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Abstract

We investigate the ordering of voter model on fractal lattices: Sierpinski Carpets and Sierpinski Gasket. We obtain a
power-law ordering in all cases, but the dynamics is found to differ significantly for finite and infinite ramification order of
investigated fractals.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The Ising model is a well-known dynamical model that was investigated in complex networks and fractal
structures [1-6]. However, aside from that model, there are many other possible dynamics, sharing little in
common with behavior of the Ising model. The voter model is an example of such a model, that exhibits
different qualities at a very basic level. Unlike the Ising model, the voter model has no surface tension and
defines a broad universality class [7]. While the Ising model dynamics has been studied on fractal lattices [3—6]
little is known about the behavior of voter model in such geometries.

We have investigated the behavior of the voter model on Sierpinski Carpets and on Sierpinski Gasket. It is
known [8] that for non-fractal systems the evolution of the voter model depends on the dimensionality of the
lattice. For a large time ¢ the ordering process obeys the following equations

, D<2,
p(t)~{ (Inp)”', D=2, (1)
1, D>2,

where p is a fraction of links that form interfaces, i.e. they connect opposite spins, D is dimensionality, ¢ is time
and « = 1 — D/2 is the predicted exponent. The derivation was made for a hypercubic lattice with an arbitrary
number of neighbors, what directly translates into dimensionality. Later on, the correlation functions were
calculated for the voter model dynamics in such lattices. The lattices were initially assumed to have an integer
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dimensionality, but the resulting equations have a critical point at D = 2. The final result in Ref. [8] was given
in the form of such inequalities to emphasize the criticality.

We will focus on the problem of voter model dynamics on fractal lattices. Since the analytical derivations [8]
were not made for fractals, they are not expected to describe the dynamics correctly, but they form a good
reference point for investigations and comparison.

2. Models

The voter model is a very simple model of opinion formation. Nodes in the network are agents, each one
having an opinion. There are only two possible opinions, and typically they are considered as +1 and —1, just
as Ising spins. The dynamic rule is simple—the node opinion changes to an opinion of one randomly chosen
neighbor.

The implementation is following: we choose one node at random, and then one of its neighbors randomly.
The first node assumes the state of the second. One time step of the dynamics corresponds to the number of
individual node updates equal to the number of nodes in the network, so on average each node is updated once
every time step.

We investigate the voter model behavior on two fractal networks: Sierpinski Carpet (SC) and Sierpinski
Gasket (SG). The SC is constructed according to a chosen basic pattern. The pattern is a square, divided into
n x n squares that can be full or empty (Fig. 1). First, single nodes are taken, and arranged into the pattern,
putting nodes into full positions and skipping empty positions. In the next step, the resulting structures are
arranged into the same pattern. All neighboring nodes in the resulting pattern are connected creating the
fractal network. The fractal dimension of SC depends on the basic pattern. Classical SC has 3 x 3 pattern with
all the squares full except the central one. Such SC has a fractal dimension d = (In 8)/(In 3) ~ 1.893. We have
investigated two types of SC. One has an infinite ramification and dimensions ranging from (In 28)/(In 8) ~
1.6025 to (In 8)/(In 3). The basic pattern is an empty interior surrounded by a full positions frame, similar to
the classical SC (see Fig. 1). Second type has the finite ramification £ = 4 and dimensions ranging from
(In 6)/(In 3) ~ 1.6309 to (In 38)/(In 7) ~ 1.8693. The basic pattern is full, except for the right and down edge,
where only single positions are full (see Fig. 1). Since it is impossible to numerically investigate true, infinite
fractals, we will call the number of steps in what the network was made a fractal level.

The ramification is the minimum number of links that one needs to remove to separate a macroscopic part
of infinite fractal. The finite ramification means that the structure has some “weak points” where only a finite
number of links connect together two parts of an infinite network. The infinite ramification means that infinite
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Fig. 1. The construction of Sierpinski Carpet (SC) fractal network. Three different basic patterns are at the top, and corresponding fractal
networks of level 3 and 2 are at the bottom. The hatched area of patterns are full positions. The first two carpets from the left have an
infinite ramification, while the third one possesses the ramification # = 4.
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parts of infinite network are connected by infinite number of links. For example, a regular square lattice has an
infinite ramification, while a tree has the ramification equal to 1.

