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The model of scientific paradigms spreading throughout a community of agents with memory is analyzed
using the master equation. The case of two competing ideas is considered for various networks of interactions,
including agents placed at Erdős-Rényi graphs or complete graphs. The pace of adopting a new idea by the
community is analyzed, along with the distribution of periods after which a new idea replaces the old one. The
approach is extended for the chain topology to the more general case when more than two ideas compete. Our
analytical results agree with the numerical simulations.
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I. INTRODUCTION

There is a tendency to separate certain periods in the history
of civilizations, such as the Renaissance or Enlightenment,
which qualitatively differ from each other by dominating
trends in science, art, or customs. Technological innovations
and scientific discoveries constantly emerge, and therefore
some kind of equilibrium, i.e., “end of history” [1], will
unlikely be reached. Changes (evolutionary and revolutionary
ones) occur because of the interactions and exchange of
innovative ideas [2–5] at the level of individuals, communities,
or even civilizations. Eventually, ideas spread throughout
the communities [6,7]. Some of the ideas gain broad (even
global) acceptance and popularity, replacing old ones [8].
Similar phenomena can be observed in the models of opinion
formation dynamics [5,9–12].

The process of adoption of an innovative technology [13]
or a new scientific concept by individuals and communities
differs from the adoption of, e.g., a new trend in the arts.
The obsolete technologies and discarded scientific theories,
once abandoned, are not likely to be accepted by individuals
again. To model such a process, agents should be given some
kind of memory. Another important fact is that the will of
individuals to adopt a new scientific concept depends on its
global popularity. For example, the spreading of technological
innovations is usually slowed down by incompatibility with
existing standards. In the field of art, the situation is different.
Old ideas can reemerge and become popular again. For exam-
ple, Renaissance artists were inspired by antique philosophy
or architecture.

Recently, a model has been introduced by Bornholdt et al.
that attempts to describe scientific revolutions [14]. The model
combines interactions at the level of individuals with the
influence of the whole community. Despite its simplicity, it
manages to reconstruct some key features of the dynamics
of scientific paradigms spreading, including an asymmetry
between the rate of adopting a new idea by the community and
the speed of its decline when new competing ideas emerge. The
model was based on numerical simulations, and no analytical
treatment was presented. In this paper, the master equation
and Markov process theory [15] were applied to analyze the
dynamics of the system in the case of a small level of agents’
creativity for various topologies of agent interactions, such as
the chain, the complete graph, Erdős-Rényi (ER) graphs, the

star graph the square lattice, and the Barabási-Albert (BA)
graphs. For the chain topology, the approach was extended in
an attempt to describe the system dynamics for higher levels
of creativity.

II. THE MODEL OF SPREADING OF IDEAS

The rules of the model [14] are very simple. N agents
occupy nodes of a network. Every agent follows some
paradigm (idea), labeled by a natural number. In each time
step, a random agent i (with paradigm si) is selected, along
with one of its neighbors j (with paradigm sj ). If the agent
i has never followed the paradigm sj , the agent adopts the
paradigm with probability Nsj

/N , where Nsj
denotes the

number of agents representing paradigm sj . Additionally, new
paradigms, which have never been present in the community,
can appear. With probability α, a random agent is selected,
which changes its paradigm into one that has never been
present in the community.

The most important feature of the model is the memory of
the agents, who do not adopt the same paradigm twice. One can
find analogy between this model and evolutionary dynamics
models: innovations can be regarded as mutations that allow
affected individuals to outperform their rivals. The lack of any
evident fitness parameter, which describes how well a species
has adapted to the environment, is not necessarily a drawback
of such an interpretation, as the fitness of a species is always
known a posteriori [16].

As stated, the dynamics of the system is the outcome of the
interactions at two levels: the local “contagion” process and
the “global pressure.” The local interactions are fairly natural.
Definitely, the most effective exchange of ideas occurs when
people communicate directly with each other. However, the
reasons why the global popularity factor was introduced need
more clarification.

We define a scientific revolution as a global change in
perceiving the world. In terms of our model, a revolution
occurs when the majority of the community abandons their
idea in favor of a new one. In an idealistic picture, the only
criterion for the adoption of a new idea by an agent would be its
objective correctness, verified by an experiment. However, in
reality, this is rather rare. First, the result of an experiment can
usually be explained by several competing theories. Second,
an individual is not always competent enough, or simply not
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willing, to assess the correctness of the theory. On the contrary,
we believe that in most cases, we have to draw opinions
on the theories that we are unable to verify ourselves. This
situation is certainly the case if we consider the population of
the whole world. Nevertheless, if we limit our interest to the
population of scientists, we may observe similar phenomena.
The process of specialization has gone so far that scientists
working in different fields are usually unaware of recent
developments outside their fields. Last, in the case of the
natural sciences, determining whether a theory is correct or not
is generally impossible. A theory is regarded as “correct” until
it is experimentally discarded. However, the experiments may
also be dubious or indecisive. In the humanities, the criteria of
correctness of an idea are much less clear, or they do not exist
at all. As a result of all these factors, an individual confronted
with a new idea would rather check how popular such an idea is
instead of try to verify its correctness. As an example support-
ing our reasoning, the medieval people commonly believed
that the earth is flat, although the theory that it is spheric had
already existed in antiquity; the circumference of the earth was
measured by Eratosthenes in the third century BC.

