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• A fragmented network is unstable in quasi-ergodic coevolution.
• The system slowly evolves towards a single fully ordered component.
• Dynamics of clusters ‘‘surfaces’’ is responsible for the transition shape.
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a b s t r a c t

We investigate co-evolution of discrete q-state Potts model and the underlying network
topology, where spin changes and link re-wiring follow the same canonical ensemble dy-
namics in a constant temperature. It means that there are no absorbing, frozen states
present in our model. Depending on the temperature T and probability of link dynam-
ics p the system can exist in one of three states: ordered, disordered and ordered clus-
ters (fragmented network), with the last being unstable and slowly relaxing into ordered
state. The transition from ordered clusters to globally ordered system is characterized by
non-exponential, slow growth of the order parameter. We investigate this process ana-
lytically and explain the transition characteristics as the result of the dominance of ac-
tivity of ‘‘surface’’ nodes in each ordered cluster, as opposed to ‘‘bulk’’ nodes that are
inactive.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Many different systems that are subject of research in natural and social sciences can be described as networks [1].
Processes found in such systems can be often described in terms of dynamics on the network, where internal variables of
the nodes change, or dynamics of the network, where connections are changing. While most dynamical processes involving
networks can be classified as either of those two, an interesting topic of research is the interaction between them, often called
co-evolution or adaptive networks [2,3]. Special attention has been given to co-evolution of models displaying emergence
of cooperation or same-state domains, such as voter model [4,5], Ising-like model [6], models based on game theory [3]
and also oscillator synchronization [7]. An interesting process observed is the fragmentation transition, where the system
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splits into topologically separate domains or clusters, each displaying internal order. A common feature found in most of
these models is the fact that they have an absorbing state and the fragmented network is one of such states. The process
depends not only on model parameters, but also on an initial system state [8], since existence of absorbing states means
non-ergodicity.

In this work, we investigate the co-evolution of discrete q-state Potts model and rewiring of connection. The Potts
model, as a generalization of Ising model, has been widely studied [9]. Of special interest are phase transitions, that have
been investigated in various topologies, starting from periodic lattices [9], Bethe lattice [10], Apollonian networks [11] and
complex networks [12–14]. Depending on the number of states q, the discrete Potts model is equivalent to the Ising model
(for q = 2, we discuss this more thoroughly in Section 2), possesses the same properties as percolation (q → 1) [15]
or features discontinuous phase transition along the typical continuous one (q > 2) [12,14]. The propensity of the Potts
model to generate homogeneous domains in low temperatures allowed its application for detecting community structure
of a network [16–18]. The inverse Potts model has been also recently applied to reconstruct a real social network (Italian
parliament) [19].

In our work, both Potts model and the connection dynamics follow the canonical ensemble under constant temperature.
We showwith numerical simulations, that unlike in similar models where non-homogeneous absorbing state is present [6],
the state of ordered clusters that occurs due to fragmentation is a transient state in finite systems and that the system relaxes
into a single ordered cluster. We investigate and explain evolution of the order parameter during this transition.

Section 2 describes the model and its implementation in simulations, Section 3 discusses phase diagram, Section 4
describes all assumptions used, Section 5 shows the analytical description of the phenomena and Section 6 offers summary
and concluding remarks.

2. Model

We analyze discrete Potts model on a complex network, where node states are co-evolving with network connections.
We consider a fixed set of N nodes, each node i possessing a Potts spin si ∈ 1, 2, . . . , q with q being model parameter. The
nodes are connected by edges, which can be described by an adjacency matrix A, where Aij = Aji = 1 when nodes i and j are
connected and Aij = 0 when they are not.

We assume same interaction strength J between all interacting pairs of spins, so the Hamiltonian of the system can be
written as

H = −J

i,j

Aijδsi,sj , (1)

where δ is the Kronecker delta and J > 0 is the coupling constant (we consider only ferromagnetic interactions). Since only a
difference in energies possesses a physical meaning, not energy values themselves, for q = 2 this Hamiltonian is equivalent
to that of the well-known Ising model without an external field. Note that the discrete Potts model is not equivalent to the
Ising model with more spin states (for example si ∈ {−1, 0, 1}). In fact for the Potts model, the only possible energy of
interactions corresponds to matching or unmatching neighboring spins, while in the Ising model with higher spins such
energy can possess more values. Different states in the Potts model can be treated as ‘‘orthogonal’’,1unlike different scalar
values corresponding to the Ising model. We allow changes of both node states and links between nodes, although topology
dynamics consists only of rewiring, keeping the number of links constant. Both spin and link dynamics follow the same
principle as Metropolis algorithm, where changes are proposed and accepted or rejected based with probability e−β∆H .
During an update of a node, we either attempt changing the node state (as in the regular Potts model) or changing the other
endpoint of incident edge. Edge dynamic is attempted with a fixed probability p, which is a system parameter. The system
is treated as being in a constant temperature T , scaled in J/kB units, meaning that J = 1 and β = 1/T .