The SG network is created in the following way (Fig. 2). Three nodes are taken and connected into a
triangle. In the middle of each edge a node is created and the three new nodes are connected between
themselves. This way the whole triangle is divided into four smaller ones. In the next step all three non-central
triangles are treated in the same way, adding nodes in middle of the triangle edges and linking them together.
SG has the fractal dimension (In 3)/(In 2) ~ 1.5850 and it possesses a finite ramification # = 4.

While in the case of SC, it is easy to create a general class of SC fractals with different fractal dimensions, we
are not aware of any generalization of SG model that allows easy tuning of fractal dimensions.

3. Results

We have investigated ordering of the voter model in SC and SG fractals. To measure the disorder, we have
used the fraction of interfaces p = I/E, where [ is a number of interfaces—links connecting nodes with
different spins, E = N(k)/2 is the total number of links in the network, k is the node degree—number of
connections the node possesses.

The system orders (Fig. 3) with the interface fraction p decreasing as a power of time ¢z. However, due to the
finite system size, there are fluctuations around the power-law. Since the power-law decay becomes slower with
time, the fluctuations become more significant, and they push the system into a completely ordered absorbing
state after some time.

To extract the power-law trend, we have averaged the results of many simulations, but to avoid the
exponential decay due to complete ordering of the individual simulations, in a given time step we have
averaged only over the simulations that were not completely ordered at that time. This way we have
circumvented the fluctuations ordering the system and have obtained an approximation of an infinite network
(Fig. 4).

We have observed the evolution of the interface fraction p in time for networks with various fractal
dimensions between 1 and 2 and both with finite and infinite ramification.
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Fig. 2. The construction of Sierpinski Gasket (SG) fractal network of level 5.
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Fig. 3. The ordering process in the SG models for three different simulations. The data are for fractals of level 8. p is the fraction of links
that are interfaces.
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Fig. 4. The ordering process after averaging over simulations that did not order completely. The data are for SC networks with infinite
ramification and for SG networks. All the data are averaged over 100 network simulations and log-binned. The exponents o,,, are
obtained from the slopes. The SG simulation data has been taken with 10 time step intervals, thus the data starts later than for SC. The
plateau in SG simulations is a combined effect of finite system size and our method of averaging only over active simulations. (p) is the
mean fraction of links that are interfaces. “‘Pattern” is the linear size of the pattern used in carpet creation.

The dynamics of SC networks with finite and infinite ramification clearly shows different behavior (Figs. 4
and 5). For finite ramification networks oscillations are present around the general power-law trend. The
oscillations are exponential decay periods, each with different time scale. This can be explained as a complete
ordering of weakly connected modules of certain sizes. The modules are weakly connected due to finite
ramification, and the complete ordering occurs because of random fluctuations. When nearly all modules of a
given size are ordered, the ordering at the next hierarchical level starts, with a longer time scale. The ordering
due to random fluctuations produces an exponential decay of average number of interfaces, and repeating the
process in following scales produces the power-law overall behavior. The effect is less visible for smaller
pattern sizes, since modules in such cases are smaller and connected relatively stronger. Additionally
oscillations have shorter period, making them even less visible.

We have measured the exponent o of the power-law for all investigated lattices, and compare it to the
theoretical value [8] (Eq. (1)). It is worth to remind that the theoretical values are only reference points, and
were not originally calculated for fractal structures.
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Fig. 5. The ordering process after averaging over simulations that did not order completely. The data are for SC networks with finite
ramification and averaged over 100 network simulations and log-binned. The exponents ¢,,, are obtained from the slopes.
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Fig. 6. Theoretical and experimental exponents for the ordering processes in function of fractal dimension. The line is the analytic formula
(Eq. (1)), the squares are exponents for SC networks with infinite ramification, the triangle is exponent for SG network, the diamonds are
exponents for SC networks with finite ramification, the circle in the left upper corner is the exponent for the one-dimensional network.
Error bars are smaller than symbol sizes. Exact values and additional data can be found in Table 1.
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Theoretical and experimental exponents o (see Eq. (1)) for ordering processes in various networks
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Type Ramification Level Pattern Dimension Ottheory Olexp

