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a b s t r a c t

Nowadays it is not uncommon to have to deal with dissemination on multilayer
networks and often finding the source of said propagation can be a crucial task. We
examine the issue of locating the source of Susceptible–Infected spreading process in a
multilayer network using the Bayesian inference and the maximum likelihood method
established for general networks and adapted here to cover multilayer topology. We
show how its accuracy depends on network and spreading parameters and find the
existence of two parameter ranges with different behavior. If inter-network spreading
rate is low, observations in different layers interfere, lowering accuracy below that of
relying on single layer observers only. If it is high, on the other hand, observations
synergize, raising accuracy above the level of single layer network of the same size and
observer density. We also show a heuristic method to determine the case in a system
and potentially improve accuracy by rejecting interfering observations. This paper is
dedicated to the memory of Professor Dietrich Stauffer, who was a pioneer in new
approaches in statistical physics and its interdisciplinary applications.
© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Dedication and memoir

We dedicate this paper to Professor Dietrich Stauffer (1943–2019), who was one of the pioneers in the new studies
f statistical physics, computational physics as well as econophysics and sociophysics. His work impacted a vast number
f researches all over the world. Below is a short memoir from one of us (JAH), who had the pleasure to work with him
irectly.
Dietrich Stauffer was a great scientist as well as a fantastic Colleague and I am very proud I was able to collaborate

ith him on many occasions. Our first interaction was at the Winter School in Lądek Zdrój (Poland) in February 2000.
ietrich impressed me with his lecture and tutorials on programming Monte Carlo simulations for large Ising models of
ypercubic lattices in d-dimensions. He presented a Fortran code that looked rather simple but was very fast in using the
omputer’s memory in a highly effective manner. Subsequently, I learnt that for several years Dietrich had been improving
is codes to perform simulations of large-scale Ising systems [1].
At the same venue I presented my model of strong leader for opinion dynamics [2,3] that was based on social impact

heory and Dietrich invited me to submit a review paper about this model for the Annual Reviews of Computational Physics.
s the Volume Editor Dietrich was very strict and fast-paced, he did not accept any amendments to deadlines and made the
ditorial decisions very swiftly. I wish I could act in this way as the present Main Editor in Physica A! Most likely because
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f his sharp and close supervision we managed to finish this review with Krzysztof Kacperski and Frank Schweitzer in
nly few months [4].
In Fall 2001, I was working with Dirk Helbing in Dresden and used this opportunity to visit Dietrich in Cologne for
weekend. In fact, my Ph.D. student (Agata Aleksiejuk, now Prof. Agata Fronczak) was being hosted by Dietrich as a
AAD fellow as such I was expecting that we would shortly summarize her progress and then enjoy the nice weather
nd sightseeing of Cologne’s architecture. Turned out my assumption was completely wrong.
Dietrich picked me up at the airport and while we were in the shuttle he inquired what I would like to do during

hese two days - Janusz, you came here to work and so we need to fix a research plan. At the time complex networks
ere a new concept thus I suggested we could study Ising model in a scale-free network. How do you implement such
ynamics and why could this be an interesting problem? Dietrich asked. I replied that a complex network could be treated
imilarly as periodic lattices with nearest neighboring interactions, where the proximity is defined by the presence of
irect links between nodes. At that time it was also an open question, if any magnetic structures could be observed in
uch a non-periodic system.
Before our bus arrived at the center of Cologne, we had a research plan. Dietrich took me to his Institute (Agata was

orking there in the library) and the three of us began brainstorming, how to implement so-called Kertesz algorithm of
arabási–Albert network for Ising simulations. Before the end of the day first results of simulations came in: there was a
pontaneous ferromagnetic order in low temperatures. We decided to celebrate this finding with a dinner in a restaurant.
On Sunday morning, we returned to the Institute to find out that the overnight simulations run at Dierich’s computer

ndicate that the critical temperature for this system varied depending on the networks size. It was a very unexpected
esult and we immediately started to search for errors in the computer’s code. Some minor bugs were found but their
emoval did not substantially affect the outcome. Around lunch time Dietrich noticed that the critical temperature was
ncreasing as a logarithm of number of spins. Finally, I had to leave Cologne but in a few weeks the preprint was ready.
fter the paper had been published [5] I discovered that similar studies were ongoing in other groups but our team was
he first group who had observed these effects.