If, instead of analyzing scientific ideas, we consider
technological innovations, similar reasoning will lead us to
the analogical conclusions. The knowledge regarding new
technologies is transmitted through peer-to-peer interactions.
However, it is not always the case that once we learn about
a better technology, we immediately switch to it. We have to
consider such factors as the compatibility of the new technol-
ogy with the existing standards, the availability of technical
support, or the reliability of the new technology. Clearly, all
these criteria favor popular and widespread technologies.

For simplicity, the dependence of the pressure factor on
global popularity was assumed to be linear in the model. In
reality, such linearity does not have to (and probably does not)
occur.

The evolution of the system has some general features,
independent of the interactions network topology. For a very
small probability α, two paradigms at most coexist (other cases
are neglectable because of their much smaller probability).
This case will be analyzed for various networks in Sec. III.

For higher values of probability α, other effects have to be
considered. In such case, usually more than two paradigms
coexist, which “compete” with each other. However, one may
suppose that within a relatively wide range of α, two paradigms
can still be separated at every moment: the “old” paradigm,
which is the most popular but currently at a decline, and the
“new” paradigm, which is the second most popular and one
that will prevail after some time (and then enter the stage of
decline). This case will be analyzed in Sec. IV.

III. THE CASE OF TWO COMPETING PARADIGMS

A. General case

When the creativity level of the agents α is small enough,
two paradigms at most coexist, referred to as paradigm 0 (at the
stage of decline) and paradigm 1 (at the stage of expansion).
The evolution consists of two distinct periods.

(1) All agents share the same paradigm 0. The length of
this stage of stagnation is a random variable of the exponential

distribution,

P (Tstag) = α(1 − α)Tstag , (1)

and the mean value,

〈Tstag〉 =
∞∑

Tstag=0

Tstagα(1 − α)Tstag = 1 − α

α
≈ 1

α
. (2)

(2) After an innovative paradigm 1 appears, it starts
spreading across the community. The time of expansion of
paradigm 1 is denoted as T . It is a random variable whose
distribution depends on the interaction network topology. After
time T , all agents share paradigm 1, and the state of the system
is equivalent to the initial one.

In our approach the state of the system is characterized
by one variable, the number n of agents sharing paradigm
1. The problem is reduced to the problem of the expansion of
paradigm 1 throughout the community, starting from one agent
with paradigm 1 at time t = 0. The generic master equation
has only two terms:

∂

∂t
P (n,t) = P (n − 1,t)Wn,n−1 − P (n,t)Wn+1,n, (3)

where transition rates from state n to state n + 1 (for n ∈
[1,N − 1]) are equal to

Wn+1,n ≡ Wn = n

N2

N∑
i=1

1 − si

ki

N∑
j=1

aij sj , (4)

where si denotes the state of the ith agent (si = 0 means the
agent follows the old paradigm, and si = 1 means the agent
follows the new paradigm), ki is the degree of node i, and aij

is the adjacency matrix. For n = N , the defined transition rate
is automatically equal to 0, as ∀i si = 0 then.

It can be easily proved that, if all the transition rates are
different (k 	= j ⇒ Wk 	= Wj ), the solution of Eq. (3) with
the initial condition P (n,0) = δn1 is

P (n,t) =
n∑

k=1

Cn
k e−Wkt , (5)

where

Cn
k ≡

n−1∏
i=1

Wi

n∏
j = 1
j 	= k

1

Wj − Wk

. (6)

Note that, as WN = 0 and ∀1�n<NWn > 0, the distribution
evolves into

lim
t→∞ P (n,t) = δnN (7)

(all the agents share paradigm 1), which is an expected limit.
The approximation of only two competing paradigms

makes sense if the mean stagnation time 〈Tstag〉 = 1/α is
greater than the mean expansion time 〈T 〉, i.e.,

α <
1

〈T 〉 . (8)

This upper limit of α has to be estimated for each type of
network separately. In general, the P (T ) distribution can be
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expressed by the P (n,t) probability as

P (T = t) = WN−1P (N − 1,t − 1) ≈ 1

N
P (N − 1,t), (9)

and, considering Eq. (5), we obtain

〈T 〉 ≈
∫ ∞

0
tP (T = t)dt ≈ 1

N

N−1∑
k=1

CN−1
k

W 2
k

. (10)

Alternatively, we can sum up the mean times of transition
between the subsequent states to calculate the mean expansion
time:

〈T 〉 =
〈

N−1∑
n=1

Tn→n+1

〉
=

N−1∑
n=1

〈Tn→n+1〉 =
N−1∑
n=1

1

Wn

. (11)

B. Chain topology

Consider the case when the agents occupy the nodes of
a chain. For simplicity, periodic boundary conditions will be
assumed.

