly aroused levels

re described by low (in comparison to those for different levels)

caling exponents. We speculate that this kind of emotional impact

eads to a decrease of the coherent character of the motion of face

uscles, which would lower the value of α exponent. 

In the last part of our study, we examine closely the issue of the

ize of the time window and its influence on the scaling exponent.

e observe high variability and almost a monotonic growth of α
ith increasing length of the time window for the smiling mus-

le, regardless of the valence and arousal level. Such a behavior

an be consistent with the concept of internal synchronization of

uscle fibers that should be more easily observed at longer time

cales. A similar influence of time window length was reported for

olumes of transactions for stocks at NASDAQ, NYSE and Chinese
tock markets [14,30] . In the case of corrugator supercilii , we deal

ith an opposite situation of exponent value decay with growing

that might be related to fundamental differences in the interplay

etween short-term bursts of activity at this site (brief episodes of

rowning), and more long-term shifts in the overall tension found

t this site for some subjects. 

Our results might contribute to the development of novel ap-

roaches to fEMG and EDA signal analysis but still require addi-

ional analyses and replication. In future research, we plan to use

arious detrending algorithms to remove possible effects of data

on-stationarity as well to combine the Taylor’s studies with the

urst exponent analysis [14] . 
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