Over the years, I was meeting Dietrich frequently at the econophysics and sociophysics conferences, where we
iscussed among other topics the scaling conditions for critical exponents in random directed percolation that I used
o model for collective bank bankruptcies [6,7]. In 2008, Dietrich came to Warsaw for a few weeks to work with me on
odels of social dynamics [8,9].
Dietrich was well known for his witty and ironic sense of humor that transpired not only in research but also in his

omments on politics, history and football. Below are two of his e-mails to me.

Dear Janusz,

[9 Sept. 2013]

our newspaper reported that some German sold PhD certificates of Warszawa Technical University for up to 15,000 Euro
per doctorate. There is no hint in the report that this university was involved. But if it was and shared the money with
him, is this the reason that Poland got much better though the 2009 economic crisis than the rest of the European Union.
Dietrich

[14 July 2014]

Good news: Footballer Miroslaw Kloze (= Klose) from Opole (Slask), exiled to Lazio Roma (Italy), during a holiday in Brazil
with his German friends Podolski, Ozil, Khedira, Boateng et al. made a new world record with 16 goals in his four world
championships. Now he is 36 years old and presumably will not participate again four years from now.

Bad news: Erika Steinbach wants to retire. Thus there is little hope left for you that she will be crowned queen of Poland(-
Lituania?) on the Wawel. What can Poland do now ? Ask Tsar Putin to accept you as ‘‘prewisliski kraj’’ in Rodina-mat’
Rossia, like the Crimea ? Dietrich * * * *

No doubt, Dietrich’s curiosity contributed tremendously to many branches of physics and interdisciplinary research
nd inspired many scientists. Nevertheless, in my memory he remains also as an open-minded individual with a deep
nterest in understanding social interactions and other cultures.

. Introduction

Sharing and spreading information is one of the cornerstones of civilization. Not all information is desirable however,
nd some, such as misinformation or conspiracy theories can have a detrimental effect on the society as a whole. Therefore,
t is of utmost importance to research all aspects of such processes so that we can develop tools to address potential risks
ppropriately. In practice, one of the fundamental questions is that of the true origin of a spread which often is very
mportant as it allows for developing or implementing appropriate preventive measures and deepen the understanding
f the spread itself. This is not very dissimilar to the well-known problem of locating a ‘‘patient zero’’ in the field of
pidemiology. The question of how to find the source of information or a rumor is not new and we have seen a large
2



R. Paluch, Ł.G. Gajewski, K. Suchecki et al. Physica A 582 (2021) 126238

t
w
s
i

a
i
r
i
r
s
p
l
a
a

a
(
s
t
w
(

2

2

w
c
i
d
i

A
a
h
m
A

2

t
o
a

Fig. 1. Schematic illustration of studied systems. Two snapshot of a propagation process are presented one in the very beginning t = 0 (left) and
he other at some later time t > 0 (right). The red nodes are infected with the one labeled S being the source. Blue and green nodes are susceptible
here green ones (and labeled with Oi) are the observers. This example shows the idea of the setting used in our experiments - a multilayer
tructure yet the states are not shared between images of nodes. E.g. both O1 and its image are infected in the right panel, however, while O4 has
ts replica has not received the signal yet. Additionally it is worth noting that an observer in one layer is not necessarily an observer in the other.

