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Abstract

We propose a route for the evaluation of risk based on a transformation of the covariance matrix. The approach uses a

‘potential’ or ‘objective’ function. This allows us to rescale data from different assets (or sources) such that each data set

then has similar statistical properties in terms of their probability distributions. The method is tested using historical data

from both the New York and Warsaw stock exchanges.

r 2007 Elsevier B.V. All rights reserved.

PACS: 05.45.Tp; 89.65.Gh

Keywords: Financial risk; Stochastic processes; Probability distribution; Stock market data; Correlations

1. Introduction

Optimization of portfolios has been much studied since the pioneering work of Markowitz [1,2], who
proposed using the mean–variance as a route to portfolio optimization [1–16]. However, the basic
construction of the portfolio has not changed much as a result. Computation of Sharp ratios [17,18] and the
Markowitz analysis equate risk with the co-variance matrix. Portfolio allocations are then computed by
maximizing a suitably constructed utility function [19–21]. Moreover, the approach taken by Markowitz and
many other authors [1,2] is essentially only appropriate for stochastic processes that follow random walks and
exhibit Gaussian distributions [3–5]. Many economists have sought to use other utility functions and invoke
additional objectives [22,23] in which portfolio weights are computed via maximization of these different
utility functionals. Others have introduced additional features of the probability distribution such as the third
moment or skewness of the returns [22,23]. This builds in aspects of the deviation of the probability
distribution from the Gaussian as well as the asymmetry. Introducing even a constant value for the skewness
may yield more reliable portfolio weights than a calculation in which only the variance or second moment of
the distribution is used and where the risk of extreme values is seriously underestimated. Similar comments
could be made about the introduction of the kurtosis which is a first order route to addressing the issue of ‘fat’
tails.
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In recent years, a number of physicists have begun to study the effect of correlations on financial risk.
Techniques based on random matrix theory developed and used in nuclear physics have been applied to reveal
the linear dependencies between stock market data for both the US and UK markets [4,5]. More recently other
workers including one of the present authors have used minimum spanning trees methods [24–26] for the same
purpose. Spanning tree methods seem to yield results that are similar to those obtained using random matrix
theory but with less effort and the use of less data in the sense that only a subset of the correlation matrix is
actually used to construct the tree. The overall aim, in both cases, is to arrive at optimal diversified portfolios.
One interesting result obtained in Ref. [25] was the identification of new classifications introduced in the FTSE
index ahead of their formal introduction by the London authorities.

An important outcome of studies basing on Markowitz approach is the capital asset pricing model (CAPM)
[10,27–29] that relates risk to correlations within the market portfolio [10,27–29]; of course the risk now is that
all investments will collapse simultaneously. Furthermore, it is assumed that risk that achieves premiums in
the long term should not be reducible otherwise arbitrage is possible [28]. This is essentially the arbitrage
pricing theory (APT).

However, key issues remain unresolved. One weakness of CAPM and APT theories is that they assume
efficiency in the proliferation of market information. In a real market not all investors have the same or
complete information and arbitrage is possible. Merton [30] has discussed this and in so doing has extended
CAPM theory to deal more effectively with small firms for which information is not always readily available.

Here we concern ourselves with a new approach to the exploitation of data sets for the computation of
portfolio weights within a diversified portfolio. The method exploits the full character of the distribution
function for each asset in the portfolio and seeks to maximize the impact of correlations. In the next section,
we discuss the background to our approach and introduce the so-called objective function. Having established
this we show how, from data, we can construct values for a renormalized objective function. These are then
used in Section 3 to obtain both covariance matrices and weights for portfolios of stocks. The calculations are
illustrated in Section 4 by examples from both the US and Warsaw stock exchanges. We also show how the
approach modifies the underlying distribution of eigenvalues enhancing the correlations for larger values.

2. Objective function

Consider an asset, characterized by a price, SðtÞ and return xðtÞ ¼ lnSðtþ 1Þ=SðtÞ. The objective function,
wðxÞ is defined in terms of the stationary probability distribution for returns, PðxÞ, viz:

PðxÞ ¼
1

Z
e�wðxÞ=D, (1)

where Z is a normalization factor. Such functions are familiar to physicists and may be derived by minimizing
a ‘free energy’ functional, F ðwðxÞÞ, subject to constraints on the mean value of the objective function, viz:

F ¼

Z
R

dxPðxÞ lnPðxÞ þ
wðxÞ

D
� l

� �
. (2)

Such a form for the probability distribution is also the outcome of a model that assumes x is governed by a
generalized Markovian stochastic process of the form:

_xðtÞ ¼ f ðxÞ þ gðxÞ�ðtÞ. (3)