In the simulations, we have used an asynchronous update rule, where each time step consists of N single updates of
randomly chosen nodes (attempting to change either state or one of incident links). While the update rule can have a
significant impact on the model dynamics, the Metropolis algorithm relies on single state changes to efficiently probe
phase space. An alternative would be to use a synchronous approach. This would however mean either defeating purpose
of Metropolis algorithm and random phase space search or discrepancy between probabilities of state change and energy
difference if single transition probabilities are used. Such discrepancy may lead to artificial behaviors, such as oscillatory
states in the Isingmodel [20]. Since our aimwas to base systemdynamics on the Hamiltonian, we usedMetropolis algorithm
and kept the asynchronous update as the only considered rule. The co-evolutionary dynamics is frequently considered as
applying to social systems. In fact, humans do not act according to one common clock, and interactions between them –
exchange of information and opinions, influencing each other – are not synchronized. Therefore in such a situation, the
asynchronous updating is very well justified.

1 If we use product of spins in the Hamiltonian (as in Ising model) H = −J


i,j sisj but treat different states s = 1, 2, 3, . . . as orthogonal unit vectors in
q dimensional space then the scalar product is equivalent to the δsi,sj .
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Fig. 1. Order parameterM dependence on temperature T and probability p. Data are obtained fromnumerical simulation on a graphwithN = 1000, ⟨k⟩ =

4 and number of states q = 5. Data are averaged over 100 time steps, with prior 100 time steps skipped. There is an ordered cluster phase for T < 0.3, an
ordered phase for 0.3 < T < 1 and a disordered phase for T > 1.

3. Stability of ordered clusters

We have first explored the parameter space (T , p) numerically and monitored the behavior of the order parameter M
(equivalent to magnetization) and the number of interfaces I (number of links connecting nodes with different states). The
order parameter of our system is defined as

M =

q
s=1

Ns −
N
q

 (2)

where Ns is the number of spins with value s. It correctly distinguishes disordered and ordered phases regardless of which
of the q states is dominant. We would like to note, that unlike magnetization, for q > 2 our order parameter can take values
greater than N:

Mmax =

N −
N
q

 +


s≠s0

0 −
N
q

 = N

1 +

q − 2
q


(3)

which means that Mmax varies between N for q = 2 and 2N for q → +∞. For q = 2, it reduces to |N1 − N2| which is
equivalent to the absolute value of magnetization in the Ising model.

We have used the Erdös–Rényi random graph with N = 1000 nodes and mean degree ⟨k⟩ = 4 as an initial topology of
the network, while the number of possible node states was equal to q = 5. The initial node states were random with equal
probability for any of the q different values.

Based on the results seen in Figs. 1 and 2, we can identify three regions of the parameter space: the ordered phase, the
disordered phase and the region of ordered clusters. The schematic structure of the system in these states has been shown
in Fig. 3.

For the parameters used in the simulations the ordered phase appears to exist for 0.3 < T < 1, where most of nodes
have the same state (interface number I is low and order parameter M is high). Disordered phase occurs in temperature
T > 1, where nodes have mostly random states (order parameter M is low and interface number I is high). When T < 0.3
we observe network fragmentation — the system assumes the state of ordered clusters, with both the order parameter M
and number of interfaces I low. The values of M and I can be explained by approximately similar number of nodes in each
of the q states (meaning the global order parameter M is low) and nodes being connected mostly to other nodes in the
same ordered domain (meaning the number of interfaces I is also low). The phenomenon of network fragmentation is well
known for other co-evolving systems [4,5]. A distinct feature of most co-evolving systems examined so far is the existence
of absorbing states, meaning the system is not ergodic. Our model does not feature absorbing states and is quasi-ergodic (as
most spin models, including Potts and Ising models, existence of two or more ordered states with different magnetizations
means they are not fully ergodic since initial conditions will determine which of these states is reached in equilibrium).

More in-depth investigation shows that the ordered clusters are unstable. If the simulations are run for a long time, the
system arrives at a globally ordered state. This means that the ordered clusters are not a true phase, but merely a transient,
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Fig. 2. Number of interfaces I (links between nodes in different state) dependence on temperature T and probability p. Data are obtained from numerical
simulation on a graph with N = 1000, ⟨k⟩ = 4 and number of states q = 5. Data are averaged over 100 time steps, with prior 100 time steps skipped.
There is ordered cluster phase for T < 0.3, ordered phase for 0.3 < T < 1 and disordered phase for T > 1.