mount of research devoted to this topic. Some methods are based on a single snapshot of nodal states at a given moment
n time. If the snapshot covers all nodes, it is a complete observation [10–13], but sometimes only a subset of nodes is
equired [14–18]. Another type is detector-based algorithms, where a small subset of nodes, called observers or detectors,
s monitored all the time [19–26]. From these observers, we know the exact time when they received a message. More
ecent works aim at relaxing the assumptions about the process and its parameters [27,28] to allow finding a source of a
ignal without prior knowledge of the actual spreading process. There have been also works considering source finding
roblem on a variable, temporal topology of connections [29,30]. Despite all the effort put into the research of source
ocalization, to our knowledge, this issue has not yet been studied in the context of multilayer networks. In this work we
ddress this problem, since it has been shown that such structures happen to be quite prevalent in our society [31–40]
nd the nature of spreading processes on them has been studied extensively [41–48].
The organization of the article is as follows. Section 2 presents the definitions of multilayer graph (Section 2.1)

nd propagation process (Section 2.2). This section also contains the descriptions of the source localization method
Section 2.3) and evaluation metrics (Section 2.4). The results of numerical simulations on synthetic and real networks are
hown in Section 3. We use the multilayer versions of Erdős–Rényi (ER) and Barabási–Albert (BA) models and investigate
hem in cases of two (Section 3.1) and more than two layers (Section 3.2). As an example of real multilayer structure
e use the data collected by the Department of Computer Science at Aarhus University among the employees [49]
Section 3.3). Section 4 discusses and summarizes the obtained results.

. Preliminaries

.1. Multilayer graphs

In this paper we consider a multilayer graph with L denoting number of layers. Each layer has nl nodes and mi edges
here i ∈ [1, 2 . . . L]. The total number of nodes in the network is ntot = Lnl. Each layer has its own topology, but they
an be potentially correlated (more on that later). The users are present in different layers as replicas, that have separate
nternal states and are connected to all other replicas of the same user. It is conditioned by the fact that people can exhibit
istinct preferences, opinions, and behaviors in different social networks. It follows that sometimes they may not relay
nformation learned in one network to another or do so with a delay. See Fig. 1 for an example.

We conduct our studies on two well-known synthetic network models: Erdős–Rényi (ER) and Barabási–Albert (BA).
s mentioned before each layer is independent, i.e. we construct L realizations of a given graph model and couple them
ccordingly with interlayer links. While every layer is different from others the degree distributions in the BA model are
ighly correlated — a hub in one layer is most likely a hub in another. Moreover, we verify our findings from the network
odels mentioned above on the real-world multilayer network depicting four types of contact among the employees of
aarhus University.

.2. Spreading on multilayer structure

We use an agent-based version of Susceptible–Infected model [50] to simulate the spread across the graph. According
o this model, an agent may be in one of two states, susceptible (S) or infected (I). At the beginning of the simulation,
nly one agent is infected — it is the true source. In the next steps the infected agents interact with their neighbors which
s a result may change the susceptible nodes into infected with probability β per time step (which is called an infection
3
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Fig. 2. Schematic illustration of the information traversal dynamics. The node labeled S is the source of the spread and the nodes o1, o2, o3 are
bservers. Red nodes already received the information. Each layer has its own set of propagation properties (mean - µ - and standard deviation - σ

of the traversal time) and the interlayer coupling is also independent with its respective parameters. The orange color on certain edges indicates
he shortest paths from the source to the observers.

ate). To simplify the tracking of propagation paths and infection times, the dynamics of our model is synchronous, which
eans that at every time step, all infected nodes try to pass the infection simultaneously to their all susceptible neighbors.
In the case of a multilayer structure, we assume that the infection rate β depends on the layer. Additionally, we allow

eplicas of an agent to have different states in each layer, which corresponds to a situation when a social media user shares
n information on one platform but does not on the others. We define interlayer infection rate as the probability in each
tep that an agent will transfer information from one layer he is present in to another, which corresponds to infection of
replica in one layer by the replica in another. The infection rate can be therefore written as a matrix β = [βkl] where
is the layer of the infecting node and l is the layer of the node being infected. The diagonal values correspond to the

ntralayer infection rates, while non diagonal correspond to the interlayer infection rates. We assume that the interlayer
nfection rates are all the same βk̸=l = βC , while we can denote intralayer rates by a single index βkk ≡ βk.