SC infinite 5 3 1.8928 0.0536 0.1908 + 0.0007
SC infinite 4 4 1.7925 0.1038 0.2484 + 0.0007
SC infinite 3 5 1.7227 0.1387 0.3136 +0.0029
SC infinite 3 6 1.6720 0.1640 0.3362 + 0.0028
SC infinite 3 8 1.6025 0.1988 0.3339+0.0017
SC 4 5 3 1.6309 0.1845 0.3763 &+ 0.0008
SC 4 4 4 1.7297 0.1351 0.3393+0.0015
SC 4 3 5 1.7959 0.1021 0.3246 + 0.0029
SC 4 3 6 1.8394 0.0803 0.3087 4 0.0038
SC 4 3 7 1.8693 0.0653 0.2947 £ 0.0046
SG 4 9 - 1.5850 0.2075 0.3456 + 0.0034
regular infinite - - 1.0000 0.5000 0.4973 £+ 0.0006

The results are averaged over 100 individual simulations. The levels of fractals were maximized while keeping a number of nodes that
allowed the actual simulations to be completed in a reasonable amount of time. The regular network was a simple one-dimensional chain
with (k) = 4 (first and second nearest neighbors connected) and periodic boundary conditions. The pattern column shows the linear size of
the pattern used in carpet creation.
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Fig. 7. The exponents for the ordering processes in SC fractals of various sizes. The squares are for infinite ramification and D ~ 1.8928,

the diamonds are for finite ramification and D ~ 1.6309. Exact values and additional data can be found in Table 2.

Table 2

Measured exponents o for ordering processes in fractals of various size

Ramification

Type Level Pattern Size Dimension Olexp

SC infinite 2 3 64 1.8928 0.3094 £ 0.0077
SC infinite 3 3 512 1.8928 0.2755 £ 0.0017
SC infinite 4 3 4096 1.8928 0.2263 £0.0014
SC infinite 5 3 32768 1.8928 0.1908 + 0.0007
SC 4 2 3 36 1.6309 0.2563 £ 0.0075
SC 4 3 3 216 1.6309 0.4055 £ 0.0028
SC 4 4 3 1296 1.6309 0.3909 £ 0.0033
SC 4 5 3 7776 1.6309 0.3763 £ 0.0008
SC 4 6 3 46656 1.6309 0.3717 £0.0016

The results are averaged over 100 individual simulations, except for level 6 fractal data that was averaged only over 10 individual

simulations. The pattern column shows the linear size of the pattern used in carpet creation.
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We also measured the dependence of the ordering exponents on the fractal size. Simulations for SC fractals
of different sizes have been performed in finite and infinite ramification cases.

The ordering exponent is clearly dependent on the fractal size, at least for the fractals with infinite
ramification (Fig. 7, Table 2). The lack of such a strong dependence for finite ramification fractals shows that
the dynamics in these two cases are different. Additionally, one can see that for larger fractals, the ordering
exponents tend to close to the analytical formulas (Eq. (1)), especially for infinite ramification networks. We
do not know what are the infinite size limits of the ordering exponents for these fractals, and whether they
would converge to analytical predictions or not.

4. Conclusions

The results we have obtained show that the ordering of voter model in fractals is described by a power-law,
similarly to regular networks below critical dimension D = 2. The dynamics is different though, and analytic
calculations [8] (Eq. (1)) for regular networks do not give correct exponents if simply applied to fractal lattices
(Fig. 6).

The ordering process strongly depends whether the fractal has finite or infinite ramification. For fractals
with infinite ramification, the ordering is similar to regular lattice and is determined by recurrence properties
of the random walk [7]. In finite ramification fractals the dynamics are different and the ordering is driven
by complete ordering of weakly connected modules in following scales. Additionally the results further
confirm the known fact, that for fractal structures the dimension alone does not determine dynamics in such
systems [3,6].
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