Fig. 3. Schematic structure of the system in the ordered (top left), the disordered (bottom left) and the ordered clusters (right) state. The ordered cluster
state consists of ordered clusters (encircled in grey ovals), featuring dominant (red) as well as secondary clusters (green, blue) as well asmismatched nodes
attached to clusters (one green attached to red cluster) and disconnected nodes (in lower right part) (visualization of assumption 2). The surface nodes
in clusters (having only one link to own cluster) are highlighted with thick borders. Inter-cluster links that connect at least on surface node (marked by
thick line here) are responsible for dynamics of cluster sizes (see Section 5). (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

non-equilibrium state of the system. The order parameter value in long-lasting simulations presented at Fig. 4 show that
the order parameter is high through all the low temperatures, including region identified as ordered clusters. Additionally,
the simulations starting from full ordering yield the same result as those starting from random state, showing that the final
result does not depend on initial conditions (except for which specific state dominates the ordered system).

It is worth to note that the transition from ordered clusters to global order is slow — starting from random initial
conditions (for N = 1000, q = 5, T = 0.2, p = 0.5) it takes only around 50 timesteps for ordered clusters to form, but it
could take as long as 7000 timesteps until the system is fully ordered. Moreover, the transition proceeds in an interesting
fashion, with the order parameter increasing roughly linearly in time (Fig. 5). This characteristic is partially obscured when
the results are averaged (Fig. 6), as different realizations may be characterized by different slopes, which is related to some
differences in system structures (numbers and sizes of ordered clusters of different states).
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Fig. 4. The order parameter per node M/N in the stable state for different temperatures T . Grey circles represent results for a fully ordered E–R network
with N = 1000 as initial condition, empty black circles represent results for N = 10,000, while black X symbols represent results for random initial
conditions with N = 1000. It is evident that the stable state does not depend on initial conditions, showing that ordered clusters (seen for T < 0.3 for used
parameters) are just transient state at low temperatures. The data is averaged over 10 simulations for ⟨k⟩ = 4, q = 5 and p = 0.5.

Fig. 5. Time evolution of the order parameterM for several realizations, showing roughly linear increase in value in time. The red line shows the realization
later used in Fig. 15. Data obtained for random initial conditions, with N = 1000, ⟨k⟩ = 4, q = 5 and p = 0.5.

We have used the averaged order parameter and fitted straight lines to parts of the data to obtain an indication of the
speeds at which the transition takes place (slope of M(t)). This speed strongly depends on the temperature, as shown in
Fig. 8 and also depends on the system size (Fig. 7).

To investigate the relaxation of ordered clusters in-depth, we have made several assumptions simplifying the problem,
as outlined in the following section.

4. Assumptions

In order to describe analytically the complicated dynamics of the ordered clusters state, we have made a number
of assumptions and approximations regarding its structure and the dynamics. We also limit ourselves to using a set of
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Fig. 6. The order parameterM dependence on time t for different temperatures (in order of decreasing slope 0.25, 0.22, 0.2, 0.17, 0.15).While the growth
is nonlinear, lines fitted to the roughly linear part allow roughmeasurement of the speed of the process. Data are obtained from10 realizations of numerical
simulations with N = 1000, ⟨k⟩ = 4, q = 5, p = 0.5 with random initial conditions.

Fig. 7. The transition speed α (slope of theM(t)) as a function of the system size N . The dependence is quite close to linear (constant per-node value). The
points represent numerical results, the red line represents a linear fit with slope a = 0.91± 0.02, while the grey line represents slope 1. Data are obtained
from numerical simulation with ⟨k⟩ = 4, q = 5, T = 0.2, p = 0.5 and averaged over 10 realization with random initial conditions. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

parameters N = 1000, q = 5, p = 0.5, T = 0.2, ⟨k⟩ = 4 and NA(0) = 320 (see assumption 8) except cases where other
values are explicitly investigated. Belowwe list all our assumptions, with 1 and 2 forming the basis of our description, while
the next assumptions are used for analytical calculations further on.

1. We model our ordered clusters phase as consisting of several distinct clusters. A cluster is defined as a contiguous group
of nodes having the same state. Connections between nodes of different states are always inter-cluster connections.