We can write the equation for the probability of a susceptible agent i in a layer l becoming infected in next time step
s

P (l)
i (t + 1) = 1 −

∏
j̸=i

A(l)
ij

(
1 − s(l)j (t)βl

)∏
k̸=l

(
1 − s(k)i (t)βC

)
(1)

where s(l)j (t) is the current state of an agent j in the layer l, with value 0 for Susceptible and 1 for Infected, and A(l)
ij is an

djacency matrix in the layer l. The first product is due to the intralayer propagation, while the second product is due to
he interlayer propagation between replicas of a node i in different layers.

.3. Source location

We estimate the source location using detectors-based maximum likelihood estimator. This method was first intro-
uced by Pinto et al. [19] for single layer graphs. In this work we extend this algorithm to be able to locate the source
n the multilayer structures with different diffusion properties for each layer. We assume that the distributions of delays
n the links in each layer, which describe a spreading process, have finite means µ = [µ1, µ2, . . . , µL, µC ] and variances
2

= [σ 2
1 , σ 2

2 , . . . , σ 2
L , σ 2

C ], where µC and σ 2
C describe the distribution of delays on all interlinks between layers. Moreover,

he method requires that all these means and variances are known, as well as all links in each layer. What we do not know
s the full history of the process. We can only monitor the states of some preselected replicas oi ∈ O, called observers.
lease note, that observing a replica in some layer does not mean that we monitor the states of corresponding replicas in
he others layers. In that sense, we consider replicas to be for all functions and purposes separate nodes, so one observer
ssignment means one replica in one layer. We treat the network as if it was a single layer, but with different delay
istributions on links defined by different layers. Being able to monitor observers, we know exactly when a specific
essage (infection) arrived at the observer node. From infection times reported by observers we construct an observed
elay vector d:

d = (t2 − t1, t3 − t1, . . . , tb − t1)T (2)

here b is the number of observers (available budget for the observation process), ti is an infection time of observer oi ∈ O,
1 is the infection time of a reference observer o1 and T stands for transposition (we will express the equations in terms
f matrix algebra, hence column and row vectors are distinct). Since we do not know when the initial message appeared,
4



R. Paluch, Ł.G. Gajewski, K. Suchecki et al. Physica A 582 (2021) 126238

w
a

c

v

b

T

w
σ

2

S
l
s
c
o
p

e have to make all times relative to some reference point, and we choose it as the time at which the information arrives
t the reference observer.
Then, for each node v ∈ V in the whole network we construct a tree Tv from the shortest weighted paths (which may

ontain inter- and intralinks) between v and all observers oi ∈ O. The weights of the links depend on the layer and are
given by the vector µ = [µ1, µ2, . . . , µl, µC ], see Fig. 2 for illustration. The rest of the following computations for node
is performed on tree Tv , not on the whole graph G. This is an approximation, relying on that most non-lattice networks
eing locally treelike. Existence of loops make exact analytical predictions of time distributions much harder [25].
The method hinges on the comparison between the distribution of expected arrival times and the actual measurement.

he Bayesian probability P(s = v|d) for a specific node v being the true source s given observed delay vector is proportional
to the probability of obtaining observed times d given the node v is the source P(d|s = v) (from the expected delay
distribution), under the assumption that all nodes are equally likely to be the source a priori (P(v = s) = 1/N).

P(v = s|d) = P(d|v = s)
P(d)

P(v = s)
(3)

where P(d) is constant, because we only need the estimate for the actual d, so the factor is the same for all potential
sources s, and P(v = s) = 1/N .

