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Abstract

We investigated distributions of short term price trends for high frequency stock market data. A number of trends as a function of
their lengths were measured. We found that such a distribution does not fit to the results following from an uncorrelated stochastic
process. We proposed a simple model with a memory that gives a qualitative agreement with the real data.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Statistical analysis of stock prices is a rich source of information about the nature of financial markets. It was Louis
Bachelier who used a stochastic approach to model financial time series for the first time [1]. Since that time the
statistical analysis of stock prices has become a widely investigated area of interdisciplinary researches [2–5].

In 1973, Fischer Black and Myron Scholes published their famous work [6] where they presented a model for
pricing European options. They assumed that a price of an asset can be described by a geometric Brownian motion.
However, the behaviour of real markets differs from the Brownian property [7,8], since the price returns form a
truncated Lévy distribution [9–11]. As a result of this observation many non-Gaussian models were introduced [2–4].

Another divergence from the Gaussian behaviour is an autocorrelation in financial systems. Empirical studies show
that the autocorrelation function of the stock market time series decays exponentially with a characteristic time of a
few minutes, while the absolute values of the autocorrelation of prices decay more slowly, as a power law function,
which leads to a volatility clustering [12–15].

The issue of market memory was also considered by many authors (see references in Refs. [2,3]). It was
observed [16], that for certain time scales, a sequence of two positive price changes lead more frequently to a
subsequent positive change than a sequence of mixed changes, i.e. the conditional probability P(+ \ ++) is larger
than P(+ \ +−). In this paper we investigated this effect for high frequency stock market data.
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Fig. 1. Distribution N (l) for uptrends (a) and downtrends (b) for the WIG20 index between the 13th June 2003 and the 3rd November 2006. Data
are sampled every 15 s (circles), and were compared to uncorrelated process (line) Eq. (1).

2. Empirical data

Let us consider short term price trends for high frequency stock market data. By short term uptrend/downtrend we
mean such a sequence of prices that a price is larger/smaller than the preceding one (see below for a more precise
definition).

First, having a time series Yt , which is in our case a history of a stock price or a market index, we build a series of
variables st in the following way:

• st = 1 if Yt > Yt−1,
• st = −1 if Yt < Yt−1,
• st = st−1 if Yt = Yt−1.

A positive value of the variable st means that at time t the price Yt did not decrease, and similarly a negative value
means that the price did not increase.

In a series st we can distinguish subseries of identical values. For a < b and sa = sb = s, S(a, b, s) is such a
subseries if and only if ∀c∈(a,b) sc = s. Subseries S(a, b, s) can be identified with an uptrend lasting from t = a till
t = b for s = 1, and with a downtrend for s = −1. The length l of such an uptrend/downtrend is equal to b − a + 1.
Let us mention that a subseries of a length l includes two subseries of length l − 1, three subseries of length l − 2 etc.

Let N (l) be a number of subseries of a length l with a fixed s in a series s1, . . . , sM . If st were generated by an
uncorrelated discrete stochastic process with a probability P(st = 1) = p, then the expected value of N (l) would be
equal to:

N (l) = (M − l + 1)pl , (1)

where M is a number of all elements in the basic series. Similarly the expected value of downtrend series of length l
is N (l) = (M − l + 1)(1 − p)l .

We have measured the distribution N (l) for real market data and the same distribution for the corresponding
uncorrelated process. Fig. 1 presents this distribution for the WIG20 index of Warsaw Stock Exchange (WSE)
between the 13th June 2003 and the 3rd November 2006, and the distribution for the corresponding uncorrelated
process. The results show a significant difference between the real data and the uncorrelated model. If variables st
were uncorrelated, there would not be subseries longer than 25 ticks. In fact, subseries even longer than 100 ticks
are present. The trends last for about 30 minutes. There are far more such trends than it would be if the process were
uncorrelated. The distribution N (l) was also calculated for particular stocks from WSE, NYSE and NASDAQ (Fig. 2).
The stocks from WSE were: Bioton between the 31st March 2005 and the 3rd November 2006, and TPSA between the
17th November 2000 and the 3rd November 2006. The stock from NYSE was Apple, and the stock from NASDAQ
was Intel, both between the 4th January 1999 and the 29th December 2000. For the index WIG20 trend periods were
measured in real time, but for the stocks they were measured in a transaction time (see Section 4).