2. The system contains N nodes and consists of (a) a single dominant cluster A of size NA characterized by the node state sA;
(b) q−1 secondary clusters of same size NB characterized by other node states; (c) Nf single mismatched nodes attached
to clusters; (d) N1 single, unconnected nodes (see Fig. 9). We ignore size differences between non-dominant clusters and
the possibility of other small clusters existing in the system. Fig. 3 shows the schematic structure of ordered clusters state.
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Fig. 8. Dependence of the transition speed α (slope of the M(t)) on the temperature T . Data are obtained from numerical simulation on with N =

1000, ⟨k⟩ = 4, q = 5, p = 0.5 and averaged over 10 realization with random initial conditions.

3. The system is in equilibrium, except for the cluster sizes that change slowly. Our transition is therefore a quasi-static
equilibrium process.

4. The equilibrium numbers of unconnected nodes N1 is constant and depends only on the total system size N and the link
density ⟨k⟩. Numerical simulations show that the exact value of N1 plays only a minor role.

5. In low temperatures that we investigate, the connections between clusters are rare, and thus any given node i has either
no inter-cluster connections, or only a single one.

6. The inter-cluster connections are distributed evenly across all pairs of nodes belonging to different clusters, just like
edges in Erdös–Rényi graph, with ρ being the probability for a pair to be connected (which is low, in accordance with
assumption 5).

7. We use a non-linear fit to numerical data to determine the dependence of ‘‘surface’’ (see Section 5) of cluster on their
size S(Nc). We also approximate number of unconnected nodes N1 through numerical simulations. For N = 1000 and
q = 5, the fitting gives

S(Nc) = (Na
c · b + c) · (1 − e−

Nc
d ) (4)

where a = 3.46, b = 2.2 · 10−9, c = 15.9, d = 40 (see Fig. 12) and N1 = 38. The surface S(Nc) does not depend on tem-
perature, at least in the investigated range between T = 0.15 and T = 0.3 (lower temperatures were not investigated
due to long simulation times, higher do not form observable ordered clusters).

8. We investigate systems starting from initial conditions in agreement with the assumption 2, not random. The system
consists of q separate clusters, with the dominant cluster A of given size NA and the rest of nodes evenly divided into
q − 1 clusters. Each cluster is fully ordered and has random graph internal topology (meaning that in practice it may be
non-contiguous).

5. Dynamics of ordering

We describe the dynamics of the ordered clusters phase in terms of changing cluster sizes (assumptions 1, 2 and 3).
We assume constant N1 and equal sizes of all non-dominant clusters (assumption 2), and additionally that Nf is small and
therefore can be approximated as Nf ≈ 0 in most cases without introducing significant error. This allows us to express the
state of the system along the transition between ordered clusters and global order through a single parameter — the size of
the dominant cluster NA. The size of all secondary clustersNB can be also expressed as NB = (N −NA −N1)/(q−1). To better
understand what kinds of dynamical processes are responsible for the transition, we observe rates of cluster size changes
due to three different types of events (see Fig. 10):

1. node state dynamics
2. network connection dynamics involving single unconnected nodes (connecting to and creation of them)
3. other network connection dynamics (mismatched nodes switching connection to matching cluster and reverse)
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Fig. 9. The structure of the ordered clusters according to the assumptions made (Section 4). The system consists of homogeneous state clusters, with few
inter-cluster links. We distinguish a dominant cluster A, q− 1 secondary clusters B of equal sizes, Nf single mismatched nodes attached to clusters and N1
single, unconnected nodes. Clusters have Sc surface nodes among the total Nc .

Fig. 10. Three kinds of processes that can change the cluster sizes (from left to right): 1. A node changes its state, leaving its eventual cluster and possibly
joining another one; 2. A node in a cluster loses its last connection (grey link) due to rewiring and becomes an unconnected single node; 3. A mismatched
node attached to a cluster (grey link) changes its connection to a matching cluster (thick black link). The three categories of processes also include reverse
processes to the ones shown in this figure.

Fig. 11 presents dominant cluster size change rates due to three mentioned types of events depending on the size of the
cluster.

It is evident that changes caused by network connection dynamics are balanced (in equilibrium, according to assumption
3), but changes due to state dynamics are not, and in fact they show a consistent increase of the dominant cluster size. This
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Fig. 11. The dominant cluster size change rates dNA/dt caused by three types of processes, depending on size of the cluster NA at the moment. Red lines
show changes due to node state dynamics, black lines due to topology dynamics involving unconnected nodes while grey lines are changes due to topology
dynamics involving only nodes with connections. Solid lines show positive changes, while dashed lines show absolute values of negative changes. For both
black and grey lines, the dashed and solid lines overlap, meaning that the processes are balanced and do not cause net change in cluster size. Red lines
show persistent difference, indicating that it is the node state dynamics that is directly responsible for growth of dominant cluster and thus the changes
of the order parameter. Data are obtained from numerical simulations with N = 1000, ⟨k⟩ = 4, q = 5, p = 0.5 and averaged over 20 realizations with
a special initial state (assumption 8 with NA = 320). (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

explains the slow, steady growth of the dominant cluster that causes steady growth of order parameter and leads to the
global ordering, when the dominant cluster size reaches the whole system.