To obtain the likelihood for node v of being the source we need to estimate the distribution P(d|v = s) by computing
the expected delay vector µv and the covariance matrix Λv:

µv[ i ] = |P(v, oi+1)|µ − |P(v, o1)|µ i = 1, 2, . . . b − 1, (4)

Λv[ i, j ] = |P(oi+1, o1) ∩ P(oj+1, o1)|σ2 i, j = 1, 2, . . . b − 1, (5)

where P(v, oi) denotes the path (a set of links) between nodes v and oi in the tree Tv , while A ∩ B means a set of shared
links between paths A and B. The operators |P |µ and |P |σ2 denote respectively summing up the mean delays or the
variances of delays on links in the path P , not simply length of the path, since links in different layers have different
delays.

Finally we compute a score Sv for each node v and use maximum likelihood rule to determine the most probable source
of the epidemic ŝ:

Sv = µT
vΛ

−1
v (d − 0.5µv) (6)

ŝ = argmax
v∈V

Sv (7)

The score is maximally simplified strictly increasing function of actual probability P(d|v = s) that takes form of a
multivariate normal distribution, which is another approximation making analytical calculations feasible [19].

While the method is formulated for normally distributed delays, many of the spreading phenomena will follow more
closely the characteristics of Susceptible–Infected that we decided to use in our investigation. This means that delays are
actually from geometric distribution, in conflict with assumptions of the method. We accept this discrepancy and following
decrease in accuracy, given the unsolved problems such distribution will pose to estimate the form and parameters of
P(d|v = s). The mean and variance of the geometric distribution used to describe it in the method are well known and
can be calculated easily if infection rate βij for link between layers i and j is known

µij = 1/βij (8)

σ 2
ij = (1 − βij)/β2

ij (9)

hich means in practice that for each layer l there is a different mean µl and variance σ 2
l , as well as µC = 1/βC and

2
C = (1 − βC )/β2

C for interlayer links.

.4. Evaluation metrics

Two efficiency measures are used for evaluating the quality of source detection: the average precision and the Credible
et Size at 0.95 confidence level. The precision for a single test is defined as the ratio between the number of correctly
ocated sources and the number of sources found by the method. The tests are repeated multiple times for different
ources and many graph realizations and then the obtained values of precision are averaged. The Credible Set Size at the
onfidence level of α (CSSα) is the size of the smallest set of nodes containing the true source with probability α [51]. In
ther words this metric describes how many nodes with the highest score Sv should be labeled as the source to have the
robability α that the true source is among these nodes.
5
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Fig. 3. Average precision of source localization in Erdős–Rényi (top) and Barabási–Albert (bottom) graphs with L = 2, n1 = n2 = 500 and
⟨k1⟩ = ⟨k2⟩ = 8. The observers are placed randomly with equal density in both layers ρ1 = ρ2 = 0.1. Layer 1 with spreading rate β1 is a
source layer. We consider three values of interlayer spreading rate βC : 0.1 (left), 0.5 (middle) and 0.9 (right). The average precision is computed
from 103 realizations.

3. Results

In this section we present the results of finding the source of an artificial SI spreading process on both synthetic and
real multilayer networks. The first part concerns the case of two layers and shows the existence of two types of behavior –
(i) interference and (ii) synergy between observers in the two network layers, depending mainly on how fast the spreading
process between layers is. The following parts explore the case of multiple layers, comparison between synthetic and real
multilayer networks as well as focused results of attempting to exploit multilayer structure to improve the quality of
source localization.

3.1. Two layers

We study the performance of the source localization in bilayer Erdős–Rényi and Barabási–Albert networks for three
values of the interlayer infection rate βC : low (0.1), moderate (0.5) and high (0.9). The source of spreading is always placed
in layer 1 which causes that the layers are distinguishable.