The Gaussian process, �, satisfies:

h�ðtÞ�ðt0Þi ¼ Ddðt� t0Þ;

h�ðtÞi ¼ 0:
(4)

For the moment we leave the form of the functions f and g unspecified except to say that they only depend
on xðtÞ. The solution to such a stochastic process has been deduced elsewhere [31–33]. Adopting the
Ito convention, the distribution function, Pðx; tÞ, associated with the process is given by the Fokker
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Table 1

Examples of objective values wðxÞ and corresponding probability distributions, P for different choices of f and g

f ðxÞ gðxÞ wðxÞ=D PðxÞ � Z

�sgnðxÞ 1 jxj=D e�jxj=D

�x 1 x2=D e�x2=D

lgg0 gðxÞaconst 2ð1� l=DÞ ln g 1

g2ð1�l=DÞ

2x
n ð1þ x2=nÞ 1þ x2=n ðnþ 1Þ=2 lnð1þ x2=nÞ 1

ð1þx2=nÞðnþ1Þ=2
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Planck equation:

qPðx; tÞ

qt
¼

q2

qx2

D

2
g2ðxÞPðx; tÞ

� �
�

q
qx
ðf ðxÞPðx; tÞÞ. (5)

The stationary solution is

PðxÞ ¼
e

R
dxð2f =ðDg2ÞÞ

Z � g2ðxÞ
¼

1

Z
exp �

2

D

Z
dx

Dgg0 � f

g2

� �
, (6)

where Z is a normalization factor.
A number of different cases are evident as expressed in Table 1. Row 4 is obtained from row 3 by choosing

g ¼ ð1þ x2=nÞ, f ¼ gg0 and ðnþ 1Þ=2 ¼ 2ð1� l=DÞ when we see that the distribution function reduces to a
Student distribution. For D40 we see that no3. On the other hand, we know that Student distribution is
defined for n42 in order the variance to be finite. Nevertheless this limitation, that stochastic process cannot
be defined for n43, we can normalize the distribution function, because wðxÞ is well defined for whole
spectrum of n42 using Eq. (1). In developing our methodology in the next sections we shall focus on the use of
the Student distribution that seems to offer a good fit to the data we consider. Tsallis and Anteneodo [34] have
shown how similar multiplicative stochastic processes based on other nonanalytic choices for the function f

and g can lead to q-exponentials. More recently Queiros, Anteneodo and Tsallis [35] have shown that for
many financial processes where fat tailed probability functions are empirically observed these Student or
Tsallis distributions are good choices.

3. Portfolio optimization

As we have noted above it is usual for a portfolio of M stocks to compute portfolio weights, pi using the
covariance matrix, C and defining the risk, R, as

R ¼
X

i;j

Ci;jpipj. (7)

Optimizing this in the absence of risk free assets yields the weight of stock i:

pi ¼
1

Z

X
j

ðC�1Þi;j , (8)

where Z ¼
P

i;jðC
�1
Þi;j.

It is known that a nonlinear transformation of data can change correlations e.g. correlations of jxij decrease
much slower than xi [5]. We exploit this by introducing a particular transformation that increases correlations
by renormalizing the objective values such that the total set of values, xiðtjÞ for all i from 1 to M and j from 1
to N are drawn from a common distribution. To effect this change, we first compute for each asset the
probability distribution by fitting the data for each asset using a Student distribution characterized by the
power-law index. We then compute for each value of the return xiðtjÞ the corresponding objective value,
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wiðxtj
Þ. These objective values are then transformed to yield a set of renormalized objective values as follows:

~wiðxtj
Þ ¼ wiðxtj

Þ
ŵ

w̄i

¼ wiðxtj
Þ
ð1=MNÞ

PM ;N
i;j wiðxtj

Þ

ð1=NÞ
PN

j wiðxtj
Þ

. (9)

In effect we are renormalizing the objective value with its mean value w̄i relative to the overall mean value, ŵ,
of the entire data set. Having computed these renormalized objective values we can now obtain the
corresponding set of values for ~xiðtÞ by inverting the values according to a new Student distribution that
characterizes the entire data set consisting of one value of n and M �N values. Hence using the result in row 4
of Table 1:

~xiðtjÞ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nð1� e2 ~wiðxtj

Þ=ðnþ1Þ
Þ

q
, (10)

where n is now the tail exponent that characterizes the pdf of the entire data set.
Thus we can compute for our portfolio of M stocks a new covariance matrix, ~C using these renormalized

values of ~xiðtjÞ. This yields a new minimized value for the risk:

~R ¼
XM
k;i¼1

~Ck;i ~pk ~pi. (11)

4. Illustrative results and conclusions

We show in Figs. 1 and 2 the outcome of implementing the method for a simple portfolio of two stocks (i.e.,
M ¼ 2). Specifically, we used data for NYSE stocks General Electric and Boeing. For each stock we used
12 500 data points extending over the time period January 1999 to December 2000. Student distributions are
fitted separately to the positive and negative returns. It can be seen that the Student distributions for each
stock are different prior to renormalization but are the same after renormalization. The overall changes as a
result of our renormalization process are small but we show in Fig. 5 that they can lead to significant changes
in the distribution of eigenvalues for large eigenvalues.