This specific topology makes the problem quite simple. In
the first approximation, analyzing the master equation (3) is
not necessary. The average number of agents sharing paradigm
1 can be derived from the recursive equation

〈n(0)〉 = 1,
(12)

〈n(t + 1)〉 = 〈n(t)〉 + 2

N

1

2

〈n(t)〉
N

= 〈n(t)〉
(

1 + 1

N2

)
,

which has the solution

〈n(t)〉 =
(

1 + 1

N2

)t

≈ et/N2
. (13)

On average, after time

〈T 〉 = N2 ln N, (14)

paradigm 1 will stop spreading as it will be shared by the
whole community. The situation will be stable until another
innovation appears. From this condition the range of α can
be estimated for which this approximation makes sense.
Considering Eq. (8), we obtain

α <
1

N2 ln N
. (15)

For a more exact analysis, master equation (3) should
be considered. Let us make the simple observation that the
subgraph consisting of agents sharing the new paradigm is
connected. Therefore, the transition rates are equal to

Wn = n

N2

N∑
i=1

1 − si

2
(si+1 + si−1) = n

N2
(1 − δnN ). (16)

In this equation, we used the periodic boundary conditions, so
agents at positions 1 and N + 1 are equivalent.

To solve the problem, we initially neglect the δnN term
and treat the n variable as if it could grow to infinity, n =
1,2, . . . ,∞. Eventually, the transition rates from state n to
n + 1 are equal to Wn = n

N2 , and the master equation has the

following form:

∂

∂t
P (n,t) = P (n − 1,t)

n − 1

N2
− P (n,t)

n

N2
. (17)

Owing to the simple form of the transition rates, Eq. (17) can
be solved using the method of characteristic function G:

G(s,t) ≡ 〈eins〉. (18)

This approach has such an advantage over the use of (5) that
the solutions are automatically in a compact form. Master
equation (17), with the initial condition P (n,0) = δn0, leads to
the partial differential equation with the initial condition

∂

∂t
G(s,t) + 1

iN2
(eis − 1)

∂

∂s
G(s,t) = 0, G(s,0) = eis,

(19)

which can be solved as

G(s,t) = 1

1 − et/N2 (1 − e−is)
. (20)

After a short algebra, the following can be proved:

G(s,t) =
∞∑

n=1

1

et/N2 − 1
(1 − e−t/N2

)neisn, (21)

so

P (n,t) = e−t/N2
(1 − e−t/N2

)n−1. (22)

This is valid for n < N . In order to consider the limitation on
the n variable [the δnN term in Eq. (16)], one has to consider
the accumulation of probability at point n = N :

P (n= N,t) =
∞∑

m=N

e−t/N2
(1 − e−t/N2

)m−1 = (1 − e−t/N2
)N−1.

(23)

Eventually (see Fig. 1),

P (n,t) =
{

e−t/N2
(1 − e−t/N2

)n−1, 1 � n < N,

(1 − e−t/N2
)N−1, n = N.

(24)
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FIG. 1. (Color online) Chain graph topology, N = 64 nodes,
α < 1/〈T 〉. Evolution of the system starting from P (n,t = 0) = δn1;
probability P (n,t) at various moments t . Points are obtained from
the numerical solution of master equation (17). Lines show analytical
predictions Eq. (24).
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 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

<
n>

/N

t/N2ln(N)

N=64
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FIG. 2. (Color online) Chain graph topology, N = 64, 128, 256
nodes, α < 1/〈T 〉. Evolution of the system starting from n = 1
innovative agent: 〈n〉 vs time. Points show simulated data, and lines
show analytical predictions Eq. (25).

The mean value of n resulting from distribution (24) is equal
to

〈n〉 = et/N2
[1 − (1 − e−t/N2

)N ] (25)

(see Fig. 2), which for small t reduces to (13).
From the distribution P (n,t), a more exact approximation

of 〈T 〉 than Eq. (14) can be obtained. According to Eq. (9),

P (T = t) ≈ 1

N
e−t/N2

(1 − e−t/N2
)N−2 (26)

(see Fig. 3), and

〈T 〉 =
∞∑
t=0

tP (T = t)

≈ 1

N

∫ ∞

0
te−t/N2

(1 − e−t/N2
)N−2dt

= N2HN−1, (27)

where Hn is the nth harmonic number. As harmonic numbers
grow approximately as fast as the natural logarithm, the
approximated solution (14) is very close to (27). In fact, for

1x10-4

2x10-4

3x10-4

4x10-4

0x104 1x104 2x104 3x104

P
(T

)

T

N=32 N=48 N=64

104

105

 30  60  90  120

<
T

>

N

FIG. 3. (Color online) Chain graph topology, α < 1/〈T 〉. Distri-
bution of the expansion periods lengths T for different system sizes
N . Points show simulations, and lines show analytical predictions
Eq. (26). The inset shows the mean time of expansion 〈T 〉 vs system
size N : simulations (points) compared with the analytical predictions
(line) [Eq. (27)].