In the first experiment we vary the intralayer infection rates β1, β2 from 0.1 to 0.9. The observers are placed randomly
with equal density in both layers ρ1 = ρ2 = 0.1. As can be seen in Fig. 3, the heat maps of the average precision for weak
coupling between layers (βC = 0.1) differ significantly from the heat maps for moderate and strong couplings (the heat
maps for CSS0.95 have the same properties thus they are not shown). In the former case, if β1 > 0.3 then the average
precision has two local maxima as function of β2, one for β2 = 0.1 and second for β2 = 0.9. For higher values of the
interlayer infection rate βC (center and right panels in Fig. 3) the characteristics of the heat maps switches from bimodal
to unimodal, with the only maximum for highest β2 = 0.9). In that case the quality increases overall with the mean value
of intralayer infection rate.

The asymmetry in bilayer network can be also caused by the difference of densities of observers within the layers,
which is shown in Fig. 4. Here, the intralayer spreading rates are equal and moderate β1 = β2 = 0.5, but the density of
observers ρ1, ρ2 vary from 0.02 to 0.2. As in the previous experiment, the source of spreading is always placed in layer
1. Again, the numerical simulations reveal substantial difference between the networks with weak and strong couplings,
with Erdős–Rényi graphs changing behavior at lower βC than Barabási–Albert networks. In the case of weak coupling
between layers, the best quality of source location is achieved when the density of observers in the source layer is very
6
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Fig. 4. Average precision of source localization in Erdős–Rényi (top) and Barabási–Albert (bottom) graphs with L = 2, n1 = n2 = 500 and
⟨k1⟩ = ⟨k2⟩ = 8. The intralayer spreading rates are β1 = 0.5 (source layer) and β2 = 0.5. We consider three values of interlayer spreading
rate βC : 0.1 (left), 0.5 (middle) and 0.9 (right). The average precision is computed from 103 realizations.

high ρ1 = 0.2, and ρ2 = 0.02 is very low. It means, that in this case, the additional observers placed in layer 2 not only
do not help, but also interfere in the localization of the source in layer 1. This behavior changes when βC is higher and the
quality of source detection increases with the density of observers in any layer. It follows, there exists a certain critical
value β∗

C that divides parameter space into two regimes.

3.2. More than two layers

We compare the performance of the source location algorithm for the networks with different number of layers
according to two schemes. In the first one, all considered systems have the same number of nodes per layer nl but they
differ in total number of nodes ntot , e.g. a four-layer graph has twice as many nodes as a two-layer one. In the second
scheme, the total number of nodes ntot is the same for all compared networks, which means that a two-layer graph has
twice as many nodes per layer as a four-layer one. The results presented in Figs. 5 and 6 show strong influence of the
number of layers on the average precision and CSS0.95 for both the case of fixed nl and fixed ntot . We focus here on the case
of βC > β∗

C and observe that increasing number of layers improves the source localization efficiency (higher precision,
smaller CSS0.95). A particularly large increase in the performance of the source location is observed after changing from
one layer to two-layer graph. One can speculate that in the first scheme, the one with fixed number of nodes per layer nl,
the networks with larger number of layers have also more observers, but this is not the case in second scenario, when the
number of observers depends only on ntot , which on the other hand is independent of the number of layers L. This means
that for high βC not only observers in second layer do not interfere, but there is synergy that increases the accuracy of
finding the source above the level of similar single layered network.

3.3. Experiments on the real-world multilayer network

As an example of real social network with many layers we use the data collected at the Department of Computer
Science at Aarhus University among the employees [49]. The network is built of following layers:

• current working relationship,
• regularly eating lunch together,
7
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Fig. 5. The quality of source localization in Erdős–Rényi graph (left) and Barabási–Albert model (right) with different number of layers. The number
of nodes per layer is the same for all networks, regardless of the number of layers L. The average degree ⟨k⟩ = 8, density of observers ρ = 0.1 and
ntralayer infection rate β = 0.5 are the same in each layer. The interlayer infection rate is βC = 0.8. The average precision is computed from 103

ealizations. The ribbons show 95% Confidence Interval (CI).