The node state dynamics can cause nodes to leave cluster in two different ways: when the node becomes part of another
cluster, andwhen the node becomesmismatched, still attached to the same cluster. Wewill forget about the second process
for now and focus on switching of nodes between clusters. The switch happens when a node i, belonging to a cluster A
characterized by the node state sA and connected to it with kiA > 0 links changes its state to match a different cluster B,
characterized by the state sB, to where the node has kiB > 0 links. For the node to move to another cluster through node
state dynamics, the link to another cluster must be already present, hence kiB > 0, but due to rare connections between
clusters (assumption 5) it will be only single one, meaning kiB = 1. If an update of si from sA to sB is proposed, the probability
to accept such update will be

Pi(sA → sB) = eβ(kiB−kiA) (5)
which means that for low temperatures, where the investigated fragmentation occurs, the probability is very low except
when kiB ≥ kiA, meaning kiA = kiB = 1. This observation is confirmed by observations of in-cluster degrees of nodes moving
between clusters in numerical simulations. Since the energy difference of such a change is zero, its probability does not
depend explicitly on the value of temperature and will only depend on the probability of update happening to a node in this
specific situation. This depends on the number of nodes connected only with a single link to its own cluster.

We define the surface of a cluster as nodes connected to it only by single connections. Because of the reasoning shown
above, the surface nodes additionally possessing inter-cluster links are actively switching the clusters they belong to, while
the bulk nodes (with in-cluster degrees above 1) have effectively frozen states. The surface of the cluster can change through
edge dynamics, as the energy changes during edge rewiring are always 0 or±1, regardless of the involved node degrees. This
makes it possible for bulk nodes to become surface nodes and vice versa, which results in some equilibrium (assumption 3)
amount of surface nodes in each cluster.

We have notmanaged to find analytical relation between cluster sizeNc and its surface Sc , but decided to use a non-linear
fit to the numerical data and use the obtained dependence S(Nc) (assumption 7). If the following analysis could explain the
dynamics, we can therefore conclude that the surface and its size dependence are driving the process.

Based on the above considerations, we can write the equation for the rate of nodes leaving the dominating cluster A as

Nout = S(NA)ρ(N − NA − N1)
1
q
(1 − p) (6)

where S(NA) is the surface of cluster A (dependent on the total cluster size NA, see assumption 3) and ρ is the probability of
connection between nodes belonging to different clusters (assumption 6) which we calculate later on. This rate is a product
of the following factors:
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Fig. 12. The dependence of the cluster surface on its total size with fitted curve (Eq. (4)). Data are obtained from numerical simulation on a graph with
N = 1000, ⟨k⟩ = 4, q = 5, T = 0.2 and averaged over 15 realizations. The data for different temperatures are very similar, with differences approximately
the same as different realizations. The gap between N ≈ 210 and N ≈ 250 comes from the initial conditions where the dominant cluster is set to size
N ≈ 250 which later grows, while secondary clusters start with N ≈ 210 nodes and shrink afterwards.

1. Mean number of surface nodes updated in single update (S(NA)/N)
2. Number of updates per time step (N)
3. Probability that the updated node has a connection to a different cluster (ρ(N −NA −N1)) (this is not exact, but because

ρ is very small, it is very close)
4. Probability to attempt to change to state that exactlymatches the state of the other cluster the node is connected to (1/q)
5. Probability of attempting the node state dynamics (1 − p)
6. Probability of accepting the change (1, since energy difference is always zero under the circumstances).

Similarly, we can write an equation for the rate of nodes entering the dominant cluster as a sum of rates of nodes leaving
all other q − 1 clusters and joining cluster A

Nin =


c≠A

Sc ρ NA
1
q
(1 − p) =

q − 1
q

S(NB) ρ NA(1 − p) (7)

where Sc is the surface of each large cluster, and the sum is over all non-dominant clusters. Based on assumption 2, each non-
dominant cluster has the same size NB and therefore the same surface S(NB), allowing us to write


c Sc = (q − 1)S(NB).