The observed difference between the uncorrelated model and the real markets is due to the strong autocorrelations
in the process st . It is only seen in high frequency data. Choosing every nth element of the series st weakens
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Fig. 2. Distribution N (l) for: (a) BIOTON between the 31st March 2005 and the 3rd November 2006 (WSE), (b) TPSA between the 17th November
2000 and the 3rd November 2006 (WSE), (c) APPLE between the 4th January 1999 and the 29th December 2000 (NYSE), (d) INTEL between the
4th January 1999 and the 29th December 2000 (NASDAQ). Uptrends are plotted with circles and downtrends are plotted with squares. All data are
sampled tick by tick. Lines correspond to the uncorrelated process (1).

Fig. 3. N (l) of WIG20 uptrends for every nth element of st , n = 1 circles, n = 2 squares, n = 4 diamonds, n = 6 triangles.

the autocorrelations, and makes the outcome approaching the uncorrelated model with growing n. It is shown in
Fig. 3.

3. A phenomenological model of correlated market prices

In real markets variables st and st+τ are correlated, although this correlations decay very fast. Let r(k) stand for a
conditional probability P(sn+k+1 = 1 \ sn+k = 1, . . . , sn = 1, sn−1 = −1), which is independent of n. For processes
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Fig. 4. The distribution N (l) with fitted curve (2) (a) WIG20 (WSE) uptrends with fitted parameters: a = −0.000098, x1 = −48.28, x2 = 153.31,
(b) TP S.A. company (WSE) uptrends with fitted parameters: a = −0.000057, x1 = −73.42, x2 = 184.35.

where autocorrelations are present we can write a generalization of Eq. (1):

N (l + 1) = (M − l)p
l∏

i=1

r(i), (2)

for l > 0 and N (1) = Mp.
Let us see that the result (2) is equivalent to (1) if for any x there is r(x) = p. A key issue is to model r(x) in

order to describe the characteristics of a given market. The results presented in Figs. 1 and 2 show that the model of
the uncorrelated process (1), is a poor simplification. To get a better consistency with real data the function r(x) can
be modelled as:

r(x) = a(x − x1)(x − x2), (3)

with fitted parameters a, x1 and x2. A binomial function was chosen because we are looking for a simple concave
function with a maximum, and a binomial function matches our requirements for proper parameters a, x1, x2.

We expect that for small x , the probability value r(x) increases with x . It means that when the trend starts forming,
investors follow it and, as a result, they amplify the trend. Thus, the probability of a continuation of the price movement
grows. As time goes by, some of them may want to withdraw to take profits, and those who are out of the market believe
that it is too late to get in. This causes a decrease of r(x) for a longer trend.

One can choose various functions to model the probability r(x). All such functions should be concave functions
with a maximum for a positive argument smaller than the maximal length of all subseries. The Fig. 4 presents the
distribution N (l) with a fitted curve based on (3).

Putting (3) into (2) we get after some algebra an approximated form of the function N (l) as:

N (l) ' (M − l + 1)pe−2(l−1)
[a(l − x1)(l − x2)]

l−1
(

l − x1

1 − x1

)1−x1
(

l − x2

1 − x2

)1−x2

. (4)

The Fig. 5 presents functions (2) and (4) and a relative difference between them.
For a given set of parameters a+

= −0.000098, x+

1 = −48.28, x+

2 = 153.31, a−
= −0.000101, x−

1 = −47.32,
x−

2 = 150.69, obtained for uptrends and downtrends in the WIG20 index respectively, one can simulate the stochastic
process according to Eqs. (2) and (3). The autocorrelation function

C(τ ) = 〈si+τ si 〉, (5)

calculated for such a process, decrease similarly to the autocorrelation function received from the empirical data (see
Fig. 6). The model reflects the short range correlations of the sign.
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Fig. 5. Graph (a) presents the distribution N1(l) obtained from the Eq. (2) and N2(l) from the approximation (4) for the WIG20 index (WSE).
Graph (b) presents the relative difference between them: d = (N2(l) − N1(l))/N2(l).