N � 1,

HN ≈ ln N + γ, (28)

where γ ≈ 0.5772 denotes the Euler-Mascheroni constant.

C. Complete graph topology

Consider the situation in which interaction is possible
between every pair of agents, i.e., ∀(i,j )aij = 1. Referring to
the generic master equation (3), the transition rates are equal
to

Wn = n

N2

N∑
i=1

1 − si

N − 1

N∑
j=1

sj = n2(N − 1)

N2(N − 1)
≈ n2(N − 1)

N3
.

(29)

Eventually, the master equation obtains the following form:

∂

∂t
P (n,t) = P (n − 1,t)

(n − 1)2(N − n + 1)

N3

−P (n,t)
n2(N − n)

N3
. (30)

If all the transition rates are different [j 	= k ⇒ Wj 	= Wk ,
which is satisfied if equation N = a(1 + b + b2) does not have
trivial solutions a,b among natural numbers], the solution can
be written in the form of sum (5):

P (n,t) =
n∑

k=1

Cn
k e−k2(N−k)t/N3

, (31)

where

Cn
k ≡

n−1∏
i=1

i2(N − i)
n∏

j = 1
j 	= k

1

j 2(N − j ) − k2(N − k)

= (n − 1)!2 (N − 1)!

(N − n)!

n∏
j = 1
j 	= k

1

j 2(N − j ) − k2(N − k)
.

(32)

The expansion time T distribution P (T ) can be derived
from the P (n,t) distribution:

P (T = t) ≈ 1

N
P (N − 1,t) = 1

N

N−1∑
k=1

CN−1
k e−k2(N−k)t/N3

.

(33)

The mean expansion time can be derived analytically,
using (11):

〈T 〉 =
N−1∑
n=1

1

Wn

=
N−1∑
n=1

N3

n2(N − n)

≈ π2

6
N2 + 2N ln N = O(N2). (34)

The analytical predictions are in agreement with the
simulations (Figs. 4–6).
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FIG. 4. (Color online) Complete graph topology, N = 64 nodes,
α < 1/〈T 〉. Evolution of the system starting from P (n,t = 0) = δn1;
probability P (n,t) at various moments t . Points are obtained from
the numerical solution of master equation (30). Lines show analytical
predictions Eq. (31).

D. Erdős-Rényi graph topology

Consider the situation when the network of interactions is
an Erdős-Rényi graph [17]. For each pair of nodes, the edge
between them exists with probability p.

The degree distribution of an ER graph is a binomial
distribution,

P (k) = Bin(N,p) ≡
(

N − 1

k

)
pk(1 − p)N−1−k. (35)

The transition rates of master equation (3) are equal to

Wn = n

N2

N∑
i=1

(1 − si)
N∑

j=1

aij sj

ki

= n

N2

N∑
i=1

(1 − si)
k+
i

k+
i + k−

i

,

(36)

where the random variable k+
i denotes the number of i’s

neighbors following paradigm 1 and k−
i is that following

paradigm 0. In the mean field approach, the transition rates
can be estimated by

Wn = n(N − n)

N2

〈
k+

k+ + k−

〉
, (37)
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FIG. 5. (Color online) Complete graph topology, N = 32, 64,
128 nodes, α < 1/〈T 〉. Evolution of the system starting from n = 1
innovative agent: 〈n〉 vs time. Points show simulated data, and lines
show analytical predictions [obtained from Eq. (31)].
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FIG. 6. (Color online) Complete graph topology, α < 1/〈T 〉. Dis-
tribution of the expansion period lengths T for different system sizes
N . Points show simulations, and lines show analytical predictions
Eq. (33). The inset shows the mean expansion time 〈T 〉 vs the
system size N : simulations (points) are compared with the theoretical
predictions (line) [Eq. (34)].

where 〈·〉 denotes the averaging on the whole population of
agents. Treating k+ and k− as independent random variables
with binomial distributions, we obtain〈

k+

k+ + k−

〉
=

n∑
k+=1

N−n−1∑
k−=0

k+

k+ + k− P (k+)P (k−)

=
n∑

k+=1

k+
(

n

k+

)
pk+

(1 − p)n−k+

×
N−n−1∑
k−=0

(
N−n−1

k−
)

k+ + k− pk−
(1 − p)N−n−1−k−

= (1 − p)N−n−1
n∑

k+=1

k+
(

n

k+

)
pk+

(1 − p)n−k+

×
(

1 − p

p

)k+ p/(1−p)∫
0

ξk+−1(1 + ξ )N−n−1dξ

= n

N − 1
[1 − (1 − p)N−1]. (38)

Eventually,

Wn = n2(N − n)

N3
[1 − (1 − p)N−1]. (39)

For p = 1, the transition rates reduce, as expected, to the ones
obtained for the complete graph topology.