Table 1
Basic properties of each layer of the Aarhus University network. The symbol nc stands for the number
of connected components, ⟨l⟩ for the average path length, ∆ for the diameter and C for the global
clustering coefficient.
Layer |V | ⟨k⟩ kmax nc ⟨l⟩ ∆ C

Work 60 6.47 27 1 2.39 4 0.65
Lunch 60 6.43 15 1 3.19 7 0.70
Leisure 47 3.74 14 2 3.12 8 0.50
Facebook 32 7.75 15 1 1.96 4 0.54

• repeated leisure activities,
• friendship on Facebook.

Basic properties of each layer are shown in Table 1. We use the same spreading model and evaluation metrics for
imulations as for aforementioned synthetic networks. In the first study with real topology, we choose two largest layers
Work & Lunch) and examine how the quality of source localization depends on the infection rates densities of observers
n each layer. The results of these experiments shown in Fig. 7 are consistent with the corresponding heat maps of
he average precision for the Erdős–Rényi and Barabási–Albert models which means our findings are not particular to
he investigated synthetic topologies. Also the other pairs of layers (Work & Leisure, Work & Facebook, Work+Lunch &
acebook) were examined. These results are not shown here but they are coherent with the results for Work & Lunch
ayers and synthetic networks. Next, we explore the problem of many layers and investigate how the average precision
epends on the coupling strength between the layers expressed by βC . We do not limit our research to particular values

of the infection rate β and density of observers ρ, but we perform the analysis for nine representative cases. The results
presented in Fig. 8 show that for medium and high value of β (middle and bottom row) the multilayer structure of
network can increase the efficiency of source identification if βC > β∗

C . As seen in Fig. 8, the value of β∗

C is not constant
ut it depends on the intralayer infection rate β , density of observers ρ and even the number of layers L.
8
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Fig. 6. The quality of source localization in Erdős–Rényi graph (left) and Barabási–Albert model (right) with different number of layers. The number
of nodes per layer is inversely proportional to the number of layers L. The average degree ⟨k⟩ = 8, density of observers ρ = 0.1 and intralayer
nfection rate β = 0.5 are the same in each layer. The interlayer infection rate is βC = 0.8. The average precision is computed from 104 realizations.
he ribbons show 95% Confidence Interval (CI).

.4. Source finding for interfering layers

The results for both synthetic and real networks show (Fig. 4,7), that if the coupling between networks is low enough,
hen using observers in both layers yields worse results than just on the layer where the infection originated from. This
uggests that it may be possible to improve the accuracy to find the source, if we can infer which layer the source is at,
nd only use observers in that layer to locate its position. We have studied the properties of the likelihood log-scores Sv

Eq. (6)) for both layers of 2-layer network and have found that the average log-scores are consistently higher for the layer
hat contained the true source, especially for the low-coupling regime (orange line on Fig. 9). In addition, the difference
etween average log-scores of nodes in both layers calculated using observers in one layer only (red line at Fig. 9) crosses
r reaches 0 at β∗

C or in close proximity , where β∗

C is a critical value of βC dividing the regions of interference and synergy.
This value can be determined by looking at the point where the accuracy gain from taking observations from second layer
(blue line at Fig. 9) crosses zero, which means we can tell whether the actual βC is below or above critical value for the
investigated system. After identifying the regime, if βC < β∗

C we can identify the layer where the true source is using
average log-scores using all observers. Using that knowledge, we can discard the observers in layer not containing true
source, improving accuracy and limiting the number of nodes we have to calculate log-score for (in case we used only
the wrong layer observers to identify the regime in the first step). It is possible to calculate this without knowing true
source, and hence in a practical situation where we need to locate the source.

This approach seems promising for investigated synthetic networks, but has not been thoroughly explored yet, as it
may be possible that for some parameter ranges (network densities, specific topologies, spreading rate combinations in
different layers) such simple method may not work correctly. More research on the topic is necessary, but the results
provide a starting point for methods of exploiting multilayer structure of the network and improving the accuracy of
finding the source via observer-based maximum likelihood methods.