Fig. 6. The autocorrelation function obtained from Eq. (5) for parameters a+
= −0.000098, x+

1 = −48.28, x+

2 = 153.31, a−
= −0.000101,

x−

1 = −47.32, x−

2 = 150.69 (line) and the index WIG20 itself (circles).

4. Measuring trends in volume and volatility times

In previous chapters we presented an analysis of price trends measured in real and transaction times. The WIG20
index is published every 15 s, and for this index the 15 s data are the most frequent possible. Investigating these data
we naturally used the real time with a 15 s interval, in which the sequence “+1, +1, +1, +1” means that the index
did not decrease for one minute.

For the stocks of companies tick-by-tick data are accessible, thus a transaction time is a natural measure of a time
length. Transaction time can be defined as:

τt (ti ) = τt (ti−1) + 1, (6)

where ti is the real time of the transaction i . We used times τt for data analysis of single stocks. In this case the
sequence “+1, +1, +1, +1” means that the price did not decrease during four subsequent transactions.

Other time definitions are also possible. One of them is the volume time [17] defined in a standard way as:

τv(ti ) = τv(ti−1) + Vi , (7)

where Vi is the volume of transaction i .
We repeated our analysis, measuring lengths of trend periods, using the volume time instead of the transaction

time. In Fig. 7 we presented distributions of the trend periods of exact length τv (L(τv)) for stocks PKN Orlen and
TPSA of Warsaw Stock Exchange, both from the period between the 17th November 2000 and the 3rd November
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Fig. 7. The distribution L(τv) of numbers of trend periods of a length τv measured in a volume time, for: (a) PKN Orlen (WSE), (b) TPSA (WSE).
Data were binned with a bin of the width 100.

Fig. 8. The distribution N (τv) for: (a) PKN Orlen (WSE), (b) TPSA (WSE).

2006. Let us stress that contrary to the distribution N (l) which was, in a sense, cumulative, L(τv) is non-cumulative,
because it shows only trends of the exact length τv .

The distribution N (τv) was presented in Fig. 8. One can see that there is an inflection point within the range of the
variable v. It resembles the shape of the function N (l) from the Figs. 1 and 2, which also possesses an inflection point.

By analogy to the volume time (7) we can define the volatility time:

τσ (ti ) = τσ (ti−1) + σ(ti ), (8)

where σ(ti ) is the local volatility at the time ti .
The volatility at time ti was defined as an absolute value of a log-return for a transaction at time ti , it is

σ(ti ) = |log(P(ti )/P(ti−1))|, (9)

where P(ti ) is the price of a stock at time ti . For such a defined volatility we measured trend lengths and presented
the distribution of the lengths L(σ ) in Fig. 9.

5. Conclusions

We have investigated the short term price trends for high frequency stock market data. It turned out that the statistics
for real markets is significantly different from the statistics of uncorrelated processes. Longer trends (of the order of
several minutes) are much more frequent than they should be, if one used an uncorrelated model.

The investigations have been repeated for trends measured in volume and volatility time. The distribution of trends
in volume time N (τv) has similar behaviour to the function N (l).
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Fig. 9. The binned distribution L(τσ ), it is a number of trend periods of a length τσ measured in a volatility time, for: (a) PKN Orlen (WSE),
(b) TPSA (WSE).

We proposed a simple model that qualitatively captures the behaviour of the market. The model leads to a
distribution of trend series N (l) that is similar to the distribution observed in market data. Our model produces also
short range correlations. This behaviour is caused by the conditional probability of trend continuation that changes
non-monotonically with a trend length. At the beginning of the trend, the probability of the trend continuation grows,
then it hits the maximum and finally decreases. As a result, trends posses limited lengths.
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