The master equation has the following form:

∂

∂t
P (n,t) =

(
P (n − 1,t)

(n − 1)2(N − n + 1)

N3

− P (n,t)
n2(N − n)

N3

)
[1 − (1 − p)N−1]. (40)

Similar to the case of complete graph topology, the solution
can be written in the form of sum (5):

P (n,t) =
n∑

k=1

Cn
k e−k2(N−k)[1−(1−p)N−1]t/N3

, (41)
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FIG. 7. (Color online) ER graph topology, N = 128 nodes,
p = 0.5,0.05,0.02, α < 1/〈T 〉. Evolution of the system starting from
n = 1 innovative agent: 〈n〉 vs time. Points show simulated data, and
lines show analytical predictions [obtained from Eq. (41)].

where

Cn
k ≡

n−1∏
i=1

i2(N − i)
n∏

j = 1
j 	= k

1

j 2(N − j ) − k2(N − k)

= (n − 1)!2 (N − 1)!

(N − n)!

n∏
j = 1
j 	= k

1

j 2(N − j ) − k2(N − k)
.

(42)

Now, the expansion time distribution P (T ) is

P (T = t) ≈ 1

N
P (N − 1,t)

= 1

N

N−1∑
k=1

CN−1
k e−k2(N−k)[1−(1−p)N−1]t/N3

. (43)

As shown in Fig. 7, our approach predicts a decline in the
rate of growth of the new paradigm cluster with a decrease
in the network density (parameter p), which is, however,
seriously underestimated. We suppose that some nontrivial
correlations exist between the agents’ states resulting from the
dynamics, which was not considered.

E. Star topology

1. Central agent innovative

Consider the star topology of interactions i.e., there exists
a central agent connected to all the other N − 1 peripheral
agents, which are the only connections. Moreover, we require
that at time t = 0, the central agent follows innovative
paradigm 1. This case is interesting because in this variant,
the new idea spreads at the highest pace. The transition rates

Wn = (N − n)n

N2
(44)

are the highest possible for this model among all the possible
topologies [e.g., compare Eq. (44) with Eqs. (16), (29), (37),
and (55)].

The peripheral agents are not connected to each other, and
they are only influenced by the “mean field” of the paradigms.

Therefore, one can consider the change in time of the average
state of a peripheral agent. Let π (t) denote the probability that,
at time t , a peripheral agent follows paradigm 1. The evolution
of π (t) follows the recursive equation

π (0) = 0,

π (t + 1) = π (t) + [1 − π (t)]
1

N − 1

〈n(t)〉
N

= π (t) + 1

N
[1 − π (t)]

(
π (t) + 1

N − 1

)
, (45)

which can be solved in the approximation of continuous time:

dπ

dt
≈ − 1

N
(π − 1)

(
π + 1

N − 1

)
, (46)

π (t) = 1 + 1
N−1

(N − 1) exp
(− t

N−1

) + 1
− 1

N − 1
. (47)

Thus, the average number of agents sharing paradigm 1 is
equal to

〈n(t)〉 = (N − 1)π (t) + 1 ≈ N

1 + Ne−t/N
(48)

(see Fig. 8). From π (t), the expansion time distribution P (T )
can be derived as follows:

P (T = t) ≈ d

dt
P (T � t) = d

dt
[π (t)]N−1

≈ Net/N (et/N − 1)N−2

(et/N + N − 1)N
(49)

(see Fig. 9).
We were not able to find an analytical formula for 〈T 〉.

However, as P (T ) is unimodal with a well-defined maximum,
one can assume that 〈T 〉 grows as fast with N as

arg max P (T ) = N ln

(√
N4 − 2N3 + N2 − 4N + 4

2

+ N2 − N

2

)
= O(N ln N ). (50)
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<
n>

/N

t/(N ln(N))

N=64
N=128
N=256
N=512

N=1024

FIG. 8. (Color online) Star topology with central agent innova-
tive, N = 64,128,256,512,1024 nodes, α < 1/〈T 〉. Evolution of the
system starting from n = 1 innovative agent (central): 〈n〉 vs time.
Points show simulated data, and lines show analytical predictions
Eq. (48).
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FIG. 9. (Color online) Star topology with central agent innova-
tive, α < 1/〈T 〉. Distribution of the expansion period lengths T for
different system sizes N . Points show simulations, and lines show
analytical predictions Eq. (49).

Indeed, as shown in Fig. 11, the mean expansion time can be
well approximated by

〈T 〉 ≈ kN ln N, (51)

where parameter k, as obtained by fitting to simulated data,
is equal to k = 2.149 ± 0.007. As the transition rates (44) are
the highest possible, the mean expansion time (51) must be the
shortest for this model among all the possible topologies.

2. All agents equally innovative

The system is similar to the one described above. The
only difference is that, at time t = 0, any agent can be the
innovative one. With probability (N − 1)/N ≈ 1, a peripheral
agent becomes the innovative one. After time T0, which is a
random variable with exponential probability distribution,

P (T0 = t) =
(

1 − 1

N2(N − 1)

)t−1 1

N2(N − 1)

≈ 1

N3
e−t/N3

, (52)

the central agent adopts paradigm 1. Then the dynamics
becomes as described in the case of the innovative central
agent. Thus, the probability distribution of the expansion time
can be well approximated by a convolution of two probability
distributions:

P (T = t) ≈
∫ ∞

0

Neτ/N (eτ/N − 1)N−2

(eτ/N + N − 1)N
1

N3
e(−t+τ )/N3

dτ

≈ 1

N3
e−t/N3 = P (T0 = t). (53)

The mean and the standard deviation of this exponential
probability distribution (Fig. 10) are equal to

〈T 〉 = σ (T ) = N3. (54)

As shown in Fig. 11, the analytical results for both variants of
star topology agree well with simulations.