4. Discussion

In this paper we have examined the issue of locating the source of Susceptible–Infected spreading process in
multilayer networks using methods established for general networks [19] adapted to multilayer topology and exploring
9
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Fig. 7. Average precision of source localization in a bilayer graph built of two layers (Work, Lunch) from the Aarhus University network. We consider
three values of interlayer spreading rate βC : 0.1 (left), 0.5 (middle) and 0.9 (right). The true source is always in Layer 1. (a) The densities of observers
are ρ1 = ρ2 = 0.2. (b) The intralayer spreading rates are β1 = β2 = 0.5. The average precision is computed from 5 · 103 realizations.

various network and spreading parameters. We have shown the existence of two different parameter ranges, one where
observations in two layers interfere with each other lowering the accuracy of finding the source (as seen in Figs. 4 and
7), and the other where they synergize, allowing to find the true source easier (as seen in Fig. 6).

The first case happens for low spreading rate βC between different layers. Here observers in the same layer as the true
source prove to be useful and adding more of them increases accuracy, but observers in the other layer only lower it. If we
use all observers then peak accuracy is achieved when one of the layers is dominant (has a much higher spreading rate),
or when both have similar, high spreading rates i.e. the process is more deterministic. The threshold for βC is not fixed
and depends on the topology among other factors — scale-free networks have higher thresholds than simple random
graphs. We believe the interference from second layer observers to be caused by misalignment between assumptions
in the method (tree graph) and real structure (network with loops) [25], similar to the loss of precision from faraway
observers in scale-free graphs [22].

The second case happens when interlayer spreading rate βC is high. It is much more intuitive, as additional observers
increase the accuracy as would be expected from additional information. The nontrivial result here is that the increased
accuracy ends up higher than for a single layer network of the same size and observer density. It means that a multilayer
structure, given high enough interlayer coupling, is more conductive to finding the source than single layer topologies.

In addition, we have formulated a simple heuristic method to increase the accuracy of locating the source in multilayer
networks that can identify whether the observers in different layers interfere or synergize and point to the layer containing
the true source. This allows us to discard the second layer if we find ourselves with the interfering observers case. The
method relies on mean likelihood scores that can be always calculated and thus can be always applied if dealing with a
multilayer network.

It is worth noting that the SI model can be treated as special case of Susceptible–Infected–Removed (SIR) or rumor
model [52,53], where agents do not remain active forever (setting the recovery rate γ = 0 in those models produces an
SI process). The location method relies on first arrival times however, meaning that unless the deactivation is very strong
(like in independent cascade model where γ = 1) such that it would significantly alter the characteristics of the delay
distribution or limit the number of observers that receive the information at all, its impact on the accuracy should be
small. This is especially true given the already present mismatch between the distribution assumed by source location

method and the actual delay distribution in the SI model.

10
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Fig. 8. Average precision of source localization in the Aarhus University network as a function of interlayer spreading rate βC for different number
f layers L considered in spreading and backtracing. The layers are added from largest (Work) to smallest (Facebook). We consider three values of
ensity of observers ρ: 0.1 (left), 0.2 (center), 0.3 (right) and also three values of the intralayer spreading rate β (which is the same for each layer):

0.2 (top), 0.5 (middle), 0.8 (bottom). The average precision is computed from 104 realizations.

Fig. 9. Difference between average likelihood log-scores Sv for nodes in layer 1 (where the true source is located) and layer 2 of a 2-layer network
(orange line), depending on the interlayer spreading rate βC as well as difference between average log-scores of layers calculated using only
observers in one layer (red line). The difference in precision between using observers in both layers (prec1,2) and only layer 1 (prec1) is also shown
or comparison (blue line with 95% CI). The results are for networks, of n1 = n2 = 500 nodes and mean degree ⟨k1⟩ = ⟨k2⟩ = 8, with intralayer
preading β1 = β2 = 0.5 and 5 · 103 realizations. It is important to note that the separation between average log-scores holds even for a single
ealization, not only for an aggregate over realizations shown in the figure.
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