The connection density ρ is related with the number of interfaces I , as any connection between different clusters is an
interface and any interface is a link between different clusters or between cluster andmismatched node. In accordance with
assumption 6, the total number of edges between different clusters can be written as

I = ρNA(N − NA − N1) + ρ
(q − 1)(q − 2)

2
(N − NA − N1)

2

(q − 1)2
+ ρNf (N − N1). (8)

The last component Nf (N −N1) is a rough approximation of the number of potential interfaces betweenmismatched nodes
and clusters (it neglects the fact that one of the clusters is in matching state as well as the fact that nodes in Nf are known
beforehand to have one interface). This value is negligible until the system is close to order and N − NA − N1 approaches
zero, where it becomes leading term, but at the same time it becomes more accurate. To avoid lengthy distractions from the
main thought line, calculation of Nf = Nf (NA) has been shown in the Appendix.

Since we assume that the system is quasi-static (assumption 3), we can say that the number of interfaces is a result of
an equilibrium between creation and removal of interfaces. The creation is a result of a node rewiring one of its in-cluster
connections to another cluster,while removal is the reverse. The probability that a new interface is created in a single update,
which is equal to interface creation rate, is

I+ = p

1 −

2I
N


e−β


NA

N

N − NA −
N1
q

N
+ (q − 1)

NB

N

N − NB −
N1
q

N



+ (1 − p)e−β S(NA) + (q − 1)S(NB)

N
q − 1
q

(9)
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Fig. 13. The ratesNin,Nout of nodes leaving and entering dominant cluster due to node state dynamics. Black and grey lines show numbers of nodes joining
and leaving dominant cluster, measured in numerical simulations (these are same as red lines on Fig. 11). Orange lines show the analytical predictions
(solid for joining — Eq. (7), dashed for leaving — Eq. (6)). Red lines show analytical predictions that take node state fluctuations into account (Eqs. (12),
(11)) with solid line for joining and dashed for leaving nodes. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

while the respective rate of interface removal is

I− = p
2I

N ⟨k⟩


NA

N

NA +
N1
q

N
+ (q − 1)

NB

N

NB +
N1
q

N


+ (1 − p)

Nf

N
1
q
. (10)

In both equations, the last term proportional to 1−p is an effect of node state changes, which produce (in the first equation)
or remove (in the second) mismatched nodes attached to clusters.

Knowing that NB = (N − NA − N1)/(q − 1) and using both rates, it is easy to obtain an expression for the equilibrium
(I+ = I−) number of interfaces I , dependent on the size of the dominant cluster NA (not shown, due to expression length).
Comparing the equilibrium number of interfaces I and Eq. (8), we can determine the value of ρ in the system.

Using the obtained value ofρ aswell as surface size values obtained from fit to numerical data (Eq. (4)),wehave calculated
expected rates of nodes leavingNout and nodes enteringNin the dominant cluster due to node state dynamics. The calculated
rates are presented at Fig. 13.

While there is a significant discrepancy between our approach and the data from simulations, the basic shapes of the
flows are roughly similar. The rate of nodes joining the dominant cluster is always higher than leaving, with the difference
remaining the same order of magnitude through the process, and similar to the magnitude observed in simulations. The
discrepancy between real rates and analytical predictions can be lessened by taking into account random fluctuations of the
node states, previously disregarded due to low value of e−βk. Since e−βk

≪ 1, the surface nodes with only single matching
neighbor dominate the process while ‘‘bulk’’ nodes remain frozen, and therefore only state fluctuations of surface nodes are
considered. The rate of nodes leaving dominant cluster through this process can be written as

f−(NA) = (1 − p) SA
(q − 1)

q
e−β . (11)

Single mismatched nodes attached to the dominant cluster emerge from the fluctuations, but also from other processes,
such as attaching separated nodes or switching surface nodes between clusters through link rewiring. Such nodes merge
with the cluster, producing flow of nodes into the dominant cluster

f+(NA) = Nf
NA

N − N1
(1 − p)

1
q

(12)

where NfNA/(N − N1) is the number of mismatched nodes attached to the dominant cluster (see Appendix). Adding the
effects of these fluctuations, we obtain corrected Nout(NA) and Nin(NA), presented in Fig. 13 by red lines. Taking state
fluctuations into account corrects the discrepancy between analytical predictions and numerical rates Nout(NA),Nin(NA)
for NA approaching N − N1 (when the system becomes globally ordered).

If we use analytical rates Nout(NA) and Nin(NA) (Eqs. (6), (7)) and calculate the changes of the order parameter in time
according to our assumptions and approximations, we obtain a growth curve shown in Fig. 14. The curve is qualitatively
similar to real one, although there is a significant quantitative disagreement, most importantly in timescale, but also in the



12 J. Toruniewska et al. / Physica A 460 (2016) 1–15

Fig. 14. The dependence of order parameterM on time t . Results of numerical simulations starting from ordered clusters are presented by the black line,
analytical results are presented by the red line, while the grey line shows numerical results for random initial conditions. The discrepancy between the
analytical and the numerical results is significant, but the shapes of the curves are similar. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

final equilibrium value ofM . The sources of the discrepancy are our simplified assumptions, reliance on experimental S(NA)
as well as omission of some processes in the quasi-analytical approach.