We followed up this computation by renormalizing data for two different groups of stocks. First we selected
60 stocks from the NYSE as before over the period January 1999 to December 2000 and implemented the
prescription over a moving 75 day window using 1500 points for each window, what corresponds to quarter of
hour returns. In this way, we could compute the various elements of the correlation matrix and the associated
optimum weights for the different stocks in the portfolio as a function of time. The results are shown in Fig. 3.
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Fig. 1. Plot of the histogram of returns and normalized returns in the case of General Electric counted in NYSE in years 1999 and 2000

and corresponding Student distributions with nþ ¼ 3:11, n� ¼ 3:07 and n ¼ 3:2, respectively.
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Fig. 3. Portfolios runaway of 60 stocks at New York Stock Exchange from May 1999 to December 2000. Equally distributed portfolio

(open circles) and portfolio with weights calculated from standard covariance matrix equation (8) (solid squares) and portfolio with

weights calculated from normalized covariance matrix are presented.
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Fig. 4. Portfolios runaway of 33 stocks at Warsaw Stock Exchange from May 2001 to February 2006. Equally distributed portfolio (open

circles) and portfolio with weights calculated from standard covariance matrix equation (8) (solid squares) and portfolio with weights

calculated from normalized covariance matrix are presented.
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Fig. 2. Plot of the histogram of returns and normalized returns in the case of Boeing counted in NYSE in years 1999 and 2000 and

corresponding Student distributions with nþ ¼ 2:54, n� ¼ 3:05 and n ¼ 3:2, respectively.

K. Urbanowicz et al. / Physica A 384 (2007) 468–474472



ARTICLE IN PRESS

0.1

0.01

1E-3

1E-4

1E-5

1 10 100

Index of eigenvalue

M
a
g
n
it
u
d
e
 o

f 
e
ig

e
n
v
a
lu

e
s

Standard covariance matrix

Coveriance matrix of renormalized data

Fig. 5. Distribution of eigenvalues of covariance matrices of 78 stocks in NYSE (January 1999–December 2000). Eigenvalues of standard

covariance matrix (solid squares) and of covariance matrix from renormalized data (open circles) are presented in the graph.
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Fig. 4 gives the results of a similar set of calculation for a portfolio of 33 stocks from the Warsaw stock
exchanges over the period May 2001 to February 2006. In order to prevent situations arising where all the
money is invested in just one stock we have, in our calculations, imposed the limit pio0:15. We have checked
that a precise value of this limit is not crucial for optimization procedure.

Although we have not included transaction costs (we have changed our portfolio every day, usually by a
very small amount), in both cases it does seem that using data based on our renormalization procedure we
have a route to greater overall returns.

Additional insight into the procedure is provided when we compare the distribution of eigenvalues for the
standard covariance matrix with the corresponding distribution for the renormalized covariance matrix. These
are shown in Fig. 5. It can be seen that the transformation procedure enhances correlations as anticipated and
this enhancement occurs at larger eigenvalues. One could ask why the procedure we have used reduces the risk
associated with the portfolio? This is because having evaluated the risk connected to each stock then we have a
better estimation of the weights in the portfolio. We claim that correlations calculated with standard method
underestimate the linear dependencies between stocks, so the error of the corresponding portfolio risk is much
higher. Further, we claim, that we reduce the error related to risk evaluation, so risk as a whole is smaller.

It might also be argued at this point that we could by-pass the entire background given in Section 2 and
simply fit the ‘best’ distribution function to the data as was done, for example, by Levy and Duchin [16]. Using
this approach they obtained different distributions for different stocks then also obtained different
distributions for the same stock at different times. To our mind this is not a very satisfactory approach
and ignores the evidence from groups led by physicists such as Stanley [5,24] that financial data exhibits
universal behavior such as scaling, power-law tails, etc.

Of course, an empiricist could still insist that our approach does not yield the best fit and other choices for
example for the entropy might improve our results. To answer this question requires a more extensive study
that we have presented here.

The covariance matrix is now widely used for the analysis of portfolios. Our approach to the exploitation of
this matrix that yields new and correct linear dependencies clearly has wide application and will, we believe,
prove to be of considerable benefit to industry practitioners.
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