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We extend the previously observed scaling equation connecting the internode distances
and nodes’ degrees onto the case of weighted networks. We show that the scaling takes
a similar form in the empirical data obtained from networks characterized by different
relations between node’s strength and its degree. In the case of explicit equation for s(k)
(e.g. linear or scale-free), the new coefficients of scaling equation can be easily obtained.
We support our analysis with numerical simulations for Erdős-Rényi random graphs with
different weight distributions.
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1. Introduction

The are different ways to represent the structure of real-world networks using the

notions of graph theory. In particular, depending on the fact if we are interested

only in the question of existence of connections between nodes or we would also like

to consider the ”intensity” of those links, the described network can be presented

as unweighted or weighted. In most cases the initial network is of weighted character

but in simple analytical methods the weights are usually removed.

The modeling of weighted networks has begun almost parallel with the un-

weighted case 1, however it is the higher availability of the empirical data that

made possible to perform extensive and well set research on weighted transporta-

tion networks, networks of scientific collaboration 2 or in general the networks of

1
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social contacts 3. In the same time the works on connections between topology and

weight’s dynamics 4,5, transport on weighted networks 6,7 and optimal paths 8

were being developed. Only recently the weighted networks approach has been used

to create a unified statistics combing Bose-Einstein and Fermi-Dirac distributions
9.

The considerations included in this paper are an attempt for extending the

scaling relations presented in 10,11 onto the case of weighted networks. In the cited

works it is shown that the mean distance (or internode distance) between nodes

with degrees ki and kj is given by the following equation

〈lij〉 = a− b log kikj , (1)

where a simple model of unweighted network with a negligible clustering coefficient

leads to

a = 1 +
log(N〈k〉)

log κ
and b =

1

log κ
. (2)

with being N the size of the network, 〈k〉 its average degree and κ the average

branching degree. The scaling relation (1) has been spotted in many different net-

works ranging from public transport networks to biological ones10,11 although the

observed values of the coefficients a and b are different from the results given by

Eq. (2).

2. Empirical data

In the case of weighted network instead of node’s degree ki one usually considers

node’s strength si i.e.

si =

j=ki∑

j=1

wij (3)

where wij is the weight of the link between nodes i and j. In order to find the

relation between the internode distances 〈lij〉 and the product of nodes’ strengths we

examined the following systems: the network of flights between world-wide airportsa,

public transport network in Warsawb and two networks made from connections

between the web-pages of web portalsc. In the case of the airport network the weight

wij stands for the number of different carriers making the connections between

the airports i and j while the weights in Warsaw public transport network are

aThe data contained information about N = 3073 airports with average degree value 〈k〉 = 10.3
and they were obtained from the web-page of OAG http://www.oag.com corresponding to the
status on 14th March 2006.
bThe network is described in 12 with N = 1530 stops and average degree N = 1530 〈k〉 = 2.8;
data was downloaded form Warsaw Transportation Authorities web-page in April 2004.
cThe data from two large Polish portals 13 were obtained thanks to collaboration with Gemius
company. For reasons of information confidentiality they will be further referred to as portal A

(number of nodes N = 195, average degree 〈k〉 = 70) and portal B (N = 512, 〈k〉 = 102)

http://www.oag.com
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proportional to the total number of buses and trams traveling between stops i and

j. In the web portals data the weight was defined as the total number of users

who, being first at page i surfed to page j. For simplicity reasons in all datasets

the weights were symmetrized by calculating the average of the original values i.e.

w = (wij +wji)/2. Due to high reciprocity between wij and wji this does not affect

further analysis.
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Fig. 1. The average node’s strength versus node’s degree 〈s(k)〉 for world-wide airport network
(A) and public transport network in Warsaw (C). The solid line is a fit to the empirical data
〈s(k)〉 ∼ k1.15 (A) and 〈s(k)〉 = 8k − 6 (C). The dependence of the internode distances 〈lij〉 on
the product of nodes’ strengths sisj (circles) and on the product of nodes’ degrees kikj rescaled
by the relation 〈s(k)〉 (triangles) for the airport connections (B) and public transport in Warsaw
(D). The solid line in (B) is defined by the rescaled coefficients ã and b̃ obtained from Eqs (14).

The analysis of the results obtained from the above described datasets is pre-

sented in Figures 1 and 2. For each network we plot the dependence of average

node’s strength and its degree 〈s(k)〉 (Figures 1A, 1C, 2A and 2C) as well as the

internode distances 〈lij〉 separately as a function of the product of degrees kikj and

as a function of the product of strengths sisj (Figures 1B, 1D, 2B and 2D).