Our approach explains the observed slow growth of the order parameter through the state changes of node at the cluster
‘‘surfaces’’. An earlier, alternative hypothesis assumed a binomial distribution of node degrees in clusters and thus the node
flow rates proportional to the total cluster size. It resulted in predicted lack of any cluster size changes in time. This indicates
that the origin of this linear growth is most probably the fact that the surface nodes dynamics dominate, and that the cluster
surface is not proportional to the cluster size.

Looking at Figs. 6 and 14, one can notice that the order parameter in the second figure has different shape than in the
first. One reason for this discrepancy is the initial conditions, which for Fig. 6 were random, while for 14 were separate
ordered clusters, with one dominant in size. For random initial conditions, the sizes of clusters of different states can vary,
and some disappear completely before others (Fig. 15), which happensmuchmore rarely when initial conditionsmirror our
assumptions regarding the network structure.

6. Conclusions

We have investigated the co-evolution of Potts spins and topology of interactions between them in the absence of
absorbing states. We found that in a quasi-ergodic system the fragmentation occurs in low temperatures, but the resulting
ordered clusters phase is unstable. The system is slowly changing from ordered clusters to global order with the order
parameter growing in roughly linear fashion. This slow transition takes place due to steady growth of the largest ordered
cluster and is driven by the spin changes of ‘‘surface’’ nodes, i.e. nodes with only single connections to their own clusters.
Our semi-analytical approach qualitatively explains the observed behavior of the order parameter in time and identifies
microscopic processes responsible for it.

Acknowledgments

The research leading to these results has received funding from the European Union Seventh Framework Programme
(FP7/2007–2013) under Grant Agreement No. 317534 (the Sophocles project) and from the Polish Ministry of Science and
Higher Education Grant No. 2746/7.PR/2013/2. J.A.H. has been also partially supported by Russian Scientific Foundation,
proposal #14-21-00137 and by European Union COST TD1210 KNOWeSCAPE action.

Appendix. Calculation of Nf

The number of mismatched nodes Nf attached to a cluster can be estimated using the assumption 3, that states that the
process is quasi-static and thus the system is in equilibrium. It is an effect of the balance between creation and removal of
mismatched nodes.
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Fig. 15. The number of nodes in every state Ns depending on time t . Data are obtained from numerical simulation on a graph with N = 1000, ⟨k⟩ = 4 and
q = 5. Initial state of graph was random E–R topology and random node states.

The appendix follows the notation and definitions contained in Section 4. The probabilities of various processes
responsible for creation and removal of mismatched nodes (P+sAA, P+sBB, P+l1A, P+l1B, P+lBA, P+lBB, P+lAB, P−lx1, P−sxx,
P−lAB, P−lBB, P−lBA) are introduced and calculated later on. We would also like to remind that A signifies dominant cluster
(there is only one), while B signifies any of the q − 1 secondary clusters present in the system.

The processes of creation and removal of mismatched nodes can be split up into several sub-processes each and can
be quantitatively expressed as probabilities to occur during a single update. The creation is an aggregation of thermal
fluctuations converting surface nodes to mismatched ones (P+sAA, P+sBB), rewiring links inside a cluster so that a previously
single, unconnected node with non-matching state is attached to the cluster (P+l1A, P+l1B) and rewiring links that lead to
moving of node from one cluster to another (P+lBA, P+lBB, P+lAB). The removal of mismatched nodes is an aggregation of
node state changes converting them into members of the clusters (P−sxx), link changes separating them to create single
unconnected nodes (P−lx1) as well as attaching them to other clusters (P−lAB, P−lBB, P−lBA). The index of the probability
identifies whether it is the probability to create (+) or remove (−) mismatched node and whether it describes the state
(s) or link (l) dynamics. Also included is the cluster type the node was attached before and afterwards (A, B, considering
topology only, not states) or if they were/are single nodes (1). If the probability encompasses both cluster types then x is
substituted instead of A and B.