F. Square lattice topology

Consider the square lattice topology. Periodic boundary
conditions are assumed, so each agent has four neighbors.

10-9

10-7

10-5

10-3

 0  1  2  3  4  5

P
(T

)

T/N3

N=16
N=32

N=64
N=128

FIG. 10. (Color online) Star topology with all agents equally
innovative, α < 1/〈T 〉. Distribution of the expansion period lengths
T for different system sizes N . Points show simulations, and lines
show analytical predictions Eq. (53).

The first approximation assumes that the cluster of agents
sharing paradigm 1 grows uniformly in each direction. At any
moment, it is circle shaped, with the radius of the circle equal
to r = √

n/π . Therefore, in this approximation, the transition
rates in the generic master equation (3), are equal to

Wn =
√

πn3/2

2N2
(1 − δnN ). (55)

Similar to the case of complete graph topology, the solution
of the master equation

∂

∂t
P (n,t) = P (n − 1,t)

√
π (n − 1)3/2

2N2
(1 − δn−1,N )

−P (n,t)

√
πn3/2

2N2
(1 − δnN ) (56)

can be expressed in the form of the sum of products (5).
Comparing the results of such an approximation with the
simulations (Fig. 12), this approach significantly overestimates
the pace of the growth of the new paradigm cluster.

101
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103

104

105

106

107

101 102 103

<
T

>

N

y = 2.149 x ln(x)
y = x3

FIG. 11. (Color online) Star topology. Mean time of expansion
〈T 〉 vs system size N . Open circles indicate an innovative central
agent; solid circles indicate that all agents are equally innovative.
Error bars correspond to the standard deviations of the samples. Lines
show analytical predictions Eqs. (51) and (54).
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FIG. 12. (Color online) Square lattice topology, N = 64, 169,
256 nodes, α < 1/〈T 〉. Evolution of the system starting from an
n = 1 innovative agent: 〈n〉 vs time. Points show simulated data,
and lines show analytical predictions [obtained from Eq. (5) with
transition rates (55)].

G. Barabási-Albert graph topology

The Barabási-Albert (BA) graphs [17] are constructed as
follows: starting from a clique of m0 nodes, a new node is
added in each time step, which links to m � m0 nodes already
present. The probability of creating such a link to node i is
proportional to its temporary degree ki(t). For a sufficiently
large number of added nodes, such an algorithm results in the
degree distribution of the network following the power law

P (k) ∝ k−γ , (57)

where the exponent γ = 3. The maximum node degree in the
graph scales with its size as kmax ≈ m

√
N .

We concentrated on the case of the parameters m0,m both
being equal to 1. In this case the BA graphs are trees (connected
graphs without cycles), making them easier to analyze. We
conjectured that the expansion period length T is dominated by
the time to infect the hub [similar to the star graph topology; see
Eq. (53)]. Therefore, the P (T ) probability distribution should
be exponential,

P (T = t) ≈ P (Thub = t) =
(

1 − ñ

2N2.5

)t
ñ

2N2.5

≈ ñ

2N2.5
exp

(
− ñt

2N2.5

)
, (58)

with the mean equal to

〈T 〉 =
∫ ∞

0
tP (T = t)dt = 2N2.5

ñ
, (59)

where ñ is a random variable denoting the number of nodes
infected before the hub. The rough approximation of 〈ñ〉 as the
average degree of the (hub’s) nearest neighbor 〈knn〉,

〈ñ〉 ≈ 〈knn〉 = 〈kP (k)〉
〈k〉 = γ − 1

γ − 2
= 2, (60)

agrees surprisingly well with the results of the simulations
(Fig. 13). The differences between the real P (T ) distribution
and the approximated, exponential one Eq. (58) are, however,
large enough to reflect in the 〈T 〉 scaling with the system size.
The 〈T 〉 value scales with the system size as a power function

10-9

10-7

10-5

10-3

 0  1  2  3  4  5  6

P
(T

)

T/N2.5

N=16
N=32

N=64
N=128

N=256

FIG. 13. (Color online) BA graph topology, α < 1/〈T 〉. Distribu-
tion P (T ) of the expansion period lengths T for different system sizes
N . Points show simulations, and lines show analytical predictions
Eq. (58).

〈T 〉 ∝ Nβ , but the exponent β is not equal to 2.5, as predicted
by Eq. (59), but rather β = 2.179 ± 0.004 (Fig. 14).