The plots presenting 〈lij〉 as a function of kikj were rescaled with respect to

node degree values, substituting it with an approximated relation between the node

strength and its degree, marked as solid curve in 〈s(k)〉 plots. The 〈s(k)〉 equa-

tion can take different forms: starting from lack of correlations in case of public
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transport network in Warsaw (〈s(k) ∼ k), through a scale-free relation in airport

network (〈s(k)〉 ∼ kα), ending at a complicated dependence seen in web portals

data (〈s(k)〉 ∼ kα exp(βk)). Nevertheless in each example the coincidence between

the rescaled data and the empirically observed relation 〈lij(sisj)〉is clearly visible.

The oscillations observed on the logarithmic trend seen in Figures 2B and 2D are

an effect of the high average degree present in both portals data. The origin of this

phenomenon is extensively described in 14.
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Fig. 2. The average node’s strength versus node’s degree 〈s(k)〉 for Portal A (A) and portal
B (C). The solid line is a fit to the empirical data 〈s(k)〉 = 2k1.2 exp(k/30) (A) and 〈s(k)〉 =
0.5k2 exp(k/100) (C). The dependence of the internode distances 〈lij〉 on the product of nodes’
strengths sisj (circles) and on the product of nodes’ degrees kikj rescaled by the relation 〈s(k)〉

(triangles) for the Portal A (B) and Portal B (D).

3. Scaling in the absence of s(k) correlations

The scaling relation observed in the absence of strength-degree correlations can

be easily explained using the approach previously applied for internode distances

in 10. In fact, considering a branching process one obtains the following equation

connecting the degrees of nodes i and j, the distance x between them, the size of
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the network N , its average degree 〈k〉 and the average branching degree κ:

kiκ
x−1 =

N〈k〉
kj

. (4)

Multiplying the nominator and denominator at both sizes of the equation by the

average value of the weight in the network 〈w〉 and assuming that in the absence of

the s(k) correlations the following relation is satisfied

si = 〈w〉ki, (5)

one gets

siκ
x−1 =

N〈k〉〈w〉2
sj

. (6)

This equation immediately results in the form of the internode distances scaling

relation as a function of nodes’ strengths

〈lij〉 = ã− b̃ log sisj , (7)

where coefficients ã and b̃ are given by

ã = 1+
log(N〈k〉〈w〉2)

log κ
oraz b̃ =

1

log κ
. (8)

The above considerations lead to the following conclusions: (a) the slope b̃ of the

scaling function is the same as in the unweighted case, (b) the relation between

coefficients a and ã takes the form

ã = a+
log〈w〉2
log κ

. (9)

In order to compare the consistency of the Eqs (7) and (8) with the numerical

simulations we performed the trails (see Figure 3) for the Erdős-Rényi random

network (ER network) of N = 1000 nodes and 〈k〉 = 5. The weights were randomly

drawn from the Gauss distribution

pw(w) =
1√

2πσw

e
−

(w−〈w〉)2

2σ2
w , (10)

characterized by the mean value 〈w〉 = 10 and three different values of the standard

deviation: σw = 0.1 (Figures 3A and 3D), σw = 1 (Figures 3B and 3E) and σw = 3

(Figures 3C and 3F). A comparison of those weight distributions is presented in

Figure 3H. As one can see the width of the distribution plays the key role with

respect to the shape of the strength distribution P (s); in case when σw = 0 one

gets of course the Poisson distribution

P (s) = e−〈k〉 〈k〉
s

〈w〉

(
s

〈w〉

)
!
, (11)
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for s = 〈w〉,2〈w〉,3〈w〉, .... In general, the strength distribution takes the form

P (s) =

∞∑

k=1

p(k)Prob

(
k∑

i=1

wi = s

)
, (12)

assuming that weights wi are i.i.d. random variables drawn from the distribution

pw(w). Taking into account the considered distributions p(k) and pw(w) one arrives

at the relation

P (s) =

∞∑

k=1

1√
2πkσw

e
− (s−〈w〉k)2

2kσ2
w e−〈k〉 〈k〉k

k!
. (13)

The strength distributions taken from the numerical simulations for three different

values of σw as well as the values P (s) numerically summed using Eq. (13) are shown

in Figures 3A, 3B and 3C. The characteristic oscillations seen in P (s) distribution

around the multiply of the average weight (〈w〉,2〈w〉,3〈w〉,...) vanish along with

the increasing value of σw which in result gives the distribution a smooth shape.

The form of the strength distribution changes the relation between the internode

distances and the product of strengths (see Figures 3D–F). The relation bewteen

the average node’s strength and node’s degree follows Eq. (5) and is shown in Figure

3G.