The probabilities to create mismatched node attached to dominant (P+sAA) or other (P+sBB) cluster through thermal
fluctuations can be expressed as

P+sAA = (1 − p)
S(NA)

N
q − 1
q

e−β (A.1)

P+sBB = (1 − p)
S(NB)

N
(q − 1)

q − 1
q

e−β (A.2)

with the terms corresponding to the probability to update state of a surface node (times q − 1 secondary clusters in second
equation), the probability to attempt changing intomismatched state and finally the probability to accept such change. Note
that Eq. (A.1) shows the number of nodes leaving dominant cluster through thermal fluctuations of states and is identical to
Eq. (11) in the main article. The probabilities to attach a single unconnected node to dominant cluster are

P+l1A = p
NA

N
N1

N
q − 1
q

e−β (A.3)

P+l1B = p
NB

N
(q − 1)

N1

N
q − 1
q

e−β (A.4)

with the terms corresponding to the probability for updating links of a node in the cluster (times q − 1 secondary clusters
in second equation), the probability of choosing a single node as a new target, the probability that this node has a different
state than the considered cluster and finally the probability to accept such change. The probabilities to move the node from
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a cluster to a mismatched set attached to another cluster can be expressed as

P+lBA = p
S(NB)

N
(q − 1)

NA

N
e−β (A.5)

P+lBB = p
S(NB)

N
(q − 1)

NB

N
(q − 2)e−β (A.6)

P+lAB = p
S(NA)

N
NB

N
(q − 1)e−β (A.7)

with the terms corresponding to the probability for updating links of a node on surface of a cluster (including the number of
these clusters), the probability of choosing specific type of cluster as target of the rewiring (including their eventual number)
and the probability to carry out this change.

The probability to merge a mismatched node back into the connected cluster through state dynamics is

P−sxx = (1 − p)
Nf

N
1
q

(A.8)

with the terms corresponding to the probability to update a mismatched node and the probability to change to a state
matching the connected cluster. The probability to turn mismatched node into a single, unconnected node is

P−lx1 = p
Nf

N
1

⟨k⟩
(A.9)

with the terms corresponding to the probability to update the node directly linked to one of mismatched nodes and the
probability to update this particular link out of on average ⟨k⟩ links it possesses (note that since energy change cannot be
positive, it will be always accepted). The probabilities tomerge into another cluster through link dynamics can be written as

P−lAB = p
ρABNf

N
NB

N
+ p

NB(q − 1)
N

ρABNf

N
1

q − 1
= 2p

ρABNfNB

N2
(A.10)

P−lBB = p
ρBBNf

N
NB

N
+ p

NB(q − 2)
N

ρBBNf

N
1

q − 2
= 2p

ρBBNfNB

N2
(A.11)

P−lBA = p
ρBANf

N
NA

N
+ p

NA

N
ρBANf

N
= 2p

ρBANfNA

N2
(A.12)

with both sum components corresponding to rewiring the link of the mismatched node and to rewiring link frommatching
cluster so that themismatched node becomes part of that cluster (still attached via interface to the original cluster it was at-
tached to). The first components have terms corresponding to the probability of updating link of amismatchednode attached
to given cluster type and the probability to rewire tomatching cluster. The second components have terms corresponding to
the probability of updating links in clusters that can attach the mismatched node, the probability to rewire to a mismatched
node, and the probability that this mismatched node actually had the same state. The values of ρAB, ρBB, ρBA are fractions of
mismatched nodes being nodes attached to A with state of one of B clusters, attached to any B with state of another B and
attached to Bwith state of A respectively. Assuming that a fraction ofmismatched nodes attached to a cluster is proportional
to the size of the cluster, we can get the approximate fractions as ρAB =

NA
N−N1

, ρBB =
NB(q−1)
N−N1

q−2
q−1 and ρBA =

NB(q−1)
N−N1

1
q−1 .

By adding up all relevant probabilities

P+ = P+sAA + P+sBB + P+l1A + P+l1B + P+lBA + P+lBB + P+lAB (A.13)
P− = P−sxx + P−lx1 + P−lAB + P−lBB + P−lBA (A.14)

we obtain the probabilities to create new mismatched node or remove one in a single update.
Since we assume quasi-stationary process, these probabilities must be balanced P+ = P−. If we assume that Nf is small,

we can write that NB ≈ (N −NA −N1)/(q−1) and can express P+ and P− solely through NA,Nf and parameters q, p,N, ⟨k⟩.
We also notice that P+ is independent on Nf and P− can be factorized P− =

Nf
N P ′

−
, where P ′

−
does not depend on Nf . This

means the equilibrium Nf can be easily calculated as

Nf = N
P+

P ′
−

(A.15)

and calculated as a function of NA and the system parameters.
The main article uses Nf value calculated in here in calculation of number of interfaces I (in Eqs. (8) and (10)) as well as

rate of mismatched nodes returning to dominant cluster (Eq. (12)).
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