In principle, it should be possible to approach the problem
from a different, microscopic perspective and to try to find the
〈n(t)〉 function. The simplest way would be to treat the system
as a well-mixed system of heterogeneous (due to different
node degrees) agents. Thus, considering the evolution of the
probability ρk that a node of degree k is in state 1, one would
obtain the set of equations

ρ̇k = 1

Nk

Nk

N
(1 − ρk)

∑
k P (k)kρk∑
k P (k)k

∑
k

P (k)ρk. (61)

However, the solution of these equations does not agree with
the simulations. The basic reason is probably the fact that the ρk

functions do not combine into some macroscopic variable in a
natural way. In the above equation, there are both weighted and
the nonweighed means of ρk: 1

〈k〉
∑

k P (k)kρk and
∑

k P (k)ρk .
This is in contrast to, for example, the Voter [18], Ising
[19], or zero-temperature Gluaber dynamics [20] models on
complex networks, where the weighted sum of spins is a proper
order parameter. As a result, should one wish to develop the
microscopic description of the analyzed dynamics, one would
probably have to go beyond the mean field approximation
and consider the correlations between the neighboring nodes’
states.

102

104

106

101 102

<
T

>

N

FIG. 14. (Color online) Barabási-Albert networks (trees), mean
time of expansion 〈T 〉 vs network size N . Points show simulations,
the dashed line shows expected behavior Eqs. (59) and (60), and
the solid line shows the least squares fit: 〈T 〉 = CNβ , where
β = 2.179 ± 0.004 and C = 3.93 ± 0.07.
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FIG. 15. (Color online) Chain topology, N = 128, various levels of creativity α. Comparison of approximations is Eqs. (13), (66), and (69).
The red crosses refer to the simulated data.

IV. THE CASE OF MANY COMPETING IDEAS

If the mean stagnation time 〈Tstag〉 = 1/α is shorter than
the mean expansion time 〈T 〉, i.e.,

α = 1

〈Tstag〉 >
1

〈T 〉 , (62)

then it is most probable that more than two paradigms coexist
in the community at any moment. This case is much more
difficult to describe analytically. In what follows we present
our results for chain topology, which is probably the simplest
one.

For α higher than 1/N2 ln N , Eq. (12) has to be extended
by terms describing the appearance of new clusters of ideas,
which slows down the process of expansion of paradigm 1.
In the first approximation, the only important new clusters are
assumed to be those appearing inside the cluster of paradigm
1, and they do not overlap with each other. Their growth is
described by Eq. (13). Thus, the recursive equation for 〈n(t)〉
is now

〈n(t + 1)〉 = 〈n(t)〉
(

1 + 1

N2

)
−

t∑
τ=0

α
〈n(τ )〉

N
〈�nnew(t − τ )〉

= 〈n(t)〉
(

1 + 1

N2

)
− α

N3

t∑
τ=0

〈n(τ )〉 exp

(
t − τ

N2

)
.

(63)

Substituting the sum with the integral and stating that 〈n(t)〉 =
exp(t/N2)f (t) leads to the following equation for f (t):

f ′(t) + α

N3

∫ t

0
f (τ )dτ = 0, (64)

which, assuming the same initial conditions as in Eq. (12)
(single innovation at time t = 0), has the solution

f (t) = cos (λt) , (65)

where λ ≡
√

α/N3. Thus, the complete formula for the first
approximation of 〈n(t)〉 is

〈n(t)〉 = exp

(
t

N2

)
cos (λt) . (66)

As expected, for α → 0, this approximation converges to the
previous one Eq. (13).

A better approximation can be obtained by substituting the
term exp

(
t−τ
N2

)
by 〈n(t − τ )〉 in Eq. (63), as new paradigms

can also be “attacked” by paradigms appearing after them.
The equation

〈n(t + 1)〉 = 〈n(t)〉
(

1 + 1

N2

)
− α

N3

t∑
τ=0

〈n(τ )〉〈n(t − τ )〉

(67)

does not have a simple analytical solution, but by
substituting the sum with the integral and stating 〈n(t)〉 =
exp(t/N2) cos(λt)[1 + g(t)], where g(t) � 1, an integral
equation can be obtained,

0 = −λ sin(λt) + g′(t) cos(λt) + λ2
∫ t

0
cos(λτ )[1 + g(τ )]

× cos[λ(t − τ )][1 + g(t − τ )]dτ, (68)

which can be solved provided that all the terms in the integral
apart from the product cos(λτ ) cos[λ(t − τ )] are neglected.
Eventually, the second approximation of 〈n(t)〉 obtains the
following form:

〈n(t)〉 = exp

(
t

N2

)
cos(λt)

[
1 − ln | cos(λt)| − 1

4
λ2t2

]
.

(69)

The comparison with the simulations (Fig. 15) shows that the
latest approximation Eq. (69) is better than the previous ones
Eqs. (13) and (66).

V. CONCLUSIONS

We have developed an analytical approach based on a
master equation that describes a model of paradigm evolution
[14] and compared our results with the outcome of the work
of Bornholdt et al. as well as with our numerical simulations.
The outcome suggests that the asymmetry between the paces
of growth and decline of the dominant idea observed in [14]
is a generic property of the model and should be observed for
any topology of interactions.