For σw = 0.1 (Figure 3D) the points obtained from the numerical simulations

overlap those predicted by Eq. (7) with the coefficients ã and b̃ defined by the

parameters of the ER network and the average weight 〈w〉. A comparison between

relations 〈lij〉(sisj) and 〈lij〉(kikj) is presented in Figure 3I showing that indeed

the slopes in both cases are identical as predicted by Eqs (2) and (8). The increase

in the σw value leads to emergence of the oscillations on the log(sisj) trend line

(Figure 3E) and eventually for large values of σw the scaling relations breaks down.

This effect is illustrated in Figure 3F.

4. Scaling in the presence of s(k) correlation

Section 2 contains examples of the scaling of internode distances on the product of

nodes’ strengths in the presence of non-linear s(k) correlations. Previously proposed

branching-tree model has no application in this case, as one should sum up all the

weights on the tree’s surface, which is impossible for any general form of s(k).

Certainly, if s(k) has an explicit form, there is a possibility of reversing the relation,

putting it into Eq. (4) and obtaining the coefficients ã and b̃ defining the 〈lij〉 relation
as a function of sisj . For instance, if s(k) = Akα, reversing gives k = (s/A)1/α and

as a result the rescaled coefficients ã and b̃ will take the form

b̃ =
b

α
and ã = a+ 2 logAb̃. (14)

Such an example is presented in Figure 1B (solid line) where, after getting coeffi-

cients a and b from fitting to relation (1) they were put into Eqs 14) thus obtaining

the values ã and b̃.
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Fig. 3. Numerical simulations of the ER network with N = 1000 and 〈k〉 = 5 and the weights
coming from Gauss distribution (10) with 〈w〉 = 10 and different values of standard deviation σw.
(A–C) Strength distributions for σw = 0.1 (A), σw = 1 (B) and σw = 3 (C); solid lines correspond
to numerically summed Eq. (13). (D–F) Internode distances versus the product of strengths for
σw = 0.1 (D), σw = 1 (E) and σw = 3 (F); solid lines correspond to Eq. (7). (G) The node’s
strength versus its degree; solid line corresponds to equation s(k) = 10k. (H) Weight distributions
for σw = 0.1 (circles), σw = 1 (triangles) and σw = 3 (squares); solid lines come from Eq. (10). (I)
A comparison between relations 〈lij〉(sisj) (circles) and 〈lij〉(kikj) (triangles) for σw = 0.1; solid
lines come from Eqs (1) and (7).

For more systematical study we performed numerical simulations for ER net-

work with N = 1000 nodes and 〈k〉 = 5, with specific s(k) relations. To generate

the correlations between node’s strength and its degree we used the observations

from work 2: if in the given network there are no degree-degree correlations (the

asortativity coefficient r is equal to 0) and the edge between nodes i and j has

weight 〈wij〉, proportional to the expression (kikj)
α then the strength of node i is

si ∼ ki〈wij〉 ∼ k1+α
i . (15)

Using the above described procedure, we imposed weights onto ER network accord-

ing to relations s(k) = 130k3 (Figure 4A) and s(k) = 80k sin(πk/18) (Figure 4C).

As one can observe in Figures 4B and 4D the expected overlap of relation 〈lij〉 as

a function of sisj (circles) with the rescaled data of 〈lij〉(kikj) (triangles) was ob-
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tained. Moreover, in Figure 4B there can be seen a good fitting of data with linear

function determined by the coefficients taken from the Eqs (14).
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Fig. 4. Plots A and C: the average node’s strength versus its degree k. Plots B and D: the
internode distance versus the product of nodes’ degrees kikj rescaled by the relation between
node’s strength and its degree (triangles); the internode distance versus the product of nodes’
strengths sisj (circles). Plots A and B were obtained for ER network with N = 1000, 〈k〉 = 5
where weights fulfill the equation wij ∼ (kikj)2, while in the case of plots C and D a corresponding
relation was wij ∼ sin(ki) sin(kj).

5. Conclusions

The relation between internode distances and the product of the nodes’ strengths

is an extension of the previously examined dependence linking 〈lij〉 and kikj . As

expected the scaling takes a similar form while the coefficients a and b are altered by

the relation between average node’s strength and its degree. In the case of explicit

equation for s(k) (e.g. linear or scale-free), the new coefficients ã and b̃ can be easily

obtained. A breakdown in scaling relation while increasing the width of the weight

distribution has also been observed.
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3. J. M. Kumpula, J.-P. Onnela, J. Saramäki, K. Kaski, J. Kertész, Phys. Rev. Lett. 99,

228701 (2007).
4. Z. Wu, L. A. Braunstein, S. Havlin, H. E. Stanley, Phys. Rev. Lett. 96, 148702 (2006).
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