Our analytical methodology can be used to consider various
topologies of interaction networks. The crucial parameter of
the dynamics is the creativity of the agents, described by the α

parameter. In the case in which agents are almost noninnova-
tive, the evolution consists of subsequent periods of stagnation
(i.e., a single paradigm is present in the community) and
periods of expansion (i.e., an innovative paradigm spreads
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across the community and replaces the old one). The mean
length of the stagnation period is equal to 〈Tstag〉 = 1/α,
regardless of the interaction network topology. The mean
length of the expansion period 〈T 〉 strongly depends on the
topology. If α � 〈T 〉−1, the mean time between shifts of
dominant paradigms can be approximated by 〈Tstag + T 〉 ≈
〈Tstag〉 = 1/α, which is the scaling observed in the simulated
data by Bornholdt et al. [14] (note that a different time scale
was used in [14]).

Our approach is mainly based on the approximation of
two competing paradigms, which is justified if the level
of creativity α is small enough, i.e., α < 1/〈T 〉. For each type
of interaction network topology, this range has to be calculated
separately. Six different topologies were considered: the chain,
the complete graph, the ER graphs, the star graph the square
lattice, and the BA graphs.

In the chain topology, finding compact forms of the
analytical solutions is possible. The mean expansion time 〈T 〉
scales with the system size N as N2 ln N , and during the stage
of expansion, the mean size of the cluster of the new idea
grows like a damped exponential function; see Eq. (25). The
analytical results agree with the simulated data.

In the complete graph topology, the proposed approach also
results in a good agreement with the simulations. However,
compact forms of the functions describing the system evolution
Eqs. (31) and (33) probably do not exist.

In the case of ER graph topology, our approach overesti-
mates the rate of the growth of the new idea cluster (Fig. 7). The
reasons for this result are probably the correlations between
the node degree and the state of the agent located at that node,
which were not considered.

Comparison of two variants of star topology brought
interesting results. In the first variant, when we require that
the innovation first appears in the central node, the rate of the
expansion of the new idea is the fastest possible among all
the topologies, and the mean expansion time 〈T 〉 (which is
the shortest possible) scales as N ln N . However, if we remove
this requirement and let the innovation appear in any node with
equal probability, 〈T 〉 grows to N3 (higher than that in a chain,
where the mean distance between nodes is much larger), and
almost the whole time is taken by “convincing” the central
agent of the new idea.

In the case of the square lattice, the method only qualita-
tively reproduces the results of the simulations (Fig. 12). The
problem probably lies in the apparently too rough estimation
of the shape of the cluster of the new idea as a circle.

The BA networks, characterized by the strong heterogeneity
of the nodes, seem to be the most difficult to treat analytically.
The research reveals the surprising feature of the expansion
time T scaling: 〈T 〉 ∝ N2.179. The P (T ) distribution may be,
however, quite well estimated by the exponential PDF with the
mean 1/N2.5.

The dynamics described by the model we analyzed is a
kind of a contagion process, including both local and global

interactions. Our research shows that the interaction topology
plays a crucial role in the dynamics. In the heterogeneous
systems (in our paper represented by the star graphs and the
BA graphs), hubs play an important, albeit ambivalent, role.
Initially, a hub is reluctant to change its state, as it interacts
with many other agents, only a small part of whom can be “in-
fected.” However, after the hub has changed its state, the prop-
agation of the new idea is boosted drastically. Our results sug-
gest that, overall, the existence of hubs slows down the process
of the propagation: the mean expansion time is longer (with
respect to the scaling with the system size) for the strongly
heterogeneous networks than for the homogeneous ones.

For a higher level of creativity α, when most of the time
more than two ideas coexist, the dynamics of the system can be
found starting from the results obtained for the case of lower
levels of α and using a method similar to the perturbation
method. This approach proved to be useful in the simplest case,
the chain topology. We considered the function describing the
mean number of agents following the expanding paradigm 1.
Thus, the unperturbed function (13),

〈n(t)〉 = et/N2
, (70)

should be modified by two factors. The first one,

cos

(
α

N3
t

)
< 1, (71)

describes the “attack” on paradigm 1 by the paradigms
appearing after it. The second one,

1 − ln

∣∣∣∣ cos

(
α

N3
t

)∣∣∣∣ − 1

4

(
α

N3

)2

t2 ≈ 1 + 1

4

(
α

N3

)2

t2 > 1,

(72)

describes the attack on the paradigms attacking paradigm 1.
Both these terms, as expected, converge to 1 if the creativity
of the agents α converges to 0.

Our analytical approach allows for a better understanding of
the system dynamics described by the model [14] and explains
some of the relationships previously observed in the simulated
data. The proposed methodology can be used to analyze the
dynamics of paradigms spreading in other networks [17].
It is especially interesting because real networks of human
contacts (including scientific collaboration networks) exhibit
some nontrivial properties, such as scale-free behavior [21].
Investigations of such networks are planned in the future.
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